Keywords cloud
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine2
Page: Kosm. teh. Raket. vooruž. 2020, (1); 26-33
DOI: https://doi.org/10.33136/stma2020.01.026
Language: Russian
Key words: stress-strain behavior, finite-element method, plastoelastic deformations, breaking strength, reusability
1. Elhefny A., Liang G. Stress and deformation of rocket gas turbine disc under different loads using finite element modeling. Propulsion and Power Research. 2013. № 2. P. 38–49. https://doi.org/10.1016/j.jppr.2013.01.002
2. Perakis N., Haidn O. J. Inverse heat transfer method applied to capacitively cooled rocket thrust chambers. International Journal of Heat and Mass Transfer. 2019. № 131. P. 150–166. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.048
3. Yilmaz N., Vigil F., Height J., et. al. Rocket motor exhaust thermal environment characterization. Measurement. 2018. № 122. P. 312–319. https://doi.org/10.1016/j.measurement.2018.03.039
4. Jafari M. Thermal stress analysis of orthotropic plate containing a rectangular hole using complex variable method. European Journal of Mechanics A /Solids. 2019. № 73. P. 212–223. https://doi.org/10.1016/j.euromechsol.2018.08.001
5. Song J., Sun B. Thermal-structural analysis of regeneratively cooled thrust chamber wall in reusable LOX / Methane rocket engines. Chinese Journal of Aeronautics. 2017. № 30. P. 1043–1053.
6. Ramanjaneyulu V., Murthy V. B., Mohan R. C., Raju Ch. N. Analysis of composite rocket motor case using finite element method. Materials Today: Proceedings. 2018. № 5. P. 4920–4929.
7. Xu F., Abdelmoula R., Potier-Ferry M. On the buckling and post-buckling of core-shell cylinders under thermal loading. International Journal of Solids and Structures. 2017. № 126–127. P. 17–36.
8. Wang Z., Han Q., Nash D. H., et. al. Thermal buckling of cylindrical shell with temperature-dependent material properties: Conventional theoretical solution and new numerical method. Mechanics Research Communications. 2018. № 92. P. 74–80.
9. Duc N. D. Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear de-formation shell theory. European Journal of Mechanics A /Solids. 2016. № 58. P. 10–30.
10. Trabelsi S., Frikha A., Zghal S., Dammak F. A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Engineering Structures. 2019. № 178. P. 444–459.
11. Trinh M. C., Kim S. E. Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment. Aerospace Science and Technology. 2019. № 84. P. 672–685.
12. Лойцянский Л. Г. Механика жидкости и газа. М., 2003. 840 с.
13. Launder B. E., Sharma B. I. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. International Journal of Heat and Mass Transfer. 1974. № 1. P. 131–138.
14. Михеев М. А., Михеева И. М. Основы теплопередачи. М., 1977. 345 с.
15. Малинин Н. Н. Прикладная теория пластичности и ползучести. М., 1968. 400 с.
Full text (PDF) || Content 2020 (1)
Country | City | Downloads |
---|---|---|
USA | Boardman; Matawan; Boydton; Plano; Miami; Columbus; Columbus; Columbus; Detroit; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Houston; Boardman; Mountain View; Mountain View; Seattle; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn; Ashburn; Ashburn; Seattle | 43 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 11 |
Canada | Toronto; Toronto; Toronto; Toronto; Toronto; Toronto; Toronto; Monreale | 8 |
Ukraine | Dnipro; Odessa; Kyiv; Dnipro | 4 |
Germany | ;; Falkenstein | 3 |
Netherlands | Amsterdam; Amsterdam | 2 |
Finland | Helsinki | 1 |
Great Britain | London | 1 |
Unknown | 1 | |
Romania | Voluntari | 1 |
Poland | Gdańsk | 1 |
The Institute of Technical Mechanics, Dnipro, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3
Page: Kosm. teh. Raket. vooruž. 2019, (2); 25-34
DOI: https://doi.org/10.33136/stma2019.02.025
Language: Russian
Key words: finite-element method, strength, inclusions, computer simulation
1. Brebbia K., Telles J., Wroubell L. Metody granichnykh elementov / per. s angl. M., 1987. 524 s.
2. Vasidzu K. Variatsionnye metody v teorii uprugosti i plastichnosti / per. s angl. M., 1987. 544 s.
3. Vilchevskaya Ye. N., Korolev I. K., Freidin A. B. O fazovykh prevrasheniyakh v oblasti neodnorodnosti materiala. Ch. 2: Vzaimideistvie treschiny s vklyucheniem, preterpevayushim fazovoe prevraschenie. Izv. RAN. Mekhanika tverdogo tela. 2011. № 5. S. 32–42.
4. Hart E. L. Konechnoelementniy analiz ploskodeformiruemukh sred s vklyucheniyami. Visn. Dnipropetr. un-tu. Ser.: Mekhanika. 2011. Vyp. 15, t. 2. S. 39–47.
5. Hart E. L., Hudramovich V. S. Chislennoye modelirovanie povedeniya ploskodeformiruemykh strukturirivannykh sred na osnove proektsionno-iteratsionnykh ckhem MKE. Matemat. modelirovanie v mekh. deform. tel i konstruktsiy: materialy 24-oy Mezhdunarod. conf. (SPb., Rossiya, 2011). SPb., 2011. T. 11. S. 37–39.
6. Hart E. L., Hudramovich V. S. Chislennoe modelirovanie structurirovannykh sred. Dopovidi NAN Ukrainy. 2012. № 5. S. 49–56.
7. Hart E. L., Hudramovich V. S. Proektsionno-iteratsionnaya modifikatsia metoda lokalnykh variatsiy dlya zadach s kvadratychnym funktsionalom. Prikl. Matematika I mekhanika. 2016. T. 80, № 2. S. 218–230. https://doi.org/10.1016/j.jappmathmech.2016.06.005
8. Hudramovich V. S. Osobennosti neuprugogo povedeniya neodnorodnykh obolochechnykh elementov konstruktsiy. Aktualnye problem mekhaniki: monografia/ za red. M. V. Polyakova. Dnipro, 2018. S. 195–207.
9. Hudramovich V. S., Hart E. L. Konechnoelementniy analiz processa rasseyanogo razrusheniya ploskodeformiruemykh uprugoplastichnykh sred s lokalnymi contsetratami napryazheniy. Uprugost’ I neuprugost’: Materialy Mezhdunarod. nauchn. symp. po problemam mekhaniki deformiruemykh tel, posvyaschennogo 105-letiyu so dnya rozhdeniya A. A. Ilyushina (Moskow, 2016 ). M., 2016. S. 158–161.
10. Hudramovich V. S., Hart E. L., Strunin K. A. Modelirovanie processa deformirovaniya plastiny s uprugimi protyazhonnymi vklyucheniyami na osnove metoda konechnykh elementov. Tekhn. mechanika. 2014. № 2. S. 12–24.
11. Hudramovich V. S., Demenkov A. F., Konyukhov S. N. Nesuschaya sposobnost’ neidealnykh tsilindricheskykh obolochek s uchetom plasticheskykh deformatsiy. Prochnost’ I nadezhnost’ elementov konstruktsiy: sb. nauchn. tr. K., 1982. S. 45–48.
12. Hudramovich V. S., Klimenko D. V., Hart E. L. Vliyanie vyrezov na prochnost’ tsilindrycheskykh otsekov raket-nositeley pri neuprugom deformirovanii materiala. Kosmichna nauka I technologia. 2017. T. 23, № 6. S. 12–20.
13. Hudramovich V. S., Levin V. M., Hart E. L. i dr. Modelirovanie processa deformirovaniya plastinchatykh elementov zherezobetonnykh konstruktsiy teploenergetiki s ispolzovaniem MKE. Techn. mechanika. 2015. № 2. S. 59–70.
14. Hudramovich V. S., Reprintsev A. V., Ryabokon’ S. A., Samarskaya E. V. Otsenka resursa konstruktsiy raketno-kosmicheskoy techniki pri uchete vliyaniya kontsetratov napryazheniy v vide otverstiy. Technicheskaya diagnostika i nerazrushaushiy control. 2016. № 2. S. 28–36.
15. Gultyaev V. I., Zubchaninov V. G., Zubchaninov D. V. Strukturnye izmeneniya stali 45 v processe eyo deformirovaniya. Izv. Tulskogo gos. un-ta. 2005. Vyp. 8. S. 26-29.
16. Zenkevich O., Morgan K. Konechnye elementy i aproximatsia / per. s angl. M., 1986. 318 s.
17. Kashanov A. E. Perspektivy sotrudnichestva NAN Ukrainy, NAN Belarusi i Yuzhnoye SDO dlya resheniya problemnykh voprosov kosmicheskoy otrasli. Raketnaya technika. Novye vozmozhnosti: nauchn.-techn. sborn. / pod red. A. V. Degtyareva. Dnepr, 2019. S. 281–294.
18. Koval’ Y. N., Lobodyuk V. A. Deformatsionnye i relaksatsionnye yavlenia pri prevraschenniyakh martensitnogo typa. K., 2010. 288 s.
19. Lyashenko B. A., Kuzema Y. A., Digahm M. S. Uprochnenie poverkhnosti metallov pokrytiyami diskretnoy struktury s povyshennoy adhezionnoy i cohezionnoy stoykostyu. К., 1984. 57 s.
20. Stern M. B., Rud’ V. D. Mekhanichni ta kompyuterni modeli konsolidatsii granulyuovanykh seredovysh na osnovi poroshkiv metaliv i keramiki pri deformuvanni ta spikanni / za red. V. V. Skorokhoda. Lutsk, RVV LNTU, 2010. 232 s.
21. ANSYS release 18.1 Documentation for ANSYS WORKBENCH: ANSYS Inc.
22. Hart E., Hudramovich V. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Maintenance–2012: Proc. of Int. Conf. (Zenica, Bosnia and Herzegovina, 2012). P. 157–164.
23. Hart E., Hudramovich V. Projection-iterative schemes for the realization of the finite-element method in problems of deformation of plates with holes and inclusions. J. Math. Sci. 2014. Vol. 203. № 1. P. 55–69. https://doi.org/10.1007/s10958-014-2090-x
24. Hudramovich V. S. Features of nonlinear deformation and critical states shell structures with geometrical imperfections. Int. Appl. Mech. 2006.Vol. 42, № 12. P. 1323–1355. https://doi.org/10.1007/s10778-006-0204-y
25. Hudramovich V. S., Hart E. L., Ryabokon’ S. A. Elastoplastic deformation of nonhomogeneous plates. J. Eng. Math. 2013. Vol. 78, № 1. P. 181–197. https://doi.org/10.1007/s10665-010-9409-5
26. Hudramovich V. S., Hart E. L., Strunin K. A. Modeling of the behavior plane-deformable elastic media with elongated elliptic and rectangular inclusions. Materials Science. 2017. Vol. 52, № 6. P. 768–774. https://doi.org/10.1007/s11003-017-0020-z
27. Нudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: Procedings Int. Conf. (Helsinki, Finland, 1999). Amsterdam/ New York / Tokyo, 1999. P. 257–263. https://doi.org/10.1016/B978-008043014-0/50133-5
28. Olevsky E. A., Maximenko A. and Van Der Biest O. On-line sintering strength of ceramic composites. Int. J. Mech. Sci. 2002. Vol. 44. P. 755–771. https://doi.org/10.1016/S0020-7403(02)00005-X
Full text (PDF) || Content 2019 (2)
Country | City | Downloads |
---|---|---|
USA | Boardman; Matawan; Baltimore; North Bergen; Plano; Columbus; Columbus; Ashburn; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Los Angeles; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Quinton; Ashburn; Ashburn; Ashburn; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Des Moines; Boardman; Boardman; Ashburn; Ashburn | 39 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 8 |
Canada | Toronto; Toronto; Toronto; Toronto; Toronto; Monreale | 6 |
Netherlands | Amsterdam; Amsterdam | 2 |
China | Shanghai | 1 |
Finland | Helsinki | 1 |
Unknown | 1 | |
Pakistan | Multan | 1 |
Germany | Falkenstein | 1 |
Romania | Voluntari | 1 |
Czech | Prague | 1 |
Ukraine | Dnipro | 1 |