Search Results for “fuel” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Fri, 21 Jun 2024 08:12:29 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “fuel” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 15.1.2024 Enhancing operability of the fuel system units in the hot climate conditions https://journal.yuzhnoye.com/content_2024_1-en/annot_15_1_2024-en/ Mon, 17 Jun 2024 07:43:36 +0000 https://journal.yuzhnoye.com/?page_id=34974
Enhancing operability of the fuel system units in the hot climate conditions Authors: Udod A. The warranty life of fuel system units, made of ИРП-1078 nitrile rubber, does not exceed 12 years. The results of climatic endurance testing of fuel system units, equipped with rubber articles made of D2301 rubber, fully justify the increase of the specified service life of the specified units from 12 to 16 years. (2024) "Enhancing operability of the fuel system units in the hot climate conditions" Космическая техника. "Enhancing operability of the fuel system units in the hot climate conditions" Космическая техника. quot;Enhancing operability of the fuel system units in the hot climate conditions", Космическая техника. Enhancing operability of the fuel system units in the hot climate conditions Автори: Udod A. Enhancing operability of the fuel system units in the hot climate conditions Автори: Udod A.
]]>

15. Enhancing operability of the fuel system units in the hot climate conditions

Organization:

DINTEM Ukrainian Research Design-Technological Institute of Elastomer Materials and Products LLC1; FED Joint Stock Company2

Page: Kosm. teh. Raket. vooruž. 2024, (1); 129-135

Language: Ukrainian

Annotation: The article dwells on the problem of enhancement of durability for the mechanical rubber articles, which is directly related to the enhance of rubber resistance to various types of heat aging. Heat resistance during compression is most important for rubbers used for seals of various types: rings, collars, armored collars, gaskets for aviation and rocket technology hardware. Stress relaxation and the accumulation of relative residual deformation of rubbers, caused by the kinetic rearrangement of chemical bonds, are extremely sensitive to the influence of high temperatures. The main cause of the defects is the loss of elastic properties of the seals because of the accelerated heat aging of the nitrile group under conditions of long-term exposure to elevated temperatures in conditions of hot climate. The results of accelerated climatic testing of specimens of mechanical rubber articles, as well as the results of climatic endurance testing of the units for the period simulating 20-year service life are specified, and the main types of defects which result in the loss of performance properties of the mechanical rubber articles are as follows: great (up to 100%) residual deformation of intersections, cracking, loss of elasticity. The warranty life of fuel system units, made of ИРП-1078 nitrile rubber, does not exceed 12 years. Replacing the existing rubbers with rubbers created on the basis of more heat-bearing rubbers is the most promising way to improve the performance properties of the mechanical rubber articles under the high temperatures. The new D2301 rubber is based on fluorosiloxane rubber. It provides high thermal stability and, especially, the ability to maintain high performance properties for a long time under the simultaneous impact of hostile environment and high temperatures. The results of climatic endurance testing of fuel system units, equipped with rubber articles made of D2301 rubber, fully justify the increase of the specified service life of the specified units from 12 to 16 years. It is recommended to introduce D2301 rubber into the effective normative documentation and continue studies in order to extend the nomenclature of mechanical rubber articles made of D2301 rubber to provide the reliable sealing of units during the service life of 16 years or longer.

Key words: leaktightness of articles, fluorosiloxane rubber, rubber, temperature of the hot climate, physical-mechanical properties of the rubber, climatic endurance tests, elastic properties, warranty life

Bibliography:
  1. Lepetov V. A., Yurtsev L. N. Raschet i konstruirovanie rezinovykh izdeliy. Moskva.
    Khimia. 1971. 417 s.
Downloads: 14
Abstract views: 
702
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Dublin; Phoenix; Ashburn; Ashburn; Des Moines; Boardman7
Singapore Singapore; Singapore2
Ukraine Dnipro; Dnipro2
Finland Helsinki1
India Tiruchchirappalli1
Netherlands Amsterdam1
15.1.2024 Enhancing operability of the fuel system units in the hot climate conditions
15.1.2024 Enhancing operability of the fuel system units in the hot climate conditions
15.1.2024 Enhancing operability of the fuel system units in the hot climate conditions

Keywords cloud

]]>
5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight https://journal.yuzhnoye.com/content_2024_1-en/annot_5_1_2024-en/ Thu, 13 Jun 2024 06:00:42 +0000 https://journal.yuzhnoye.com/?page_id=34981
Typically, such propellants are used in the LV/ILV upper stages, where a small amount of propellant is contained; however, some LV/ILV still use such fuel in all sustainer propulsion stages. [Guidelines on elimination of large spillages of oxidizer NTO and fuel UDMH.
]]>

5. Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight

Page: Kosm. teh. Raket. vooruž. 2024, (1); 40-50

Language: English

Annotation: Despite stringent environmental requirements, modern launch vehicles/integrated launch vehicles (LV/ILV) burn toxic propellants such as NTO and UDMH. Typically, such propellants are used in the LV/ILV upper stages, where a small amount of propellant is contained; however, some LV/ILV still use such fuel in all sustainer propulsion stages. For launch vehicles containing toxic rocket propellants, flight accidents may result in the failed launch vehicle falling to the Earth’s surface, forming large zones of chemical damage to people (the zones may exceed blast and fire zones). This is typical for accidents occurring in the first stage flight segment, when an intact launch vehicle or its components (usually individual stages) with rocket propellants will reach the Earth’s surface. An explosion and fire following such an impact will most likely lead to a massive release of toxicant and contamination of the surface air. An accident during the flight segment of the LV/ILV first stage with toxic rocket propellants, equipped with a flight termination system that implements emergency engine shutdown in case of detection of an emergency situation, has been considered. To assess the risk of toxic damage to a person located at a certain point, it is necessary to mathematically describe the zone within which a potential impact of the failed LV/ILV will entail toxic damage to the person (the so-called zone of dangerous impact of the failed LV/ILV). The complexity of this lies in the need to take into account the characteristics of the atmosphere, primarily the wind. Using the zone of toxic damage to people during the fall of the failed launch vehicle, which is proposed to be represented by a combination of two figures: a semicircle and a half-ellipse, the corresponding zone of dangerous impact of the failed LV/ILV is constructed. Taking into account the difficulties of writing the analytical expressions for these figures during the transition to the launch coordinate system and further integration when identifying the risk, in practical calculations we propose to approximate the zone of dangerous impact of the failed LV/ILV using a polygon. This allows using a known procedure to identify risks. A generalization of the developed model for identifying the risk of toxic damage to people involves taking into account various types of critical failures that can lead to the fall of the failed LV/ILV, and blocking emergency engine shutdown during the initial flight phase. A zone dangerous for people was constructed using the proposed model for the case of the failure of the Dnepr launch vehicle, where the risks of toxic damage exceed the permissible level (10–6). The resulting danger zone significantly exceeds the danger zone caused by the damaging effect of the blast wave. Directions for further improvement of the model are shown, related to taking into account the real distribution of the toxicant in the atmosphere and a person’s exposure to a certain toxic dose.

Key words: launch vehicle, critical failure, flight accident, zone of toxic damage to people, zone of dangerous impact of the failed launch vehicle, risk of toxic damage to people.

Bibliography:
  1. Hladkiy E. H. Protsedura otsenky poletnoy bezopasnosti raket-nositeley, ispolzuyuschaya geometricheskoe predstavlenie zony porazheniya obiekta v vide mnogougolnika. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2015. Vyp. 3. S. 50 – 56. [Hladkyi E. Procedure for evaluation of flight safety of launch vehicles, which uses geometric representation of object lesion zone in the form of a polygon. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2015. Issue 3. Р. 50 – 56. (in Russian)].
  2. Hladkiy E. H., Perlik V. I. Vybor interval vremeni blokirovki avariynogo vyklucheniya dvigatelya na nachalnom uchastke poleta pervoy stupeni. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-tech. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2011. Vyp. 2. s. 266 – 280. [Hladkyi E., Perlik V. Selection of time interval for blocking of emergency engine cut off in the initial flight leg of first stage. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2011. Issue 2. Р. 266 – 280. (in Russian)].
  3. Hladkiy E. H., Perlik V. I. Matematicheskie modeli otsenki riska dlya nazemnykh obiektov pri puskakh raket-nositeley. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2010. Vyp. 2. S. 3 – 19. [Hladkyi E., Perlik V. Mathematic models for evaluation of risk for ground objects during launches of launch-vehicles. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2010. Issue 2. P. 3 – 19. (in Russian)].
  4. NPAOP 0.00-1.66-13. Pravila bezpeki pid chas povodzhennya z vybukhovymy materialamy promyslovogo pryznachennya. Nabrav chynnosti 13.08.2013. 184 s [Safety rules for handling explosive substances for industrial purposes. Consummated 13.08.2013. 184 p.
    (in Ukranian)].
  5. AFSCPMAN 91-710 RangeSafetyUserRequirements. Vol. 1. 2016 [Internet resource]. Link : http://static.e-publishing.af.mil/production/1/afspc/publicating/
    afspcman91-710v1/afspcman91-710. V. 1. pdf.
  6. 14 CFR. Chapter III. Commercial space transportation, Federal aviation administration, Department of transportation, Subchapter C – Licensing, part 417 – Launch Safety, 2023 [Internet resource]. Link: http://law.cornell.edu/cfr/text/14/part-417.
  7. 14 CFR. Chapter III. Commercial space transportation, Federal aviation administration, Department of transportation, Subchapter C – Licensing, part 420 License to Operate a Launch Site. 2022 [Internet resource]. Link: http://law.cornell.edu/cfr/text/14/part-420.
  8. ISO 14620-1:2018 Space systems – Safety requirements. Part 1: System safety.
  9. 9 GOST 12.1.005-88. Systema standartov bezopasnosti truda. Obschie sanitarno-gigienicheskie trebovaniya k vozdukhu rabochei zony. [GOST 12.1.005-88. Labor safety standards system. General sanitary and hygienic requirements to air of working zone].
  10. 10 Rukovodyaschiy material po likvidatsii avarijnykh bolshykh prolivov okislitelya АТ (АК) i goruchego NDMG. L.:GIPKh, 1981, 172 s. [Guidelines on elimination of large spillages of oxidizer NTO and fuel UDMH. L.:GIPH, 1981, 172 p. (in Russian)].
  11. 11 Kolichestvennaya otsenka riska chimicheskykh avariy. Kolodkin V. M., Murin A. V., Petrov A. K., Gorskiy V. G. Pod red. Kolodkina V. M. Izhevsk: Izdatelskiy dom «Udmurtskiy universitet», 2001. 228 s. [Quantitative risk assessment of accident at chemical plant. Kolodkin V., Murin A., Petrov A., Gorskiy V. Edited by Kolodkin V. Izhevsk: Udmurtsk’s University. Publish house, 2001. 228 p. (in Russian)].
Downloads: 14
Abstract views: 
554
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Phoenix; Buffalo; Ashburn; Tappahannock; Des Moines; Boardman7
Singapore Singapore; Singapore2
Ukraine Dnipro; Dnipro2
Finland Helsinki1
France1
Netherlands Amsterdam1
5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight
5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight
5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight

Keywords cloud

]]>
20.1.2020 Studying the possibility of alternating delivery of rocket propellant wastes to a common thermal neutralization facility https://journal.yuzhnoye.com/content_2020_1-en/annot_20_1_2020-en/ Wed, 13 Sep 2023 12:04:53 +0000 https://journal.yuzhnoye.com/?page_id=31078
Taking into consideration the high cost of neutralization units, which will be a factor hindering the wide-scale introduction of neutralization units to decrease technogenic load on environment of Ukraine, the option is proposed of reducing the costs during the use of thermal neutralization units by way of combining the function of oxidizer neutralization unit and fuel neutralization unit in a single universal neutralization unit.
]]>

20. Studying the possibility of alternating delivery of rocket propellant wastes to a common thermal neutralization facility

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 177-183

DOI: https://doi.org/10.33136/stma2020.01.177

Language: Russian

Annotation: The possibility is considered of using rocket propellant thermal neutralization units for decontamination of dangerous industrial wastes. The advantages of thermal neutralization units are considered, their operating principle is described, by the example of high-temperature toxic rocket propellants, the chemical reactions that take place in combustion chamber are formulated. The combustion chamber is a component of the neu tralization unit, it is in the combustion chamber, in the environment of created high temperatures, that the process of elimination of dangerous substances takes place. Taking into consideration the high cost of neutralization units, which will be a factor hindering the wide-scale introduction of neutralization units to decrease technogenic load on environment of Ukraine, the option is proposed of reducing the costs during the use of thermal neutralization units by way of combining the function of oxidizer neutralization unit and fuel neutralization unit in a single universal neutralization unit. The article substantiates the topicality and necessity of works to create the universal thermal neutralization unit from the viewpoint of economic and ecological aspects. The article presents a generalized description of technology and methodology of research tests of pilot samples of assemblies for high-temperature rocket propellants vapor and industrial wastewater supply into the neutralization unit. The assemblies for high-temperature rocket propellants vapor and industrial wastewater supply are considered as most critical components of the universal neutralization unit from the viewpoint of neutralized substance changing. The experiments were conducted on water solutions of rocket propellants that in this case simulated the contact of internal cavities of supply assemblies with aggressive toxic media. The conditions were created at which the probability existed of interaction of rocket propellants residues in stagnation zones at the moment of changing the supplied propellant component. In the frameworks of research tests of pilot samples, the obtained results were considered and analyzed. The findings are presented that confirm practical feasibility of using integrated supply assemblies.

Key words: neutralization unit, supply assemblies, alternate supply, rocket propellants interaction, universal thermal neutralization unit

Bibliography:
1. Kolesnikov S. V. Okislenie nesimmetrichnogo dimetilgidrazina (geptila) i identifikatsiia produktov ego prevrashcheniia pri prolivakh. Monografiia. NP “SibAK”, Novosibirsk, 2014.
2. Zhidkoe raketnoe toplivo v regione OBSE: obzor aspektov utilizatsii. FSC.DEL/443/07/Rev. 2. 23 okt. 2008 g.
3. Egorychev V. S., Kondrusev V. S. Topliva khimicheskikh raketnykh dvigatelei. Samara, 2007.
4. Kasimov А. М., Semenov V. Т., Shcherban’ N. H., Miasoedov V. V. Sovremennye problemy i resheniia v sisteme upravleniia opasnymi otkhodami. Kharkiv, 2008.
Downloads: 32
Abstract views: 
844
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Detroit; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Boardman; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn22
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
20.1.2020  Studying the possibility of alternating delivery of rocket propellant wastes to a common thermal neutralization facility
20.1.2020  Studying the possibility of alternating delivery of rocket propellant wastes to a common thermal neutralization facility
20.1.2020  Studying the possibility of alternating delivery of rocket propellant wastes to a common thermal neutralization facility

Keywords cloud

]]>
18.1.2020 Development of autonomous power engineering systems with hydrogen energy storage https://journal.yuzhnoye.com/content_2020_1-en/annot_18_1_2020-en/ Wed, 13 Sep 2023 11:57:42 +0000 https://journal.yuzhnoye.com/?page_id=31056
The projects using hydrogen technologies aimed at attracting solar energy to the infrastructure of energy technological complexes, in particular water desalination systems and for refueling automobile vehicles located in areas with high solar radiation potential, are considered. Technology: Hydrogen-fuelled vehicles. Sliding mode strategy for PEM fuel cells stacks breathing control using a super-twisting algorithm. Hydrogen the future transportation fuel: From production to applications. Development of a Perspective Metal Hydride Energy Accumulation System Based on Fuel Cells for Wind Energetics.
]]>

18. Development of autonomous power engineering systems with hydrogen energy storage

Organization:

Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 160-169

DOI: https://doi.org/10.33136/stma2020.01.160

Language: Russian

Annotation: The article analyzes the energy potential of alternative sources of Ukraine. The projects using hydrogen technologies aimed at attracting solar energy to the infrastructure of energy technological complexes, in particular water desalination systems and for refueling automobile vehicles located in areas with high solar radiation potential, are considered. During the operation of water desalination plants using a solar power station as an energy source, contingencies are very likely to arise due to either a power outage (due to cloudy weather) or an emergency failure of individual elements of the system. In this case, it is required to ensure its removal from service without loss of technological capabilities (operability). For this purpose, it is necessary to provide for the inclusion in the technological scheme of the energy technological complex of an additional element that ensures operation of the unit for a given time, determined by the regulations for its operation. As such an element, a buffer system based on a hydrogen energy storage device is proposed. The current level of hydrogen technologies that are implemented in electrochemical plants developed at the Institute of Mechanical Engineering named after A. N. Podgorny of the National Academy of Sciences of Ukraine allows producing and accumulating the hydrogen under high pressure, which eliminates the use of compressor technology.

Key words: alternative energy sources, hydrogen, solar energy, hydrogen generator

Bibliography:
1. Syvolapov V. Potentsial vidnovliuvanykh dzherel enerhii v Ukraini. Agroexpert. 2016. № 12 (101). S. 74–77.
2. Züttel A., Remhof A., Borgschulte A., Friedrichs O. Hydrogen: the future energy carrier. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010. № 368(1923). Р. 3329–3342. https://doi.org/10.1098/rsta.2010.0113
3. Vozobnovliaemaia energetika. URL: https://nv.ua/tags/vozobnovljaemaja-enerhetika.htmt (access date: 27.01.2020).
4. Sherif S. A., Barbir F., Veziroglu T. N. Wind energy and the hydrogen economy-review of the technology. Solar energy. 2005. № 78(5). P. 647–660. https://doi.org/10.1016/j.solener.2005.01.002
5. Schlapbach L. Technology: Hydrogen-fuelled vehicles. Nature. 2009. № 460(7257). P. 809. https://doi.org/10.1038/460809a
6. Shevchenko A. A., Zipunnikov M. М., Kotenko А. L., Vorobiova I. O., Semykin V. M. Study of the Influence of Operating Conditions on High Pressure Electrolyzer Efficiency. Journal of Mechanical Engineering. 2019. Vol. 22, № 4. P. 53–60. https://doi.org/10.15407/pmach2019.04.053
7. Clarke R. E., Giddey S., Ciacchi F. T., Badwal S. P. S., Paul B., Andrews J. Direct coupling of an electrolyser to a solar PV system for generating hydrogen. International Journal of Hydrogen Energy. 2009. № 34(6). P. 2531–2542. https://doi.org/10.1016/j.ijhydene.2009.01.053
8. Kunusch C., Puleston P. F., Mayosky M. A., Riera J. Sliding mode strategy for PEM fuel cells stacks breathing control using a super-twisting algorithm. IEEE Transactions on Control Systems Technology. 2009. № 17(1). P. 167–174. https://doi.org/10.1109/TCST.2008.922504
9. Mazloomi K., Gomes C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sustain. Energy Rev. 2012. № 16. P. 3024–3033. https://doi.org/10.1016/j.rser.2012.02.028
10. Sharma S., Ghoshal S. K. Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev. 2015. № 43. P. 1151–1158. https://doi.org/10.1016/j.rser.2014.11.093
11. Prystrii dlia oderzhannia vodniu vysokoho tysku: pat. 103681 Ukraina: MPK6 S 25V 1/12 / V. V. Solovey, A. A. Shevchenko, A. L. Kotenko, O. О. Makarov (Ukrajina). № 2011 15332; zajavl. 26.12.2011; opubl. 10.07.2013, Biul. № 21. 4 s.
12. Shevchenko А. А. Ispolzovanie ELAELov v avtonomnykh energoustanovkakh, kharakterizuyushchikhsia neravnomernostju energopostupleniia. Aviatsionno-kosmicheskaia tekhnika i technologiia: sb. nauch. tr. 1999. Vyp. 13. S. 111–116.
13. Solovey V. V., Zhirov А. S., Shevchenko А. А. Vliianie rezhimnykh faktorov na effektivnost elektrolizera vysokogo davleniia. Sovershenstvovaniie turboustanovok metodami matematicheskogo i fizicheskogo modelirovaniia: sb. nauch. tr. 2003. S. 250–254.
14. Solovey V., Kozak L., Shevchenko A., Zipunnikov M., Campbell R., Seamon F. Hydrogen technology of energy storage making use of windpower potential. Problemy Mashinostroyeniya. Journal of Mechanical Engineering. 2017. Vol. 20, № 1. P. 62–68. https://doi.org/10.17721/fujcV6I2P73-79
15. Solovey V. V., Kotenko А. L., Vorobiova I. О., Shevchenko A. А., Zipunnikov M. М. Osnovnye printsipy raboty i algoritm upravleniya bezmembrannym elektrolizerom vysokogo davleniia. Problemy mashinostroyeniia. 2018. T. 21, №. 4. S. 57–63. https://doi.org/10.15407/pmach2018.04.057
16. Solovey V., Khiem N. T., Zipunnikov M. M., Shevchenko A. A. Improvement of the Membraneless Electrolysis Technology for Hydrogen and Oxygen Generation. French-Ukrainian Journal of Chemistry. 2018. Vol. 6, № 2. P. 73–79. https://doi.org/10.17721/fujcV6I2P73-79
17. Solovey V., Zipunnikov N., Shevchenko A., Vorobjova I., Kotenko A. Energy Effective Membrane-less Technology for High Pressure Hydrogen Electro-chemical Generation. French-Ukrainian Journal of Chemistry. 2018. Vol. 6, № 1. P.151–156. https://doi.org/10.17721/fujcV6I1P151-156
18. Solovey V. V., Zipunnikov М. М., Shevchenko А. А., Vorobiova І. О., Semykin V. M. Bezmembrannyi henerator vodniu vysokoho tysku. Fundamentalni aspekty vidnovliuvano-vodnevoi enerhetyky i palyvno-komirchanykh technologij / za zahal. red. Yu. М. Solonina. Kyiv, 2018. S. 99–107.
19. Matsevytyi Yu. M., Chorna N. A., Shevchenko A. A. Development of a Perspective Metal Hydride Energy Accumulation System Based on Fuel Cells for Wind Energetics. Journal of Mechanical Engineering. 2019. Vol. 22, № 4. P. 48–52. https://doi.org/10.15407/pmach2019.04.048
20. Phillips R., Edwards A., Rome B., Jones D. R., Dunnill C. W. Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design. Int. J. Hydrogen Energy. 2017. № 42. P. 23986–23994. https://doi.org/10.1016/j.ijhydene.2017.07.184
Downloads: 31
Abstract views: 
1268
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore; Plano; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Boardman; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman17
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Finland Helsinki1
Mongolia1
Latvia Riga1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
12.1.2020 Modification of technology as the main course in the military transport aircraft development https://journal.yuzhnoye.com/content_2020_1-en/annot_12_1_2020-en/ Wed, 13 Sep 2023 10:54:55 +0000 https://journal.yuzhnoye.com/?page_id=31043
coordination of modifications in wing with the required parameters of propulsion system as a condition for ensuring the required fuel efficiency.
]]>

12. Modification of technology as the main course in the military transport aircraft development

Authors:

Los’ O. V.

Organization:

Antоnov Company, Kyiv, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 114-120

DOI: https://doi.org/10.33136/stma2020.01.114

Language: Russian

Annotation: The process of creating modifications of aircraft in the transport category is a very relevant and widespread phenomenon in modern aircraft construction. A separate group of military transport aircraft has been distinguished in connection with the specific character of their mission: – the need to formulate the characteristics “cargo – range” for light, medium, operational tactical and strategic military transport aircraft, since it is precisely according to this characteristic that they are positioned by their purpose; –specific requirements are imposed on military transport aircraft cargo compartment not only with respect to its geometrical dimensions and usable volume, but also with respect to the possibility of simultaneous accommodation of military equipment and people, as well as the placement of a stretcher with t he wounded during their evacuation from the war zone; – the possibility of airborne landing of military equipment and paratroopers, which requires specific hatches and means of maintaining weight balance in flight; – the possibility of basing on poorly prepared sites with a runway length of less than 800 m in the short take-off and landing (STL) mode, especially for operational tactical military-technical vehicles, which significantly expands their use in combat zones; – the possibility of conversion into a civilian aircraft: for the delivery of goods to areas of the far north, when fighting fires, when evacuating victims from disaster zones, etc. The article shows that creation of modifications of expensive military transport aircraft is the main direction of their development. All leading aircraft manufacturing companies in the world use modification procedures as the way to most quickly meet constantly changing requirements for military transport aircraft. Along with the traditional methods of designing the modifications, the domestic school proposed a new methodology for determining the necessary parameters for “deep” modifications in wing geometry and propulsion system. The methodology is based on the use of three principles: – ensuring growth of carrying capacity and the required range of modifications of military transport aircraft of various purposes; – geometric re-arrangement of wing and system of carrying surfaces “wing + tail units” according to the criterion of minimum inductive resistance when lifting forces are equal to basic version; – coordination of modifications in wing with the required parameters of propulsion system as a condition for ensuring the required fuel efficiency.

Key words: military transport aircraft, hallmarks of military transport aircraft modifications, principles of designing military transport aircraft modifications

Bibliography:
1. Krivov G. А. Mirovaia aviatsiia na rubezhe ХХ – ХХI stoletii. Promyshlennost, rynki. Kiev, 2003. 295 s.
2. Andrienko Yu. G. Metod formirovaniia sovokupnosti tekhniko-ekonomicheskikh kharakteristik v protsedure vybora proektnykh reshenii pri razrabotke transportnykh samoletov. Otkrytye informatsionnye i kompiuternye tekhnologii: sb. nauch. tr. NAU im. N. Е. Zhukovskogo “KhAI”. Kharkiv, 2002. Vyp. 12. С. 125–138.
3. Sheinin V. М. Rol’ modifikatsii v razvitii aviatsionnoi tekhniki. 1983. 226 s.
4. Babenko Yu. V. Metodika stoimostnoi otsenki modifikatsii blizhnemagistralnykh passazhirskikh samoletov. Aviatsionno-kosmicheskaia tekhnika i tekhnologiia: sb. nauch. tr. NAU im. N. Е. Zhukovskogo “KhAI”. Kharkiv, 2015. Vyp. 7(126). S. 145–149.
5. Los’ А. V. Poniatie koeffitsienta elliptichnosti trapetsievidnogo kryla i metod ego otsenki. Aviatsionno-kosmicheskaia tekhnika i tekhnologiia: sb. nauch. tr. NAU im. N. Е. Zhukovskogo “KhAI”. Kharkiv, 2019. Vyp. 9. S. 9–15.
Downloads: 30
Abstract views: 
818
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Boydton; Plano; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn19
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Cambodia Phnom Penh1
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
12.1.2020  Modification of technology as the main course in the military transport aircraft development
12.1.2020  Modification of technology as the main course in the military transport aircraft development
12.1.2020  Modification of technology as the main course in the military transport aircraft development

Keywords cloud

]]>
9.1.2020 Experimental investigation of a liner-free propellant tank made from polymer composite materials https://journal.yuzhnoye.com/content_2020_1-en/annot_9_1_2020-en/ Wed, 13 Sep 2023 10:43:08 +0000 https://journal.yuzhnoye.com/?page_id=31035
Composite fuel tank for ILV, Dnipro, Yuzhnoye SDO, 2019.
]]>

9. Experimental investigation of a liner-free propellant tank made from polymer composite materials

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 90-98

DOI: https://doi.org/10.33136/stma2020.01.090

Language: Russian

Annotation: The exploratory and experimental investigations were conducted into design of propellant tank made of composite polymer materials for work in cryogenic environment at operating pressure of 7.5 kgf/cm2 . When determining the configuration of a liner-free composite propellant tank, the main requirement was ensuring its leak-tightness at internal excess pressure and cryogenic temperature effect. The world experience of creating similar designs was analyzed and the requirements were defined imposed on configuration of propellant tank load-bearing shells. Before defining the final configuration, the types of materials, reinforcing patterns, and possible ways to ensure leak-tightness were analyzed, and preliminary tests were conducted of physical and mechanical characteristics of thin-wall samples of composite materials and tubular structures with different reinforcing patterns. The tests of carbon plastic samples were conducted at different curing modes to determine the most effective one from the viewpoint of strength characteristics and the tests for permeability by method of mouthpiece were conducted. The tests of pilot propellant tank showed that the calculated values of deformations and displacements differ from the experimental values by no more than 10 %. Using the parameters measurement results from the tests on liquid nitrogen, the empirical formulas were obtained to calculate linear thermal expansion coefficient of the package of materials of load -bearing shell. The empirical dependences were constructed of relative ring deformations at load-bearing shell middle section on pressure and temperature. The tests confirmed correctness of adopted solutions to ensure strength and leak-tightness of propellant tank load-bearing shell at combined effect on internal excess pressure and cryogenic temperature, particularly at cyclic loading. The materials used and propellant tank manufacturing technologies ensure leak-tightness of load-bearing shell at liquid nitrogen operating pressure of 7.5 kgf/cm2 and strength at excess pressure of 15 kgf/cm2 and allow conducting approbation of prospective stage of the integrated launch vehicle.

Key words: load-bearing shell, permeability, cryogenic propellant, relative deformations, linear thermal expansion coefficient

Bibliography:
1. Frantsevich I. М., Karpinos D. М. Kompozitsionnye materialy voloknistogo stroeniia. K., 1970.
2. TSM YZH ANL 009 00. Composite fuel tank for ILV, Dnipro, Yuzhnoye SDO, 2019.
3. Zheng H., Zeng X., Zhang J., Sun H. The application of carbon fiber composites in cryotank. Solidification. 2018. https://doi.org/10.5772/intechopen.73127
Downloads: 31
Abstract views: 
1580
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Los Angeles; North Bergen; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Ukraine Dnipro; Odessa2
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
9.1.2020  Experimental investigation of a liner-free propellant tank made from polymer composite materials
9.1.2020  Experimental investigation of a liner-free propellant tank made from polymer composite materials
9.1.2020  Experimental investigation of a liner-free propellant tank made from polymer composite materials

Keywords cloud

]]>
8.1.2020 Determining the main parameters of transport aircraft modifications considering the fuel efficiency https://journal.yuzhnoye.com/content_2020_1-en/annot_8_1_2020-en/ Wed, 13 Sep 2023 10:34:58 +0000 https://journal.yuzhnoye.com/?page_id=31033
Determining the main parameters of transport aircraft modifications considering the fuel efficiency Authors: Los’ O. 2020, (1); 85-89 DOI: https://doi.org/10.33136/stma2020.01.085 Language: Russian Annotation: The main parameters are understood as: carrying capacity mг, range L and fuel efficiency qт, which largely determine the competitiveness of aircraft of this type, including military transport aircraft. Among the main goals of implementing such decisions there is an indispensable increase in the fuel efficiency of modifications, since the cost of fuel reaches 80 % of the cost of an airplane hour during operation. The parameters of new model: specific fuel efficiency – specific route productivity, in order to form the relative carrying capacity and relative range of action for the required specific fuel efficiency. with an increase in relative range L , fuel costs per flight also increase; –
]]>

8. Determining the main parameters of transport aircraft modifications considering the fuel efficiency

Authors:

Los’ O. V.

Organization:

Antоnov Company, Kyiv, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 85-89

DOI: https://doi.org/10.33136/stma2020.01.085

Language: Russian

Annotation: The main parameters are understood as: carrying capacity mг, range L and fuel efficiency qт, which largely determine the competitiveness of aircraft of this type, including military transport aircraft. The reason for the creation of modifications of transport category aircraft is the requirement for a constant increase in their flight performance by increasing the carrying capacity and range. Among the main goals of implementing such decisions there is an indispensable increase in the fuel efficiency of modifications, since the cost of fuel reaches 80 % of the cost of an airplane hour during operation. There are a number of models that make it possible to assess the influence of the weight and aerodynamic parameters of the airframe of the aircraft and the fuel performance of the power plant (specific engine consumption) on the integral indicator of the fuel efficiency of the modification at cruising mode and the average hourly fuel consumption at the certification stage, when all parameters of the airframe and engine are fixed and consideration of options is not possible. A new model is proposed for the stage of designing modifications, in which deep modification changes are made in the geometry of wing and in the power plant with various variants of their correlation and coordination. The parameters of new model: specific fuel efficiency – specific route productivity, in order to form the relative carrying capacity and relative range of action for the required specific fuel efficiency. An analysis of such dependencies showed: – with an increase in relative range L , fuel costs per flight also increase; – the adequacy of changes in route performance is observed only at L < 0.5. At L > 0.5 productivity is constantly decreasing, while the specific indicator of fuel consumption per unit of work increases exponentially; – if in the analysis we take into account the specific value of transport efficiency, that is, the characteristic “load – range” ( mп.н  f L ), it becomes obvious that the most favorable (from the point of view of fuel efficiency) are relative ranges of 0,3 < L < 0,5. In this range L , not only acceptable fuel efficiency values are realized, but also the maximum value of the route performance, that is the main parameters for which modifications are developed.

Key words: productivity, carrying capacity, fuel efficiency, parameter formation

Bibliography:
1. Balabuev P. V. Osnovy obshchego proektirovaniia samoletov s gazoturbinnymi dvigateliami. Kharkiv, 2003. Ch. 2. 389 s.
2. Yugov О. K. Soglasovanie kharakteristik samoleta i dvigatelia. 1975. 204 s.; 2-е izd., 1980. 200 s.
3. Korol’ V. N. Kontseptsiia sozdaniia mezhdunarodnogo konsortsiuma “Srednii transportnyi samolet”. Voprosy proektirovaniia i proizvodstva konstruktsii letalelnykh apparatov. Kharkiv, 2002. Vyp. 30(3). S. 6-27.
4. Global Market Forecast. Future Journeys 2013 – 2020 / AIRBUS S.A.S Blagnac Cedex: Art @ Caractere, 2013. 125 p. [electronic resource]. Access mode: http://www.airbus.com/company/market/forecast/elD=dam.
5. 747-400 Freighter Main deck cargo arrangements. Boeing, 2010 10 p. [electronic resource]. Access mode: http://www.boeing.com.
6. 6. ICAO. 3.2bn passengers used air transport in 2014. [electronic resource]. Access mode: http://www.aviatime.com/-en/airports/airports-news.
7. An-188. Srednii voenno-ttansportnyi samolet ukorochennogo vzleta i posadki. Kyiv, 2018. S. 118.
Downloads: 31
Abstract views: 
518
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Tappahannock; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Unknown Brisbane1
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
8.1.2020 Determining the main parameters of transport aircraft modifications considering the fuel efficiency
8.1.2020 Determining the main parameters of transport aircraft modifications considering the fuel efficiency
8.1.2020 Determining the main parameters of transport aircraft modifications considering the fuel efficiency

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
17.2.2018 Peculiarities of Dynamics of Recoverable Part of Stage of Aircraft-Type Configuration with Turbojet Engine https://journal.yuzhnoye.com/content_2018_2-en/annot_17_2_2018-en/ Thu, 07 Sep 2023 12:17:39 +0000 https://journal.yuzhnoye.com/?page_id=30796
This recovery plan differs from an alternative rocket recovery system and, from our point of view, provides more efficient usage of the fuel stores because it doesn’t require the main propulsion to be started in the recovery phase.
]]>

17. Peculiarities of Dynamics of Recoverable Part of Stage of Aircraft-Type Configuration with Turbojet Engine

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 143-150

DOI: https://doi.org/10.33136/stma2018.02.143

Language: Russian

Annotation: Basic dynamic properties of the reentry part of the aircraft-type first stage were examined when turbojet engine is used in the recovery phase. Such configuration can be of interest because turbojets have considerably smaller rate of flow in comparison to rocket engines. Moreover, they are launched in the lower stratosphere or in the troposphere so that there is no need to place oxidizer supply on board. This recovery plan differs from an alternative rocket recovery system and, from our point of view, provides more efficient usage of the fuel stores because it doesn’t require the main propulsion to be started in the recovery phase. Besides the analysis of qualitative characteristics of the descend phase for this stage, the efficiency of a wing with moderate values of maximum aerodynamic characteristics and a turbojet was studied. In this case three ways for stage recovery were investigated. The first one implied unguided descend with zero angle of attack assuming that the stage is statically stable. This descend trajectory was considered as standard and was used to evaluate the efficiency of the wing and turbojet with relatively small propulsion. The second and the third design cases offered the gliding guided descend with turbojet being started only in the lower stratosphere. The last two cases used the same program for the angle of attack. The possibility to ensure permissible overload values at the critical points of the descend trajectory and acceptable values of kinematic characteristics at the earth surface tangency point are also of great interest. Thereby the program for the angle of attack was developed in a way that allowed kinematic characteristics on touchdown be as close as possible to the corresponding values, shown by civil and/or military-transport heavy aircraft. Simulation was conducted on Microsoft Visual Studio 2010.

Key words: guided descent, turbojet, kinematic characteristics, tangency point, civil aviation

Bibliography:
1. Kuznetsov Y. L., Ukraintsev D. S. Analysis of Impact of Flight Scheme of Stage with Rocket-Dynamic Recovery System on Payload Capability of Medium-Class Two-Stage Launch Vehicle. New of S. P. Korolev Samara State Aerospace University (National Research University). 2016. Vol. 15, No. 1. P. 73-80. https://doi.org/10.18287/2412-7329-2016-15-1-73-80
2. Andreyevsky V. V. Spacecraft Earth Descent Dynamics М., 1970. 230 p.
Downloads: 29
Abstract views: 
578
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore; Cheyenne; Plano; Dublin; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Ashburn17
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Unknown Brisbane1
Finland Helsinki1
Great Britain1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
17.2.2018 Peculiarities of Dynamics of Recoverable Part of Stage of Aircraft-Type Configuration with Turbojet Engine
17.2.2018 Peculiarities of Dynamics of Recoverable Part of Stage of Aircraft-Type Configuration with Turbojet Engine
17.2.2018 Peculiarities of Dynamics of Recoverable Part of Stage of Aircraft-Type Configuration with Turbojet Engine

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
16.2.2018 Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring https://journal.yuzhnoye.com/content_2018_2-en/annot_16_2_2018-en/ Thu, 07 Sep 2023 12:13:23 +0000 https://journal.yuzhnoye.com/?page_id=30792
2018 (2); 139-142 DOI: https://doi.org/10.33136/stma2018.02.139 Language: Russian Annotation: The structure examined herein aims to keep fuel from entering the space behind the cuff, evacuate the space behind the cuff, reliably fasten the cuff to the thermal protective coating of the bottom in the process of charge forming, easily release the cuff after charge forming, and remove the support structure elements from the casing after charge polymerization when equipping. The structure was tested in the process of fueling the solid rocket motor casing and during charge polymerization. The improved structure ensured that fuel did not enter the space behind the cuff; it was removed easily after charge forming.
]]>

16. Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 139-142

DOI: https://doi.org/10.33136/stma2018.02.139

Language: Russian

Annotation: The structure examined herein aims to keep fuel from entering the space behind the cuff, evacuate the space behind the cuff, reliably fasten the cuff to the thermal protective coating of the bottom in the process of charge forming, easily release the cuff after charge forming, and remove the support structure elements from the casing after charge polymerization when equipping. The structure was tested in the process of fueling the solid rocket motor casing and during charge polymerization. In order to comply with the specified requirements the cuff functions were identified, the structures previously developed were analyzed, and a new structure was designed and improved after testing. The improved structure ensured that fuel did not enter the space behind the cuff; it was removed easily after charge forming. Conclusions proved the suitability of this stricture.

Key words: insert, charge, ring, cuff

Bibliography:
1. Solid Rocket Motors Design / Under the editorship of L. N. Lavrov. М., 1993. 214 p.
2. Solid Rocket Motor Charged Case: Patent 2418187C1 Russian Federation: MPK F02K 9/34 (2006:01) / M. I. Sokolovsky, V. Z. Karimov, Y. B. Nelzin, N. N. Karmanov, B. A. Nesterov; Applicant and patent holder OJSC NPO Iskra. No. 2009146654; claimed 15.12.09; published 10.05.11, Bulletin No. 13.
Downloads: 28
Abstract views: 
980
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Los Angeles;; Plano; Columbus; Phoenix; Monroe; Ashburn; Seattle; Boardman; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Ashburn18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
16.2.2018 Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring
16.2.2018 Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring
16.2.2018 Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
9.2.2018 The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps https://journal.yuzhnoye.com/content_2018_2-en/annot_9_2_2018-en/ Thu, 07 Sep 2023 11:25:59 +0000 https://journal.yuzhnoye.com/?page_id=30763
RD868 engine oxidizer and fuel pumps;  RD859 engine fuel pumps;  RD861K engine fuel pumps.
]]>

9. The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 76-82

DOI: https://doi.org/10.33136/stma2018.02.076

Language: Russian

Annotation: In the present-day rocket engineering, the liquid rocket engines with pump feed system have gained wide acceptance. As a rule, the pumps used in liquid rocket engines are screw-axifugal. The screw serves to increase pressure upstream of the axifugal wheel, thus ensuring its cavitation-free operation. The screws used in the screw-axifugal pumps of liquid rocket engines may be of two types: with constant and variable step. The screws with constant step are easier to calculate, profile and manufacture as compared to the screws with variable step. As known from the literature, the use of the screw with variable step increases power characteristics of the screw-axifugal pump. The purpose of investigation is comparative analysis of cavitation and power characteristics of the following high-speed low-consumption screw-axifugal pumps of liquid rocket engines with jointed screws, screws of constant and variable step:  RD868 engine oxidizer and fuel pumps;  RD859 engine fuel pumps;  RD861K engine fuel pumps. Besides, the analysis has been made of the impact of design features and geometrical dimensions of the screws with variable and constant step on power characteristics of the screw-axifugal high-speed lowconsumption pumps of liquid rocket engines. Special attention has been given to the analysis of anticavitation properties of the pumps with screws of variable step and pumps with jointed screws. Based on the results of investigation, it has been ascertained that when using the joint screws and screws with variable step instead of the screws with constant step in the high-speed low-consumption screw-axifugal pumps of liquid rocket engines, the pump delivery head increases from 0.65 to 3.83%, the efficiency increases up to 1.7%. The use of jointed screw and screw of variable step as compared with the screw of constant step does not have any impact on cavitation properties of low-consumption crew-axifugal pumps of liquid rocket engines.

Key words: pressure characteristic, cavitation characteristic, inducers of the variable-pitch, continuous-pitch inducers, pump efficiency

Bibliography:
1. Pre-burner operating method for rocket turbopump: Patent 6505463 USA: MPK F02K9/48 / William D. Kruse, Thomas J. Mueller, John J. Weede (USA); Northrop Grumman Corporation. No. 20020148215; claimed 17.01.2001; published 14.01.2003, Bulletin No. 09/761,957. 5 p.
2. Hybrid rocket motor using a turbopump to pressurize a liquid propellant constituent: Patent 6640536 USA: MPK F02K9/50, F02K9/48, F02K9/46, F02K9/72, F02K9/56 / Korey R. Kline, Kevin W. Smith, Eric E. Schmidt, Thomas O. Bales; Hy Pat Corporation (Miami, FL). No. 20030136111; claimed 22.01.2002; published 04.11.2003, Bulletin No. 10/054,646. – 11 p.
3. Chebayevsky V. F., Petrov V. I. Cavitation Characteristics of High-Speed Auger-Centrifugal Pumps. М., 1973. 152 p.
4. Petrov V. I., Chebayevsky V. F. Cavitation on High-Speed Impeller Pumps. М., 1982. 192 p.
5. Ovsyanikov V. B., Borovsky B. I. Theory and Calculation of Liquid Rocket Engines Generator Sets. М, 1986. 376 p.
6. Borovsky B. I. Power Parameters and Characteristics of High-Speed Impeller Pumps. М., 1989. 181 p.
Downloads: 30
Abstract views: 
1156
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; North Bergen; Plano; Columbus; Phoenix; Monroe; Ashburn; Ashburn; Boardman; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Columbus; Des Moines; Boardman; Ashburn21
Singapore Singapore; Singapore; Singapore; Singapore4
Cambodia Phnom Penh1
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
9.2.2018 The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps
9.2.2018 The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps
9.2.2018 The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps

Keywords cloud

]]>