Search Results for “flow separation” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 18 Jun 2024 12:22:01 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “flow separation” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests https://journal.yuzhnoye.com/content_2018_2-en/annot_10_2_2018-en/ Thu, 07 Sep 2023 11:29:45 +0000 https://journal.yuzhnoye.com/?page_id=30766
It was planned to start the engine with water-cooled nozzle extension without vacuumizing and without gad dynamic pipe, which conditioned operation with flow separation at the output edge of water-cooled nozzle extension. Therefore, the calculation of flow in the nozzle with water-cooled extension, flow separation place, and thermal load on watercooled nozzle extension during operation in ground conditions is an important task. The gas dynamic analysis of the nozzle with water-cooled extension showed the importance of using the turbulent flow model k-ω SST for the flows with internal separation of boundary layer and with flow separation at nozzle section. The use the flow model k-ω SST for calculation of nozzle with flow separation or with internal transitional layer allows adequately describing the flow pattern, though, as the comparison with experimental data showed, this model predicts later flow separation from the wall than that obtained in the tests.
]]>

10. Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 83-93

DOI: https://doi.org/10.33136/stma2018.02.083

Language: Russian

Annotation: At Yuzhnoye State Design Office, the Cyclone-4 launch vehicle 3rd stage engine has been developed and is under testing. For adjustment of the engine and test bench systems, in the first firing tests the radiation-cooled nozzle extension was replaced with a steel water-cooled one. It was planned to start the engine with water-cooled nozzle extension without vacuumizing and without gad dynamic pipe, which conditioned operation with flow separation at the output edge of water-cooled nozzle extension. Therefore, the calculation of flow in the nozzle with water-cooled extension, flow separation place, and thermal load on watercooled nozzle extension during operation in ground conditions is an important task. Selection of turbulent flow model has a noticeable impact on prediction of flow characteristics. The gas dynamic analysis of the nozzle with water-cooled extension showed the importance of using the turbulent flow model k-ω SST for the flows with internal separation of boundary layer and with flow separation at nozzle section. The use the flow model k-ω SST for calculation of nozzle with flow separation or with internal transitional layer allows adequately describing the flow pattern, though, as the comparison with experimental data showed, this model predicts later flow separation from the wall than that obtained in the tests. The calculation allows obtaining a temperature profile of the wall and providing the recommendations for selection of pressure measurement place in the nozzle extension for the purpose of reducing sensors indication error. With consideration for the special nature of the nozzle extension wall temperature field, the cooling mode was selected. The tests of RD861K engine nozzle with water-cooled extension allow speaking about its successful use as a required element for testing engine start and operation in ground conditions without additional test bench equipment.

Key words: turbulent flow, flow separation, cooling, technological extension

Bibliography:
1. Massiet P., Rocheque E. Experimental Investigation of Exhaust Diffusors for Rocket Engines. Investigation of Liquid Rocket Engines. М., 1964. P. 96-109.
2. Mezhevov A. V., Skoromnov V. I., Kozlov A. V. et al. Introduction of Radiation Cooling Nozzle Head of Made of Carbon-Carbon Composite Material on DM-SL Upper Stage 11D58M Main Engine. News of Samara Aerospace University. No. 2 (10). 2006. P. 260-264.
3. Fluent. Software Package, Ver. 6.2.16, Fluent Inc., Lebanon, NH, 2004.
4. Wilcox D. C. Turbulence Modeling for CFD. DCW Industries, Inc. La Canada, California, 1998. 460 р.
5. Andersen D., Tannehill J., Platcher R. Computational Hydromechanics and Heat Exchange: in 2 volumes М., 1990. 384 p.
6. Rodriguez C. G., Culter, A. D. Numerical Analysis of the SCHOLAR Supersonic Combustor, NASA-CR-2003-212689. 2003. 36 р.
7. Rajasekaran A., Babu V. Numerical Simulation of Three-dimensional Reacting Flow in a Model Supersonic Combustor. Journal of Propulsion and Power. Vol. 22. No. 4. 2006. Р. 820-827. https://doi.org/10.2514/1.14952
8. Spalart P., Allmaras S. A one-equation turbulence model for aerodynamic flows: Technical Report. American Institute of Aero-nautics and Astronautics. AIAA-92-0439. 1992. Р. 5-21. https://doi.org/10.2514/6.1992-439
9. Launder B. E., Spalding D. B. Lectures in Mathematical Models of Turbulence. London, 1972. Р. 157-162.
10. Rajasekaran A., Babu V. Numerical Simulation of Three-dimensional Reacting Flow in a Model Supersonic Combustor. Journal of Propulsion and Power. Vol. 22. No. 4. 2006. Р. 820-827. https://doi.org/10.2514/1.14952
11. Ten-See Wang. Multidimensional Unstructured Grid Liquid Rocket-Engine Nozzle Performance and Heat Transfer Analysis. Journal of Propulsion and Power. Vol. 22. No. 1. 2006. 21 р. https://doi.org/10.2514/1.14699
12. Hyun Ko, Woong-Sup Yoon. Performance Analysis of Secondary Gas Injection into a Conical Rocket Nozzle. Journal of Propulsion and Power. Vol. 18, No. 3. 2002. Р. 585-591. https://doi.org/10.2514/2.5972
13. Wilson E. A., Adler D., Bar-Yoseph P. Thrust-Vectoring Nozzle Performance Mode-ling. Journal of Propulsion and Power. Vol. 19, No. 1. 2003. Р. 39-47. https://doi.org/10.2514/2.6100
14. Gross A., Weiland C. Numerical Simulation of Hot Gas Nozzle Flows. Journal of Propulsion and Power. Vol. 20, No. 5. 2004. Р. 879-891. https://doi.org/10.2514/1.5001
15. Gross A., Weiland C. Numerical Simulation of Separated Cold Gas Nozzle Flows. Journal of Propulsion and Power. Vol. 20, No. 3. 2004. Р. 509-519. https://doi.org/10.2514/1.2714
16. Deck S., Guillen P. Numerical Simulation of Side Loads in an Ideal Truncated Nozzle. Journal of Propulsion and Power. Vol. 18, No. 2. 2002. Р. 261-269. https://doi.org/10.2514/2.5965
17. Östlund J., Damgaard T., Frey M. Side-Load Phenomena in Highly Overexpanded Rocket Nozzle. Journal of Propulsion and Power. Vol. 20, No. 4. 2004. Р. 695-704. https://doi.org/10.2514/1.3059
18. Goldberg U. C. Separated Flow Treatment with a New Turbulence Model. AIAA Journal. Vol. 24, No. 10. 1986. Р. 1711-1713. https://doi.org/10.2514/3.9509
19. Golovin V.S., Kolchugin B.A., Labuntsov D.A. Experimental Investigation of Heat Exchange and Critical Heat Loads at Water Boiling in Free Motion Conditions. 1963. Vol. 6, No 2. p. 3-7.
20. Mikheyev М. А., Mikheyeva I. M. Heat-Transfer Principles. 2nd edition stereotyped. М., 1977. 343 p.
21. Kutateladze S. S., Leontyev A. I. Heat-Mass Exchange and Friction in Turbulent Boundary Layer. М., 1972. 341 p.
Downloads: 38
Abstract views: 
1259
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Matawan; Baltimore; North Bergen; Plano; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Columbus; Columbus; Ashburn; Seattle; Tappahannock; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn23
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Belgium Brussels1
Finland Helsinki1
Unknown1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests
10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests
10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
11.1.2016 Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation https://journal.yuzhnoye.com/content_2016_1/annot_11_1_2016-en/ Tue, 23 May 2023 13:06:36 +0000 https://journal.yuzhnoye.com/?page_id=27621
Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation Authors: Ushkin M. (2016) "Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation" Космическая техника. "Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation" Космическая техника. quot;Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation", Космическая техника. Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation Автори: Ushkin M. Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation Автори: Ushkin M. Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation Автори: Ushkin M. Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation Автори: Ushkin M.
]]>

11. Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2016 (1); 68-75

Language: Russian

Annotation: The factors are considered that have an impact on the value and behavior of SRM flow rate and thrust characteristics after stage separation (in the leg of deep decay). It is shown that thrust behavior in the leg of deep decay is determined by two main processes: afterburning of solid propellant charge residues within the first 3-5 s and mass input of internal thermal protection coating destruction products within the following several tenths of second. The dependences are proposed for design evaluation of SRM intra-ballistic and flow rate/thrust characteristics.

Key words:

Bibliography:
Downloads: 34
Abstract views: 
274
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Columbus; Ashburn; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Boardman21
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Dnipro; Dnipro2
China Shanghai1
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
11.1.2016 Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation
11.1.2016 Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation
11.1.2016 Methodology of Design Evaluation of Main SRM Flowrate-Thrust Characteristics after Stage Separation
]]>
Сollected book of scientific-technical articles https://journal.yuzhnoye.com/ Thu, 04 May 2023 07:56:30 +0000 https://enovathemes.com/samatex2/?page_id=41
design and development of the components parts for the launch vehicles/integrated launch vehicles, missiles (solid- and liquid-propellants engines, power supply systems, control systems, separation systems, arming etc.);
Not found: flow
]]>

Collected scientific and technical articles «Космічна техніка. Ракетне озброєння» / «Space technology. Missile armaments» is the specialized professional edition, where new results of the theoretical and experimental research in the rocket and space area are published.

Subject matter of the collected articles covers the issues of creation and operation of the up-to-date missile and space launch systems, spacecraft and satellite systems, as well as their component parts, in particular:
– design and development of the launch-vehicles/integrated launch vehicles, missiles, ground complexes;
– design and development of the components parts for the launch vehicles/integrated launch vehicles, missiles (solid- and liquid-propellants engines, power supply systems, control systems, separation systems, arming etc.);
– design and development of the component parts for the ground complexes (buildings, filling systems, pre-launch processing systems etc.);
– design and development of the spacecraft and their component parts;
– spaceflight and studies of the Moon and other planets;
– materials and up-to-date technologies in the rocket and space technology;
– issues of aerodynamics, heat-mass exchange, flight theory, loading and strength of the structures;
– issues of efficiency, reliability, safety and feasibility of the rocket and space systems;
– other aspects that directly relate to the creation and operation of the rocket and space systems.

The collected articles edition publishes the results of scientific research of the scientists, scholars and research and educational personnel of the scientific institutions and institutions of higher educations to get nominated for the degrees of Candidate of Engineering (Doctor of Philosophy), Doctor of Engineering Sciences and Doctor of Physical and Mathematical Sciences. The collected articles cover the following fields: 134 – Aviation and rocket & space technology; 142 – Power engineering; 151 – Automation and computer-integrated technologies.

About the collected articles

ISSN 2617-5525e-ISSN 2617-5533

obl1

ISSN 2617-5525;
e-ISSN 2617-5533

Until 1993 the collected scientific and technical articles «Космічна техніка. Ракетне озброєння» / «Space technology. Missile armaments» was published under the title of «Calculations, design, development and testing of the ballistic missiles».

Publisher: State Enterprise «Yuzhnoye» State Design Office».

Languages of publication: Ukrainian, English.

Frequency of edition: twice a year.

State registration of the printed media in the Ukraine’s National board for the broadcasting activities: media identifier – R30-01817 of 04.12.2023.

Сollected book of scientific-technical articles
Сollected book of scientific-technical articles
Сollected book of scientific-technical articles
]]>