Search Results for “equation of state” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 13:02:12 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “equation of state” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 1.1.2020 Solving a problem of optimum curves of descent using the enhanced Euler equation https://journal.yuzhnoye.com/content_2020_1-en/annot_1_1_2020-en/ Thu, 20 Jun 2024 11:13:04 +0000 https://test8.yuzhnoye.com/?page_id=27120
Solving a problem of optimum curves of descent using the enhanced Euler equation Authors: Horbulin V. 1 Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine 1 ; The National Academy of Sciences of Ukraine, Kyiv, Ukraine 2 Page: Kosm. Taking into account this pro vision and some other assumptions, the procedures have been determined for simultaneous application of the Euler equation and its analogue being non-invariant in relation to the coordinate system. (2020) "Solving a problem of optimum curves of descent using the enhanced Euler equation" Космическая техника. "Solving a problem of optimum curves of descent using the enhanced Euler equation" Космическая техника. quot;Solving a problem of optimum curves of descent using the enhanced Euler equation", Космическая техника.
]]>

1. Solving a problem of optimum curves of descent using the enhanced Euler equation

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The National Academy of Sciences of Ukraine, Kyiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 3-12

DOI: https://doi.org/10.33136/stma2020.01.003

Language: Russian

Annotation: The purpose of this study is the enhancement of Euler equation possibilities in order to solve the brachistochrone problem that is the determination of a curve of fastest descent. There are two circumstances: 1) the first integral of an Euler equation does not contain a partial derivative of integrand with respect to y in an explicit form; 2) when the classical Euler equation is derived, only the second term of integrand is integrated by parts. This allowed formulating a problem of determination of new conditions of functional extremality. It is assumed that the integrand of the first variation of a functional is equal to zero. Taking into account this pro vision and some other assumptions, the procedures have been determined for simultaneous application of the Euler equation and its analogue being non-invariant in relation to the coordinate system. The brachistochrone problem was solved using these equations: the curves that satisfy the conditions of weak minimum optimality were plotted. The time of a material point’s descent along the suggested curves and the classic extremals was numerically compared. It is shown that the application of suggested curves ensures short descent time as compared to the classic extremals.

Key words: first variation of a functional, joint application of extremality conditions, non-invariance in relation to the coordinate system, parametric shape of the second variation, optimum curves of descent

Bibliography:

1. Bliss G. A. Lektsii po variatsionnomu ischisleniiu. М., 1960. 462 s.
2. Yang L. Lektsii po variatsionnomu ischisleniiu i teorii optimalnogo uravneniia. М.,1974. 488 s.
3. Elsgolts L. E. Differentsialnye uravneniia i variatsionnoe ischislenie. М., 1965. 420 s.
4. Teoriia optimalnykh aerodinamicheskikh form / pod red. А. Miele. М., 1969. 507 s.
5. Shekhovtsov V. S. O minimalnom aerodinamicheskom soprotivlenii tela vrashcheniia pri nulevom ugle ataki v giperzvukovom neviazkom potoke. Kosmicheskaia tekhnika. Raketnoe vooruzhenie: Sb. nauch.-tekhn. st. / GP “KB “Yuzhnoye”. Dnipro, 2016. Vyp. 2. S. 3–8.
6. Sumbatov А. S. Zadacha o brakhistokhrone (klassifikatsiia obobshchenii i nekotorye poslednie resultaty). Trudy MFTI. 2017. T. 9, №3 (35). S. 66–75.

Downloads: 39
Abstract views: 
1407
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Seattle; Ashburn; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn23
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Germany Frankfurt am Main; Falkenstein2
Ukraine Dnipro; Odessa2
Belgium Brussels1
Finland Helsinki1
Unknown1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
1.1.2020 Solving a problem of optimum curves of descent using the enhanced Euler equation
1.1.2020 Solving a problem of optimum curves of descent using the enhanced Euler equation
1.1.2020 Solving a problem of optimum curves of descent using the enhanced Euler equation

Keywords cloud

]]>
16.1.2020 Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations https://journal.yuzhnoye.com/content_2020_1-en/annot_16_1_2020-en/ Wed, 13 Sep 2023 11:18:27 +0000 https://journal.yuzhnoye.com/?page_id=31052
Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine Page: Kosm. When simulating a multicomponent jet, the equations of conservation of mass, energy, and motion were solved taking into account chemical kinetics.
]]>

16. Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 149-154

DOI: https://doi.org/10.33136/stma2020.01.149

Language: Russian

Annotation: Launch vehicle lift-off is one of the most critical phases of the whole mission requiring special technical solutions to ensure trouble-free and reliable launch. A source of increased risk is the intense thermal and pressure impact of rocket propulsion jet on launch complex elements and on rocket itself. The most accurate parameters of this impact can be obtained during bench tests, which are necessary to confirm the operability of the structure, as well as to clarify the parameters and configuration of the equipment and systems of complex. However, full-scale testing is expensive and significantly increases the development time of the complex. Therefore, a numerical simulation of processes is quite helpful in the design of launch complexes. The presented work contains simulation of liquid rocket engine combustion products jet flowing into the gas duct at the rocket lift-off, taking into account the following input data: the parameters of propulsion system, geometric parameters of launch complex elements, propulsion systems nozzles and gas duct. A three-dimensional geometric model of the launch complex, including rocket and gasduct, was constructed. The thermodynamic parameters of gas in the engine nozzle were verified using NASA CEA code and ANSYS Fluent. When simulating a multicomponent jet, the equations of conservation of mass, energy, and motion were solved taking into account chemical kinetics. The three-dimensional problem was solved in ANSYS Fluent in steady-state approach, using Pressure-based solver and RANS k-omega SST turbulence model. The calculation results are the gas-dynamic and thermodynamic parameters of jets, as well as distribution of gas-dynamic parameters at nozzle exit, in flow and in boundary layer at gas duct surface. The methodology applied in this work makes it possible to qualitatively evaluate the gas-dynamic effect of combustion products jets on gas duct for subsequent optimization of its design.

Key words: liquid rocket engine, combustion products, multicomponent flow, ANSYS Fluent

Bibliography:
1. Bonnie J. McBride, Sanford Gordon. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. II. Users Manual and Program Descriptions: NASA Reference Publication 1311. 1996.
2. Ten-See Wang. Thermophysics Characterization of Kerosene Combustion. Journal of Thermophysics and Heat Transfer. 2001. № 2, Vol. 15. P. 140–147. https://doi.org/10.2514/2.6602
3. Maas U., Warnatz J. Ignition Processes in Carbon-Monoxide-Hydrogen-Oxygen Mixtures: Twenty-Second Symposium (International) on Combustion. The Combustion Institute, 1988. P. 1695–1704. https://doi.org/10.1016/S0082-0784(89)80182-1
4. Timoshenko V. I. Teoreticheskiie osnovy tekhnicheskoj gazovoj dinamiki. Kiev, 2013. S. 154–155.
Downloads: 41
Abstract views: 
1632
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Dublin; Dublin; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Ashburn; Portland; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Boardman22
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro; Kyiv; Dnipro3
Unknown;2
Germany; Falkenstein2
Belgium Brussels1
Finland Helsinki1
France Paris1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
16.1.2020  Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations
16.1.2020  Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations
16.1.2020  Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
15.1.2020 Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements https://journal.yuzhnoye.com/content_2020_1-en/annot_15_1_2020-en/ Wed, 13 Sep 2023 11:07:28 +0000 https://journal.yuzhnoye.com/?page_id=31050
The solution of the singular integral equation with the Cauchy kernel allows one to determine the intensity of stresses around the vertexes of defects of the cracks, and by comparing it with the criterion of fracture toughness for the material of a structural element, one can determine its state. Key words: mathematical model , linear systems , singular integral equations , impulse response , defects , criteria for the destruction of stochastically defective bodies , Riemann problem , thermoelastic state Bibliography: 1. mathematical model , linear systems , singular integral equations , impulse response , defects , criteria for the destruction of stochastically defective bodies , Riemann problem , thermoelastic state .
]]>

15. Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements

Organization:

Institute of Mechanical Engineering of Odessa National Polytechnic University, Odessa, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 137-148

DOI: https://doi.org/10.33136/stma2020.01.137

Language: Ukrainian

Annotation: The strength of real solids depends essentially on the defect of the structure. In real materials, there is always a large number of various micro defects, the development of which under the influence of loading leads to the appearance of cracks and their growth in the form of local or complete destruction. In this paper, based on the method of singular integral equations, we present a unified approach to the solution of thermal elasticity problems for bodies weakened by inhomogeneities. The purpose of the work is to take into account the heterogeneities in the materials of the elements of the rocket structures on their functionally-gradient properties, including strength. The choice of the method of investigation of strength and destruction of structural elements depends on the size of the object under study. Micro-research is related to the heterogeneities that are formed in the surface layer at the stage of preparation, the technology of manufacturing structural elements. Defectiveness allows you to adequately consider the mechanism of destruction of objects as a process of development of cracks. In studying the limit state of real elements, weakened by defects and constructing on this basis the theory of their strength and destruction in addition to the deterministic one must consider the probabilistic – statistical approach. In the case of thermal action on structural elements in which there are uniformly scattered, non-interacting randomly distributed defects of the type of cracks, the laws of joint distribution of the length and angle of orientation of which are known, the limiting value of the heat flux for the balanced state of the crack having the length of the “weakest link” is determined. The influence of heterogeneities of technological origin (from the workpiece to the finished product) that occur in the surface layer in the technology of manufacturing structural elements on its destruction is taken into account by the developed model. The strength of real solids depends essentially on the defect of the structure. In real materials, there are always many various micro defects, the development of which under the influence of loading leads to the appearance of cracks and their growth in the form of local or complete destruction. In this paper, based on the method of singular integral equations, we present a unified approach to the solution of thermal elasticity problems for bodies weakened by inhomogeneities. The purpose of the work is to take into account the heterogeneities in the materials of the elements of the rocket structures on their functionally gradient properties, including strength. The choice of the method of investigation of strength and destruction of structural elements depends on the size of the object under study. Micro-research is related to the heterogeneities that are formed in the surface layer at the stage of preparation, the technology of manufacturing structural elements. Defectiveness allows you to adequately consider the mechanism of destruction of objects as a process of development of cracks. In studying the limit state of real elements, weakened by defects and constructing on this basis the theory of their strength and destruction besides the deterministic one must consider the probabilistic – statistical approach. With thermal action on structural elements in which there are uniformly scattered, non-interacting randomly distributed defects of the cracks, the laws of joint distribution of the length and angle of orientation of which are known, the limiting value of the heat flux for the balanced state of the crack having the length of the “weakest link” is determined. The influence of heterogeneities of technological origin (from the workpiece to the finished product) that occur in the surface layer in the technology of manufacturing structural elements on its destruction is taken into account by the developed model. The solution of the singular integral equation with the Cauchy kernel allows one to determine the intensity of stresses around the vertexes of defects of the cracks, and by comparing it with the criterion of fracture toughness for the material of a structural element, one can determine its state. If this criterion is violated, the weak link defect develops into a trunk crack. Also, a criterion correlation of the condition of the equilibrium defect condition with a length of 2l was got, depending on the magnitude of the contact temperature. When the weld is cooled, it develops “hot cracks” that lead to a lack of welding elements of the structures. The results of the simulation using singular integral equations open the possibility to evaluate the influence of thirdparty fillers on the loss of functional properties of inhomogeneous systems. The exact determination of the order and nature of the singularity near the vertices of the acute-angled imperfection in the inhomogeneous medium, presented in the analytical form, is necessary to plan and record the corresponding criterion relations to determine the functional properties of inhomogeneous systems.

Key words: mathematical model, linear systems, singular integral equations, impulse response, defects, criteria for the destruction of stochastically defective bodies, Riemann problem, thermoelastic state

Bibliography:
1. Gakhov F. D. Kraievye zadachi. M.: Nauka,1977. 640 s.
2. Gakhov F. D. Uravneniia tipa svertki. M.: Nauka, 1978.296 s.
3. Litvinchuk G. S. Kraievye zadachi i singuliarnye integralnye uravneniia so sdvigom. M.: Nauka, 1977. 448 s.
4. Muskhelishvili N. I. Singuliarnye integralnye uravneniia. M.: Nauka, 1968. 512 s.
5. Panasiuk V. V. Metod singuliarnykh integralnykh uravnenii v dvukhmernykh zadachakh difraktsii. K.: Nauk. dumka, 1984. 344 s.
6. Siegfried PROSSDORF Einige Klassen singularer Gleichungen.Akademie Verlag Berlin, 1974. 494 s. https://doi.org/10.1007/978-3-0348-5827-4
7. Oborskii G. А. Modelirovanie sistem : monografiia. Odessa: Astroprint, 2013. 664 s.
8. Usov A. V. Matematicheskoe modelirovanie protsessov kontrolia pokrytiia elementov konstruktsii na baze SIU. Problemy mashinostroeniia. 2010. Т.13. №1. s. 98−109.
9. Kunitsyn M. V., Tribocorrosion research of NI-Al2O3/TIO2 composite materials obtained by the method of electrochemical deposition. M.V. Kunitsyn, A.V Usov. Zb. nauk. prats, Suchasni tekhnolohii v mashinobuduvanni. Vyp. 12. Kharkiv: NTU KhPI, 2017. s. 61−70.
10. Savruk M. P. Chislennyi analiz v ploskikh zadachakh teorii tershchin. K.: Nauk. dumka, 1989. 248 s.
11. Usov A. V. Vvedenie v metody optimizatsii i teoriiu tekhnicheskikh sistem. Odessa: Astroprint, 2005. 496 s.
12. Popov G. Ya. Kontsentratsiia uprugikh napriazhenii vozle shtampov, razrezov, tonkikh vkliuchenii i podkreplenii. M.: Nauka, 1982. 344 s.
13. Cherepanov G. P. Mekhanika khrupkogo razrusheniia. M.: Nauka., 1974. 640 s.
14. Stashchuk N. G. Zadachi mekhaniki uprugikh tel s treshchinopodobnymi defectami. K.: Nauk. dumka, 1993. 358 s.
15. Ekobori T. Nauchnye osnovy prochnosti i razrusheniia materialov. Per. s yap. K.: Nauk. dumka, 1978. 352 s.
16. Morozov N. F. Matematicheskie voprosy teorii treshchin. M.: Nauka, 1984. 256 s.
17. Popov G. Ya. Izbrannye trudy. Т. 1, 2. Odessa: VMV, 2007. 896 s.
18. Grigirian G. D., Usov A. V., Chaplia М. Yu. Vliianie shlifovochnykh defektov na prochnost detalei nesushchei sistemy. Vsesoiuzn. konf. Nadezhnost i dolgovechnost mashin i priborov. 1984. s.101−106.
19. Rais Dzh. Matematicheskie metody v mekhanike razrusheniia. Razrushenie. V 2 t. М.: Mir, 1975.Т.2. S. 204−335.
20. Karpenko G. V. Fiziko-khimicheskaia mekhanika konstruktsionnykh materialov: V 2-kh t. K. : Nauk. dumka, 1985. Т. 1 228 s.
21. Kormilitsina Е. А., Salkovskii F. М., Usov A. V., Yakimov А. V. Prichiny poiavliniia defektov pri shlifovanii magnitotverdykh splavov. Tekhnologiia elektrotekhnicheskogo proizvodstva. М.: Energiia. № 4. 1982. s.1−5.
22. Usov A. V. Smeshannaia zadacha termouprugosti dlia kusochno-odnorodnykh tel s vkliucheniiami i treshchinami. IV Vsesoiuzn. konf. Smeshannye zadachi mechaniki deformiruemogo tela: Tez. dokl.-Odessa,1990. s.116.
23. Yakimov А. V., Slobodianyk P. T., Usov A. V. Teplofizika mekhanicheskoi obrabotki. K.: Nauk. dumka,1991. S. 270.
24. Vitvitskii P. M., Popina S. Yu. Prochnost i kriterii khrupkogo razrusheniia stokhaticheski defektnykh tel. K.: Nauk. dumka, 1980. 187 s.
Downloads: 41
Abstract views: 
1710
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore;; Plano; Miami; Columbus; Columbus; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn24
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Germany;; Falkenstein3
Ukraine Odessa; Dnipro2
Cambodia Phnom Penh1
Finland Helsinki1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
15.1.2020  Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements
15.1.2020  Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements
15.1.2020  Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements

Keywords cloud

]]>
14.1.2020 On the problem of optimum control https://journal.yuzhnoye.com/content_2020_1-en/annot_14_1_2020-en/ Wed, 13 Sep 2023 11:02:31 +0000 https://journal.yuzhnoye.com/?page_id=31048
For this purpose, the differential equations for state parameters and Langrangian multipliers are expressed in the form of finite-difference linear relations.
]]>

14. On the problem of optimum control

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 133-136

DOI: https://doi.org/10.33136/stma2020.01.133

Language: Russian

Annotation: The use of Langrangian multipliers at solution of optimal control problems in linear statement with qua dratic quality criterion leads to the necessity of solving boundary value problem with conditions for multipliers at the right end of control interval. Solution of the obtained equations for the purpose of regulation synthesis in forward time in this case does not produce stabilizing effect, as a rule. For regulation synthesis, the met hod is widely used of analytical construction of optimal regulator based on stabilizing matrix, which is obtained by solution of algebraic Riccati equation. However, in this case, there are some difficulties ‒ the necessity of calculating the stabilizing matrix, impossibility of calculating this matrix in non-stationary problem. The article proposes the regulation synthesis method by way of solving boundary value problem on regulation cycle i nterval. For this purpose, the differential equations for state parameters and Langrangian multipliers are expressed in the form of finite-difference linear relations. Taking into account that the state parameters and Langrangian multipliers are equal to zero at the end of cycle, the Langrangian multipliers at the beginning of cycle are determined by known values of state parameters for the same moment through solving the above linear system. The obtained values form the regulation law. In consequence of small duration of regulation cycle, an amplifying coefficient is introduced in the regulation law. Its value is determined based on results of preliminary modeling. Efficiency of the proposed method was verified by the example of adopted dynamic system, including non-stationary. The amplifying coefficient is fairly simply selected by the type of stabilization process. The proposed method may be used in the control systems of rockets of various purpose for motion parameters regulation.

Key words: optimal control, regulation law, Langrangian multiplier, regulation cycle interval, amplifying coefficient

Bibliography:
1. Braison A., Kho Yu-Shi. Prikladnaia teoriia optimalnogo upravleniia. М., 1972.
2. Larin V. B. O stabiliziruiushchikh i antistabiliziruiushchikh resheniiakh algebraicheskikh uravnenii Rikkati. Problemy upravleniia i informatiki. 1996. №1-2.
3. Aleksandrov А. G. Optimalnye i additivnye sistemy. М., 1989.
Downloads: 39
Abstract views: 
964
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Matawan; Baltimore; Boydton; Plano; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Columbus; Ashburn; Seattle; Seattle; Portland; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Ashburn; Boardman24
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Finland Helsinki1
Unknown1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
14.1.2020  On the problem of optimum control
14.1.2020  On the problem of optimum control
14.1.2020  On the problem of optimum control

Keywords cloud

]]>
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep https://journal.yuzhnoye.com/content_2020_1-en/annot_5_1_2020-en/ Wed, 13 Sep 2023 06:15:53 +0000 https://journal.yuzhnoye.com/?page_id=31026
Taking into consideration plasticity and creeping of material, to determine stress and strain state, the approach is effective where the calculation is divided into phases; in each phase the parameters are entered that characterize the deformations of plasticity and creeping: additional loads in the equations of equilibrium or in boundary conditions, additional deformations or variable parameters of elasticity (elasticity modulus and Poisson ratio).
]]>

5. Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2020, (1); 44-56

DOI: https://doi.org/10.33136/stma2020.01.044

Language: Russian

Annotation: The shell structures widely used in space rocket hardware feature, along with decided advantage in the form of optimal combination of mass and strength, inhomogeneities of different nature: structural (different thicknesses, availability of reinforcements, cuts-holes et al.) and technological (presence of defects arising in manufacturing process or during storage, transportation and unforseen thermomechanical effects). The above factors are concentrators of stress and strain state and can lead to early destruction of structural elements. Their different parts are deformed according to their program and are characterized by different levels of stress and strain state. Taking into consideration plasticity and creeping of material, to determine stress and strain state, the approach is effective where the calculation is divided into phases; in each phase the parameters are entered that characterize the deformations of plasticity and creeping: additional loads in the equations of equilibrium or in boundary conditions, additional deformations or variable parameters of elasticity (elasticity modulus and Poisson ratio). Then the schemes of successive approximations are constructed: in each phase, the problem of elasticity theory is solved with entering of the above parameters. The problems of determining the lifetime of space launch vehicles and launching facilities should be noted separately, as it is connected with damages that arise at alternating-sign thermomechanical loads of high intensity. The main approach in lifetime determination is one that is based on the theory of low-cycle and high-cycle fatigue. Plasticity and creeping of material are the fundamental factors in lifetime substantiation. The article deals with various aspects of solving the problem of strength and stability of space rocket objects with consideration for the impact of plasticity and creeping deformations.

Key words: shell structures, stress and strain state, structural and technological inhomogeneity, thermomechanical loads, low-cycle and high-cycle fatigue, lifetime

Bibliography:
1. Iliushin A. A. Trudy v 4-kh t. М., 2004. T. 2. Plastichnost. 408 s.
2. Ishlinskii А. Yu., Ivlev D. D. Matematicheskaya teoriia plastichnosti. М., 2001. 700 s.
3. Hutchinson J. W. Plastic buckling. Advances in Appl. Mech. 1974. V. 14. P. 67 – 144. https://doi.org/10.1016/S0065-2156(08)70031-0
4. Hudramovich V. S. Ustoichivost uprugo-plasticheskikh obolochek / otv. red. P. I. Nikitin. Kiev, 1987. 216 s.
5. Parton V. Z., Morozov Е. М. Mekhanika uprugoplastichnogo razrusheniia. М., 1985. 504 s.
6. Tomsen E., Yang Ch., Kobaiashi Sh. Mekhanika plasticheskikh deformatsii pri obrabotke metalla. М., 1968. 504 s.
7. Mossakovsky V. I., Hudramovich V. S., Makeev E. M. Kontaktnye vzaimodeistviia elementov obolochechnykh konstruktsii / otv. red. V. L. Rvachev. Kiev, 1988. 288 s.
8. Hudramovych V. S. Contact mechanics of shell structures under local loading. Int. Appl. Mech. 2009. V. 45, No 7. P. 708 – 729. https://doi.org/10.1007/s10778-009-0224-5
9. Iliushin A. A. Trudy v 4-kh t. М., 2009. Т. 4. Modelirovanie dinamicheskikh protsessov v tverdykh telakh i inzhenernye prilozheniia. 526 s.
10. Hudramovich V. S. Plasticheskoe vypuchivanie tsilindricheskoi obolochki konechnoi dliny pri impulsnom lokalnom nagruzhenii. Teoriia obolochek i plastin: tr. 8-i Vsesoiuzn. konf. Po teorii obolochek i plastin (Rostov-na-Donu, 1971 g.). М., 1973. S. 125 – 130.
11. Nelineinye modeli i zadachi mekhaniki deformiruemogo tverdogo tela. Sb. nauch. tr., posv. 70-letiiu so dnia rozhd. Yu. N. Rabotnova / otv. red. K. V. Frolov. М., 1984. 210 s.
12. Binkevich Е. V., Troshin V. G. Ob odnom sposobe linearizatsii uravnenii teorii obolochek srednego izgiba. Prochnost i dolgovechnost elementov konstruktsii: sb. nauch. tr. / otv. red. V. S. Hudramovich. Kiev, 1983. S. 53 – 58.
13. Rabotnov Yu. N. Problemy mekhaniki deformiruemogo tverdogo tela. Izbrannye Trudy / otv. red. K. V. Frolov. М., 1991. 196 s.
14. Hudramovich V. S. Teoriia polzuchesti i ee prilozheniia k raschetu elementov tonkostennykh konstruktsii. Kiev, 2005. 224 s.
15. Hudramovych V. S., Hart E. L., Ryabokon’ S. A. Plastic deformation of nonhomogeneous plates. J. Math. Eng. 2013. V. 78, Iss. 1. P. 181 – 197. https://doi.org/10.1007/s10665-010-9409-5
16. Hart E. L., Hudramovych V. S. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Maintenance 2012. Proceedings of 2th Int. Conf. (Zenica, Bosnia and Herzegovina, 2012). Zenica, 2012. P. 157 – 164.
17. Hudramovich V. S., Hart E. L. Konechnoelementnyi analiz protsessa rasseiannogo razrusheniia ploskodeformiruemykh uprugoplasticheskikh sred s lokalnymi kontsentratsiami napriazhenii. Uprugost i neuprugost: materialy Mezhdunar. simp. Po problemam mekhaniki deform. tel, posv. 105-letiiu so dnia rozhd А. А. Iliushina (Moskva, yanv. 2016 g.). М., 2016. S. 158 – 161.
18. Lazarev Т. V., Sirenko V. N., Degtyarev М. А. i dr. Vysokoproizvoditelnaia vychislitelnaia sistema dlia raschetnykh zadach GP KB “Yuzhnoye”. Raketnaia tekhnika. Novyie vozmozhnosti: nauch.-tekhn. sb. / pod red. A. V. Degtyareva. Dnipro, 2019. S. 407 – 419.
19. Sirenko V. N. O vozmozhnosti provedeniia virtualnyks ispytanii pri razrabotke raketno-kosmicheskoi tekhniki s tseliu opredeleniia nesushchikh svoistv. Aktualni problemy mekhaniky sytsilnoho seredovyshcha i mitsnosti konstruktsii: tezy dop. II Mizhnar. nauk.-tekhn. konf. pam’iati akad. NANU V. І. Mossakovskoho (do storichchia vid dnia narodzhennia). (Dnipro, 2019 r.). Dnipro, 2019. S. 43 – 44.
20. Degtyarev А. V. Shestdesiat let v raketostroyenii i kosmonavtike. Dniepropetrovsk, 2014. 540 s.
21. Mak-Ivili А. Dzh. Analiz avariinykh razrushenii. М., 2010. 416 s.
22. Song Z. Test and launch control technology for launch vehicles. Singapore, 2018. 256 p. https://doi.org/10.1007/978-981-10-8712-7
23. Hudramovich V. S., Sirenko V. N., Klimenko D. V., Daniev Ju. F., Hart E. L. Development of the normative framework methodology for justifying the launcher structures resource of launch vehicles. Strength of Materials. 2019. Vol. 51, No 3. P. 333 – 340. https://doi.org/10.1007/s11223-019-00079-4
24. Grigiliuk E. I., Shalashilin V. V. Problemy nelineinogo deformirovaniia. Metod prodolzheniia po parametru v nelineinykh zadachakh mekhaniki deformiruemogo tverdogo tela. М., 1988. 232 s.
25. Hudramovych V. S. Features of nonlinear deformation of shell systems with geometrical imperfections. Int. Appl. Mech. 2006. Vol. 42, Nо 7. Р. 3 – 37. https://doi.org/10.1007/s10778-006-0204-y
26. Hudramovich V. S. Kriticheskoe sostoianie neuprugikh obolochek pri slozhnom nagruzhenii. Ustoichivost v MDTT: materialy Vsesoiuzn. simp. (Kalinin, 1981 g.) / pod red. V. G. Zubchaninova. Kalinin, 1981. S. 61 – 87.
27. Hudramovich V. S. Ustoichivost i nesushchaia sposobnost plasticheskikh obolochek. Prochnost i dolgovechnost konstruktsii: sb. nauch. tr. / otv. red. V. S. Budnik. Kiev, 1980. S. 15 – 32.
28. Hudramovich V. S., Pereverzev E. S. Nesushchaia sposobnost i dolgovechnost elementov konstruktsii / otv. red. V. I. Mossakovsky. Kiev, 1981. 284 s.
29. Hudramovich V. S., Konovalenkov V. S. Deformirovanie i predelnoie sostoianie neuprugikh obolochek s uchetom istorii nagruzheniia. Izv. AN SSSR. Mekhanika tverdogo tela. 1987. №3. S. 157 – 163.
30. Нudramovich V. S. Plastic and creep instability of shells with initial imperfections. Solid mechanics and its applications / Ed. G. M. L. Gladwell V. 64. Dordrecht, Boston, London, 1997. P. 277–289. https://doi.org/10.1007/0-306-46937-5_23
31. Нudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: proceedings Int. Conf. (Helsinki, Finland, 1999) / Ed. P. Makelainen. Amsterdam, Lousanne, New York, Tokyo, 1999. P. 257–263. https://doi.org/10.1016/B978-008043014-0/50133-5
32. Kushnir R. M., Nikolyshyn М. М., Osadchuk V. А. Pruzhnyi ta pruzhnmoplastychnyi hranychnyi stan obolonok z defectamy. Lviv, 2003. 320 s.
33. Hudramovich V. S. Predelnyi analiz – effektivnyi sposob otsenki konstruktsionnoi prochnosti obolochechnykh system. III Mizhnar. konf. «Mekhanika ruinuvannia i mitsnist konstruktsii» (Lviv, 2003) / pid red. V. V. Panasiuka. Lviv, 2003. S.583–588.
34. Herasimov V. P., Hudramovich V. S., Larionov I. F. i dr. Plasticheskoe razrushenie sostavnykh obolochechnykh konstruktsii pri osevom szhatii. Probl. prochnosti. 1979. №11. S. 58 – 61.
35. Hudramovich V. S. Herasimov V. P., Demenkov A. F. Predelnyi analiz elementov konstruktsii / otv. red. V. S. Budnik. Kiev, 1990. 136 s.
36. Druker D. Makroskopicheskie osnovy teorii khrupkogo razrusheniia. Razrushenie. М., 1973. Т. 1. S. 505 – 569.
37. Galkin V. F., Hudramovich V. S., Mossakovsky V. I., Spiridonov I. N. O vliianii predela tekuchesti na ustoichivost tsilindricheskikh obolochek pri osevom szhatii. Izv. AN SSSR. Mekhanika tverdogo tela. 1973. №3. С 180 – 182.
38. Hudramovich V. S., Dziuba A. P., Selivanov Yu. М. Metody golograficheskoi interferometrii v mechanike neodnorodnykh tonkostennykh konstruktsii. Dnipro, 2017. 288 s.
39. Hudramovich V. S., Skalskii V. R., Selivanov Yu. М. Holohrafichne te akustyko-emisiine diahnostuvannia neodnoridnykh konstruktsii i materialiv / vidpovid. red. Z. Т. Nazarchuk. Lviv, 2017. 488 s.
40. Pisarenko G. S., Strizhalo V. А. Eksperimentalnye metody v mekhanike deformiruemogo tverdogo tela. Kiev, 2018. 242 s.
41. Guz’ A. N., Dyshel M. Sh., Kuliev G. G., Milovanova O. B. Razrushenie i lokalnaia poteria ustoichivosti tonkostennykh tel s vyrezami. Prikl. mekhanika. 1981. Т. 17, №8. S. 3 – 24. https://doi.org/10.1007/BF00884086
42. Hudramovich V. S., Diskovskii I. A., Makeev E. M. Tonkostennye element zerkalnykh antenn. Kiev, 1986. 152 s.
43. Hudramovich V. S., Hart E. L., Klimenko D. V., Ryabokon’ S. A. Mutual influence of openings on strength of shell-type structures under plastic deformation. Strength of Materials. 2013. V. 45, Iss. 1. P. 1 – 9. https://doi.org/10.1007/s11223-013-9426-5
44. Hudramovich V. S., Klimenko D. V., Hart E. L. Vliianie vyrezov na prochnost tsilindricheskikh otsekov raket-nositelei pri neuprugom deformirovanii materiala. Kosmichna nauka i tekhnolohiia. 2017. Т. 23, № 6. S. 12 – 20.
45. Hart E. L., Hudramovich V. S. Proektsiino-iteratsiini skhemy realizatsii variatsiino-sitkovykh metodiv u zadachakh pruzhno-plastychnoho deformuvannia neodnoridnykh tonkostinnykh konstruktsii. Matematychni metody I fizyko-mechanichni polia. 2019. Т. 51, № 3. S. 24 – 39.
46. Nikitin P. I., Hudramovich V. S., Larionov I. F. Ustoichivost obolochek v usloviiakh polzuchesti. Polzuchest v konstruktsiakh: tez. dokl. Vsesoiuzn. Simpoziuma (Dniepropetrovsk, 1982 g.). Dniepropetrovsk, 1982. S. 3 – 5.
47. Hudramovich V. S. Ob issledovaniiakh v oblasti teorii polzuchesti v Institute tekhnicheskoi mekhaniki NANU i GKAU. Tekhn. mekhanika. 2016. №4. S. 85 – 89.
48. Hoff N. J., Jahsman W. E., Nachbar W. A. A study of creep collapse of a long circular shells under uniform external pressure. J. Aerospace Sci. 1959. Vol. 26, No 10. P. 663 – 669. https://doi.org/10.2514/8.8243
49. Barmin I. V. Tekhnologicheskiie obiekty nazemnoi infrastruktury raketno-kosmicheskoi tekhniki. V 2-kh kn. M., 2005. Kn. 1. 412 s. М., 2005. Kn. 2. 376 s.
50. Makhutov N. А., Matvienko D. G., Romanov А. N. Problemy prochnosti, tekhnogennoi bezopasnosti i konstruktsionnogo materialovedenia. М., 2018. 720 s.
51. Gokhfeld D. А., Sadakov О. S. Plastichnost i polzuchest elementov konstruktsii pri povtornykg nagruzheniiakh. М., 1984. 256 s.
52. Troshchenko V. Т., Sosnovskii L. А. Soprotivlenie ustalosti metallov i splavov: spravochnik v 2-kh t. Kiev, 1987. Т. 1. 510 s. Kiev, 1987. Т. 2. 825 s.
53. Manson S. S. and Halford G. R. Fatigue and durability of structural materials. ASM International Material Park. Ohio, USA, 2006. 456 p.
Downloads: 40
Abstract views: 
2508
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Columbus; Matawan; Baltimore; North Bergen; Boydton; Plano; Miami; Dublin; Dublin; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Ashburn; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn27
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Odessa; Dnipro2
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Keywords cloud

]]>
23.1.2019 Calculation of Thermal-Physical Properties of Gaseous Xenon https://journal.yuzhnoye.com/content_2019_1-en/annot_23_1_2019-en/ Wed, 24 May 2023 16:00:58 +0000 https://journal.yuzhnoye.com/?page_id=27728
The equation of state of xenon was obtained in dimensionless form, enabling calculations of the thermodynamic values using already known methods, developed for the air and other extensively used gases. Key words: gas , equation of state , thermodynamic properties , thermophysical properties , thermal conductivity , viscosity Bibliography: 1. gas , equation of state , thermodynamic properties , thermophysical properties , thermal conductivity , viscosity .
]]>

23. Calculation of Thermal-Physical Properties of Gaseous Xenon

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 154-162

DOI: https://doi.org/10.33136/stma2019.01.154

Language: Russian

Annotation: This article contains information on the calculation of the thermodynamic and translational properties of the gaseous xenon in the amount sufficient for the most engineering applications. The equation of state of xenon was obtained in dimensionless form, enabling calculations of the thermodynamic values using already known methods, developed for the air and other extensively used gases. An example is made on the implementation of the method based on this equation for calculation of the density, enthalpy and entropy of the gaseous xenon. The accuracy of calculation of these properties in the temperature range from 300 to 3000 K from 0,1 up to 120 MPa pressure was from 0,2 to 1,6%. Sufficiently accurate and simple dependencies were obtained for calculation of the enthalpy and heat of vaporization at the saturation line. Accuracy of the enthalpy calculation of the liquid xenon at the saturation line is not below 0,2%, the accuracy of the calculation of the heat of vaporization is not below 0,5%. New, simpler method, as compared to standard reference data, to calculate the translational properties (thermal conductivity, viscosity) of xenon at atmospheric pressure has been proposed. It is shown that thermal conductivity and viscosity can be calculated from the expression of the same type with different coefficients. Accuracy of the calculation of these properties using the proposed method is not below 2,2%. Considering the unsatisfactory test results of the well-known methods of calculation of the translational properties at high pressures, the effective method for approximating the table values of these properties has been proposed. In this case, at first, the temperature data at fixed pressures are approximated, then using these approximations, the values of the properties are calculated at the given temperature and various pressure values. After this, the value of the property is interpolated at the given high pressure. As an example of the implementation of this method, the Mathcad software for calculations of the thermal conductivity of gaseous xenon at high pressure is given. The materials of the article are intended for the specialists dealing with heat exchange processes.

Key words: gas, equation of state, thermodynamic properties, thermophysical properties, thermal conductivity, viscosity

Bibliography:
1. Teplophysicheskie svoistva neona, argona, kriptona i xenona / Pod red. V. A. Rabinovicha. M.: Izd-vo standartov, 1976. 636 p.
2. Solod S. D. Raschety teplophysicheskykh svoistv sukhogo vozdukha. K.: Nauk. dumka, 2006. 49 p.
3. Teplophysicheskie svoistva technicheski vazhnykh gasov pri vysokikh temperaturakh I davleniyakh: Spravochnik / V. N. Zubarev, A. D. Kozlov, V. M. Kuznetsov i dr. M.: Energoatomizdat, 1989. 232 p.
4. Teplophysicheskie svoistva gazov i zhidkostyey: Spravochnik/ N. B. Vargaftik. М.: Nauka, 1972. 721 p.
5. Šifner O., Klomfar J. Thermodynamic Properties of Xenon from the Triple Point to 800 K with pressures up to 350 MPa // Kosmicheskaya technika. Raketnoe vooruzhenie. Space Technology. Missile Armaments. 2019. Vyp. 1 (117) 162 J. Phys. Ret. Data. Vol. 23, №1. 1994. P. 63-118. https://doi.org/10.1063/1.555956
6. GSSSD 17-81, Dinamicheskaya vyazkost’ i teploprovodnost’ geliaya, neona, argona, kriptona i xenona pri atmosfernom davlenii v intervale temperatur ot normalnykh tochek kipenia do 2500 K: Ofits. izd. M.: Izd-vo standartov, 1982.
7. Vyazkost’ gazov I gazovykh smesey: Spravochnoe rukovodstvo/ I. F. Golubev. M.: Pfysmatlit, 1959. 375 p.
8. Svoiskiy V. Z. Vyazkost’ i teploprovodnost’ gazov v diapazone temperatur ot 100 do 2000 K / Uchenye zapiski TsAGI. T. IV, №1. 1973. P. 126-132.
9. Basa dannykh po teplophysicheskim svoistvam gazov I ikh smesey, ispolzuemykh v YaEU / NIYaU MIFI “Rosatom”. Rezhim dostupa: http://www.gsssd-rosatom.mephi.ru// DB-tp-02/xe.php .
Downloads: 32
Abstract views: 
731
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Baltimore; Plano; Dublin; Monroe; Seattle; Seattle; Ashburn; Ashburn; Boardman; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Ashburn17
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Germany Limburg an der Lahn; Falkenstein2
Indonesia Jakarta1
Cambodia Phnom Penh1
China Guangzhou1
Unknown1
France1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
23.1.2019 Calculation of Thermal-Physical Properties of Gaseous Xenon
23.1.2019 Calculation of Thermal-Physical Properties of Gaseous Xenon
23.1.2019 Calculation of Thermal-Physical Properties of Gaseous Xenon

Keywords cloud

]]>