Search Results for “gas temperature” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Fri, 21 Jun 2024 08:12:29 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “gas temperature” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge https://journal.yuzhnoye.com/content_2024_1-en/annot_12_1_2024-en/ Mon, 17 Jun 2024 11:36:02 +0000 https://journal.yuzhnoye.com/?page_id=35070
The choice of the optimal temperature and time parameters of gas nitriding of steel.
]]>

12. Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Ukrainian State University of Science and Technologies2

Page: Kosm. teh. Raket. vooruž. 2024, (1); 102-113

Language: Ukrainian

Annotation: Steel hardening technology is considered, which implies modification of the steel surface with the method of ion-plasma nitriding in glow discharge. Ion-plasma nitriding is a multi-factor process, which requires the study of the influence of nitriding process conditions on the structure of modified layers, which, in its turn, determines their mechanical properties. The subjects of research included: austenitic steel 12X18Н10T, carbon steel Ст3 and structural steel 45. There were two conditions of plasma creation during the research: free location of samples on the surface of the cathode (configuration I) and inside the hollow cathode (configuration II). Optimal parameters of the ion-plasma nitriding process have been determined, which provide stability of the process and create conditions for intensive diffusion of nitrogen into the steel surface. Hydrogen was added to the argon-nitrogen gaseous medium to intensify the nitriding process. Working pressure in the chamber was maintained within the range of 250-300 Pa, the duration of the process was 120 minutes. Comparative characteristics of the structure and microhardness of the modified surfaces of the steels under study for two ion-plasma nitriding technologies are presented. Metallographic examination of the structure of the surface modified layers in the cross section showed the presence of the laminated nitrided layer, which consists of different phases and has different depths, depending on the material of the sample and treatment mode. Nitrided layer of 12Х18Н10Т steel consisted of four sublayers: upper “white” nitride layer, double diffuse layer and lower transition layer. The total depth of the nitrided layer after the specified treatment time reached 23 μm, use of hollow cathode increased it by 26% to 29 μm. The nitrided layers of steel Ст3 and steel 45 consisted of two sublayers – thick “white” nitride layer and general diffuse layer with a thickness of about 18 μm. The microhardness of the nitrided layer of steel Ст3 was 480 HV, increasing by 2,5 times, and for steel 45 was 440 HV, increasing by 1,7 times. The use of hollow cathode for these steels reduces the depth of the nitrided layer, but at the same time the microhardness increases due to the formation of a thicker and denser nitride layer on the surface. The results of the conducted research can be used to strengthen the surfaces of the steel parts in rocket and space technology, applying high-strength coatings.

Key words: ion nitriding, glow discharge, cross-sectional layer structure, hardening, microhardness

Bibliography:

1. Loskutova T. V., Pogrebova I. S., Kotlyar S. M., Bobina M. M., Kapliy D. A., Kharchenko N. A., Govorun T. P. Physichni ta tekhnologichni parametry azotuvannya stali Х28 v seredovyschi amiaku. Journal nano-elektronnoi physiki. 2023. №1(15). s. 1-4.
2. Al-Rekaby D. W., Kostyk V., Glotka A., Chechel M. The choice of the optimal temperature and time parameters of gas nitriding of steel. Eastern-European journal of Enterprise Technologies. 2016. V. 3/5(81). P.44-49.
3. Yunusov A. I., Yesipov R. S. Vliyanie sostava gazovoy sredy na process ionnogo azotirovaniya martensitnoy stali 15Х16К5НР2МВФАБ-Ш. Vestnik nauki. 2023. №5(62). s. 854-863.
4. Zakalov O. V. Osnovy tertya i znoshuvannya u mashinah: navch. posibnik, vydavnytstvo TNTU im. I. Pulyuya, Ternopil. 2011. 332 s.
5. Kindrachuk M. V., Zagrebelniy V. V., Khizhnyak V. G., Kharchenko N. A. Technologichni aspeckty zabespechennya pratsezdatnosti instrument z shvydkorizalnykh staley. Problemy tertya ta znoshuvannya. 2016. №1 (70). S. 67-78.
6. Skiba M. Ye., Stechishyna N. M., Medvechku N. K., Stechishyn M. S., Lyukhovets’ V. V. Bezvodneve azotuvannya u tliyuchomu rozryadi, yak metod pidvyschennya znosostiykisti konstruktsiynykh staley. Visn. Khmelnitskogo natsionalnogo universitetu. 2019. №5. S. 7-12.
7. Axenov I. I. Vakkumno-dugovye pokrytiya. Technologiya, materialy, struktura i svoistva. Kharkov, 2015. 379 s.
8. Pastukh I. M., Sokolova G. N., Lukyanyuk N. V. Azotirovanie v tleyuschem razryade: sostoyanie i perspektyvy. Problemy trybologii. 2013. №3. S. 18-22.
9. Pastukh I. M. Teoriya i praktika bezvodorodnogo azotirovanniya v tleuschem razryade: izdatelstvo NNTs KhFTI. Kharkov, 2006. 364 s.
10. Sagalovich O. V., Popov V. V., Sagalovich V. V. Plasmove pretsenziyne azotuvannya AVINIT N detaley iz staley i splaviv. Technologicheskie systemy. 2019. №4. S. 50-56.
11. Kozlov A. A. Nitrogen potential during ion nitriding process in glow-discharge plasma. Science and Technique. 2015. Vol. 1. P. 79-90.
12. Nadtoka V., Kraiev M., Borisenko А., Kraieva V. Multi-component nitrated ion-plasma Ni-Cr coating. Journal of Physics and Electronics. 2021. №29(1). Р. 61–64. DOI 10.15421/332108.
13. Nadtoka V., Kraiev M., Borisenko A., Bondar D., Gusarova I. Heat-resistant MoSi2–NbSi2 and Cr–Ni coatings for rocket engine combustion chambers and respective vacuum-arc deposition technology/ 74th International Astronautical Congress (IAC-23-C2.4.2), Baku, Azerbaijan, 2-6 October 2023.
14. Kostik K. O., Kostik V. O. Porivnyalniy analiz vplyvu gazovogo ta ionno-plazmovogo azotuvannya na zminu struktury i vlastyvostey legovannoi stali 30Х3ВА. Visnik NTU «KhPI». 2014. №48(1090). S. 21-41.
15. Axenov I. I., Axenov D. S., Andreev A. A., Belous V. A., Sobol’ O.V. Vakuumno-dugovye pokrytiya: technologia, materialy, struktura, svoistva: VANT NNTs KhFTI, Kharkov. 2015. 380 s.
16. Pidkova V. Ya. Modyfikuvannya poverkhni stali 12Х18Н10Т ionnoyu implantatsieyu azotom. Technology audit and production reserves. 2012. Vol. 3/2(5). P. 51-52.
17. Kosarchuk V. V., Kulbovsliy I. I., Agarkov O. V. Suchasni metody zmitsnennya i pidvyschennya znosostiykosti par tertya. Ch. 2. Visn. Natsionalnogo transportnogo universytetu. 2016. Vyp. 1(34). S. 202-210.
18. Budilov V. V., Agzamov R. D., Ramzanov K. N. Issledovanie i razrabotka metodov khimiko-termicheskoy obrabotki na osnove strukturno-fasovogo modifitsirovaniya poverkhnisti detaley silnotochnymi razryadami v vakuume. Vestnik UGATU. Mashinostroenie. 2007. T. 9, №1(19). S. 140-149.
19. Abrorov A., Kuvoncheva M., Mukhammadov M. Ion-plasma nitriding of disc saws of the fiber-extracting machine. Modern Innovation, Systems and Technologies. 2021. Vol. 1(3). P. 30-35.
20. Smolyakova M. Yu., Vershinin D. S., Tregubov I. M. Issledovaniya vliyaniya nizkotemperaturnogo azotirovanniya na strukturno-fasoviy sostav i svoistva austenitnoy stali. Vzaimodeystvie izlecheniy s tverdym telom: materialy 9-oi Mezhdunarodnoy konferentsii (Minsk, 20-22 sentyabrya 2011 g.). Minsk, 2011. S. 80-82.
21. Adhajani H., Behrangi S. Plasma Nitriding of Steel: Topics in Mining, Metallurgy and Material Engineering by series editor Bergmann C.P. 2017. 186 p.
22. Fernandes B.B. Mechanical properties of nitrogen-rich surface layers on SS304 treated by plasma immersion ion implantation. Applied Surface Science. 2014. Vol. 310. P. 278-283.
23. Khusainov Yu. G., Ramazanov K. N., Yesipov R. S., Issyandavletova G. B. Vliyanie vodoroda na process ionnogo azotirovanniya austenitnoy stali 12Х18Н10Т. Vestnik UGATU. 2017. №2(76). S. 24-29.
24. Sobol’ O. V., Andreev A. A., Stolbovoy V. A., Knyazev S. A., Barmin A. Ye., Krivobok N. A. Issledovanie vliyaniya rezhimov ionnogo azotirovanniya na strukturu i tverdost’ stali. Vostochno-Yevropeyskiy journal peredovykh tekhnologiy. 2015. №2(80). S. 63-68.
25. Kaplun V. G. Osobennosti formirovanniya diffusionnogo sloya pri ionnom azotirovannii v bezvodorodnykh sredakh. FIP. 2003. T1, №2. S. 145.

Downloads: 10
Abstract views: 
984
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Phoenix; Ashburn; Des Moines; Boardman5
Ukraine Kyiv; Dnipro2
Finland Helsinki1
Singapore Singapore1
Netherlands Amsterdam1
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
15.1.2024 Enhancing operability of the fuel system units in the hot climate conditions https://journal.yuzhnoye.com/content_2024_1-en/annot_15_1_2024-en/ Mon, 17 Jun 2024 07:43:36 +0000 https://journal.yuzhnoye.com/?page_id=34974
Heat resistance during compression is most important for rubbers used for seals of various types: rings, collars, armored collars, gaskets for aviation and rocket technology hardware. Stress relaxation and the accumulation of relative residual deformation of rubbers, caused by the kinetic rearrangement of chemical bonds, are extremely sensitive to the influence of high temperatures. The main cause of the defects is the loss of elastic properties of the seals because of the accelerated heat aging of the nitrile group under conditions of long-term exposure to elevated temperatures in conditions of hot climate.
]]>

15. Enhancing operability of the fuel system units in the hot climate conditions

Organization:

DINTEM Ukrainian Research Design-Technological Institute of Elastomer Materials and Products LLC1; FED Joint Stock Company2

Page: Kosm. teh. Raket. vooruž. 2024, (1); 129-135

Language: Ukrainian

Annotation: The article dwells on the problem of enhancement of durability for the mechanical rubber articles, which is directly related to the enhance of rubber resistance to various types of heat aging. Heat resistance during compression is most important for rubbers used for seals of various types: rings, collars, armored collars, gaskets for aviation and rocket technology hardware. Stress relaxation and the accumulation of relative residual deformation of rubbers, caused by the kinetic rearrangement of chemical bonds, are extremely sensitive to the influence of high temperatures. The main cause of the defects is the loss of elastic properties of the seals because of the accelerated heat aging of the nitrile group under conditions of long-term exposure to elevated temperatures in conditions of hot climate. The results of accelerated climatic testing of specimens of mechanical rubber articles, as well as the results of climatic endurance testing of the units for the period simulating 20-year service life are specified, and the main types of defects which result in the loss of performance properties of the mechanical rubber articles are as follows: great (up to 100%) residual deformation of intersections, cracking, loss of elasticity. The warranty life of fuel system units, made of ИРП-1078 nitrile rubber, does not exceed 12 years. Replacing the existing rubbers with rubbers created on the basis of more heat-bearing rubbers is the most promising way to improve the performance properties of the mechanical rubber articles under the high temperatures. The new D2301 rubber is based on fluorosiloxane rubber. It provides high thermal stability and, especially, the ability to maintain high performance properties for a long time under the simultaneous impact of hostile environment and high temperatures. The results of climatic endurance testing of fuel system units, equipped with rubber articles made of D2301 rubber, fully justify the increase of the specified service life of the specified units from 12 to 16 years. It is recommended to introduce D2301 rubber into the effective normative documentation and continue studies in order to extend the nomenclature of mechanical rubber articles made of D2301 rubber to provide the reliable sealing of units during the service life of 16 years or longer.

Key words: leaktightness of articles, fluorosiloxane rubber, rubber, temperature of the hot climate, physical-mechanical properties of the rubber, climatic endurance tests, elastic properties, warranty life

Bibliography:
  1. Lepetov V. A., Yurtsev L. N. Raschet i konstruirovanie rezinovykh izdeliy. Moskva.
    Khimia. 1971. 417 s.
Downloads: 14
Abstract views: 
700
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Dublin; Phoenix; Ashburn; Ashburn; Des Moines; Boardman7
Singapore Singapore; Singapore2
Ukraine Dnipro; Dnipro2
Finland Helsinki1
India Tiruchchirappalli1
Netherlands Amsterdam1
15.1.2024 Enhancing operability of the fuel system units in the hot climate conditions
15.1.2024 Enhancing operability of the fuel system units in the hot climate conditions
15.1.2024 Enhancing operability of the fuel system units in the hot climate conditions

Keywords cloud

]]>
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff https://journal.yuzhnoye.com/content_2020_1-en/annot_3_1_2020-en/ Fri, 29 Sep 2023 18:22:49 +0000 https://journal.yuzhnoye.com/?page_id=32230
Stress and deformation of rocket gas turbine disc under different loads using finite element modeling. Thermal buckling of cylindrical shell with temperature-dependent material properties: Conventional theoretical solution and new numerical method.
]]>

3. Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 26-33

DOI: https://doi.org/10.33136/stma2020.01.026

Language: Russian

Annotation: The study of thermal strength of the hold-down bay is considered. The hold-down bay is a cylindrical shell with the load-bearing elements as the standing supports. The case of the hold-down bay consists of the following structural elements: four standing supports and the compound cylindrical shell with two frames along the top and bottom joints. The purpose of this study was the development of a general approach for the thermal strength calculation of the hold-down bay. This approach includes two parts. Firstly, the unsteady heat fields on the hold-down bay surface are calculated by means of the semi-empirical method, which is based on the simulated results of the combustion product flow of the main propulsion system. The calculation is provided by using Solid Works software. Then the unsteady stress-strain behavior of the hold-down bay is calculated, taking into consideration the plastoelastic deformations. The material strain bilinear diagram is used. The finiteelement method is applied to the stress-strain behavior calculation by using NASTRAN software. The thermal field is assumed to be constant throughout the shell thickness. As a result of the numerical simulation the following conclusions are made. The entire part of the hold-down bay, which is blown by rocket exhaust jet, is under stress-strain behavior. The stresses of the top frame and the shell are overridden the breaking strength that caused structural failure. The structure of the hold-down bay, which is considered in the paper, is unappropriated to be reusable. The hold-down bay should be reconstructed by reinforcement in order to provide its reusability.

Key words: stress-strain behavior, finite-element method, plastoelastic deformations, breaking strength, reusability

Bibliography:

1. Elhefny A., Liang G. Stress and deformation of rocket gas turbine disc under different loads using finite element modeling. Propulsion and Power Research. 2013. № 2. P. 38–49. https://doi.org/10.1016/j.jppr.2013.01.002
2. Perakis N., Haidn O. J. Inverse heat transfer method applied to capacitively cooled rocket thrust chambers. International Journal of Heat and Mass Transfer. 2019. № 131. P. 150–166. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.048
3. Yilmaz N., Vigil F., Height J., et. al. Rocket motor exhaust thermal environment characterization. Measurement. 2018. № 122. P. 312–319. https://doi.org/10.1016/j.measurement.2018.03.039
4. Jafari M. Thermal stress analysis of orthotropic plate containing a rectangular hole using complex variable method. European Journal of Mechanics A /Solids. 2019. № 73. P. 212–223. https://doi.org/10.1016/j.euromechsol.2018.08.001
5. Song J., Sun B. Thermal-structural analysis of regeneratively cooled thrust chamber wall in reusable LOX / Methane rocket engines. Chinese Journal of Aeronautics. 2017. № 30. P. 1043–1053.
6. Ramanjaneyulu V., Murthy V. B., Mohan R. C., Raju Ch. N. Analysis of composite rocket motor case using finite element method. Materials Today: Proceedings. 2018. № 5. P. 4920–4929.
7. Xu F., Abdelmoula R., Potier-Ferry M. On the buckling and post-buckling of core-shell cylinders under thermal loading. International Journal of Solids and Structures. 2017. № 126–127. P. 17–36.
8. Wang Z., Han Q., Nash D. H., et. al. Thermal buckling of cylindrical shell with temperature-dependent material properties: Conventional theoretical solution and new numerical method. Mechanics Research Communications. 2018. № 92. P. 74–80.
9. Duc N. D. Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear de-formation shell theory. European Journal of Mechanics A /Solids. 2016. № 58. P. 10–30.
10. Trabelsi S., Frikha A., Zghal S., Dammak F. A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Engineering Structures. 2019. № 178. P. 444–459.
11. Trinh M. C., Kim S. E. Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment. Aerospace Science and Technology. 2019. № 84. P. 672–685.
12. Лойцянский Л. Г. Механика жидкости и газа. М., 2003. 840 с.
13. Launder B. E., Sharma B. I. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. International Journal of Heat and Mass Transfer. 1974. № 1. P. 131–138.
14. Михеев М. А., Михеева И. М. Основы теплопередачи. М., 1977. 345 с.
15. Малинин Н. Н. Прикладная теория пластичности и ползучести. М., 1968. 400 с.

Downloads: 35
Abstract views: 
1455
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Boydton; Plano; Columbus; Detroit; Phoenix; Monroe; Ashburn; Ashburn; Boardman; Seattle; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore11
Ukraine Dnipro; Kyiv; Dnipro3
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff

Keywords cloud

]]>
19.1.2020 Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO https://journal.yuzhnoye.com/content_2020_1-en/annot_19_1_2020-en/ Wed, 13 Sep 2023 12:02:02 +0000 https://journal.yuzhnoye.com/?page_id=31074
In the developed pyrobolt of shear type with segments, the case parts are separated without considerable shock loads and without high-temperature gases and fragments release into environment, ensuring reliable separation of bays and assemblies without damaging sensitive equipment. Key words: explosive bolt , shock wave , brisant explosive substance , pyro cartridge , electric igniting fuse , high-temperature gases Bibliography: 1. explosive bolt , shock wave , brisant explosive substance , pyro cartridge , electric igniting fuse , high-temperature gases .
]]>

19. Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 170-176

DOI: https://doi.org/10.33136/stma2020.01.170

Language: Russian

Annotation: The pyrobolts, or explosive bolts, belong to the pyrotechnical devices with monolithic case consisting o f the cap, as a rule with hexagonal surface, and of cylindrical part with thread. The pyrobolts are separated into parts using the pyrotechnical charge placed inside the case. Owing to the simple design, reliability and short action time, the pyrobolts have found wide application in aerospace engineering for separation of assemblies and bays, in particular, stages, head modules, launching boosters, etc. So, for example, about 400 pyrobolts are used in the Proton launch vehicle. The designs of pyrobolts are markedly different. By method of explosive substance action on case structural elements, the pyrobolts are divided into two types: the pyrobolts using the shock wave formed at detonation of brisant explosive substance for case wall destruction and the pyrobolts using the pressure of gases arising at pyrotechnical charge blasting. By method of separation into parts, they are divided into fragmenting pyrobolts with ridge-cut, with piston, and shear pyrobolts. The paper deals with the design of various types of pyrobolts, their disadvantages are considered. The Yuzhnoye SDO-developed pyrobolt of shear type with segments is presented that uses radial shear forces of segments located in the hole of cylindrical part to separate the case parts. The above segments a re actuated using a rod with sealing rings and a piston connected to the rod through a rubber gasket; the piston moves under pressure of gases formed during pyro cartridge action. The following calculations are presen ted: strength analyses with determination of case load-carrying capacity; power analyses with justification of pyro cartridge selection for pyrobolt actuation. In the developed pyrobolt of shear type with segments, the case parts are separated without considerable shock loads and without high-temperature gases and fragments release into environment, ensuring reliable separation of bays and assemblies without damaging sensitive equipment.

Key words: explosive bolt, shock wave, brisant explosive substance, pyro cartridge, electric igniting fuse, high-temperature gases

Bibliography:
1. Mashinostroenie. Entsiklopediia / А. P. Adzhian i dr.; pod red. V. P. Legostaeva. М., 2012. Т. IV-22. V 2-kh kn. Kn. 1. 925 s.
2. Bement L. J., Schimmel M. L. A Manual for Pyrotechnic Design, Development and Qualification: NASA Technical Memorandum 110172. 1995.
3. Yumashev L. P. Ustroistvo raket-nositelei (vspomagatelnye sistemy): ucheb. posob. Samara, 1999. 190 s.
4. Lee J., Han J.-H., Lee Y., Lee H. Separation characteristics study of ridge-cut explosive bolts. Aerospace Science and Technology. 2014. Vol. 39. Р. 153-168. https://doi.org/10.1016/j.ast.2014.08.016
5. Yanhua L., Jingcheng W., Shihui X., Li C., Yuquan W., Zhiliang L. Numerical Study of Separation Characteristics of Piston-Type Explosive Bolt. Shock and Vibration. https://doi.org/10.1155/2019/2092796
6. Yanhua L., Yuan L., Xiaogan L., Yuquan W., Huina M., Zhiliang L. Identification of Pyrotechnic Shock Sources for Shear Type Explosive Bolt. Shock and Vibration. https://doi.org/10.1155/2017/3846236
Downloads: 34
Abstract views: 
1527
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Columbus; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Kyiv; Kyiv; Dnipro3
China Shanghai1
India1
Finland Helsinki1
Indonesia1
Romania Voluntari1
Netherlands Amsterdam1
19.1.2020  Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO
19.1.2020  Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO
19.1.2020  Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO

Keywords cloud

]]>
10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests https://journal.yuzhnoye.com/content_2018_2-en/annot_10_2_2018-en/ Thu, 07 Sep 2023 11:29:45 +0000 https://journal.yuzhnoye.com/?page_id=30766
Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests Authors: Nikitenko K. The gas dynamic analysis of the nozzle with water-cooled extension showed the importance of using the turbulent flow model k-ω SST for the flows with internal separation of boundary layer and with flow separation at nozzle section. The calculation allows obtaining a temperature profile of the wall and providing the recommendations for selection of pressure measurement place in the nozzle extension for the purpose of reducing sensors indication error. With consideration for the special nature of the nozzle extension wall temperature field, the cooling mode was selected. Performance Analysis of Secondary Gas Injection into a Conical Rocket Nozzle. Numerical Simulation of Hot Gas Nozzle Flows.
]]>

10. Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 83-93

DOI: https://doi.org/10.33136/stma2018.02.083

Language: Russian

Annotation: At Yuzhnoye State Design Office, the Cyclone-4 launch vehicle 3rd stage engine has been developed and is under testing. For adjustment of the engine and test bench systems, in the first firing tests the radiation-cooled nozzle extension was replaced with a steel water-cooled one. It was planned to start the engine with water-cooled nozzle extension without vacuumizing and without gad dynamic pipe, which conditioned operation with flow separation at the output edge of water-cooled nozzle extension. Therefore, the calculation of flow in the nozzle with water-cooled extension, flow separation place, and thermal load on watercooled nozzle extension during operation in ground conditions is an important task. Selection of turbulent flow model has a noticeable impact on prediction of flow characteristics. The gas dynamic analysis of the nozzle with water-cooled extension showed the importance of using the turbulent flow model k-ω SST for the flows with internal separation of boundary layer and with flow separation at nozzle section. The use the flow model k-ω SST for calculation of nozzle with flow separation or with internal transitional layer allows adequately describing the flow pattern, though, as the comparison with experimental data showed, this model predicts later flow separation from the wall than that obtained in the tests. The calculation allows obtaining a temperature profile of the wall and providing the recommendations for selection of pressure measurement place in the nozzle extension for the purpose of reducing sensors indication error. With consideration for the special nature of the nozzle extension wall temperature field, the cooling mode was selected. The tests of RD861K engine nozzle with water-cooled extension allow speaking about its successful use as a required element for testing engine start and operation in ground conditions without additional test bench equipment.

Key words: turbulent flow, flow separation, cooling, technological extension

Bibliography:
1. Massiet P., Rocheque E. Experimental Investigation of Exhaust Diffusors for Rocket Engines. Investigation of Liquid Rocket Engines. М., 1964. P. 96-109.
2. Mezhevov A. V., Skoromnov V. I., Kozlov A. V. et al. Introduction of Radiation Cooling Nozzle Head of Made of Carbon-Carbon Composite Material on DM-SL Upper Stage 11D58M Main Engine. News of Samara Aerospace University. No. 2 (10). 2006. P. 260-264.
3. Fluent. Software Package, Ver. 6.2.16, Fluent Inc., Lebanon, NH, 2004.
4. Wilcox D. C. Turbulence Modeling for CFD. DCW Industries, Inc. La Canada, California, 1998. 460 р.
5. Andersen D., Tannehill J., Platcher R. Computational Hydromechanics and Heat Exchange: in 2 volumes М., 1990. 384 p.
6. Rodriguez C. G., Culter, A. D. Numerical Analysis of the SCHOLAR Supersonic Combustor, NASA-CR-2003-212689. 2003. 36 р.
7. Rajasekaran A., Babu V. Numerical Simulation of Three-dimensional Reacting Flow in a Model Supersonic Combustor. Journal of Propulsion and Power. Vol. 22. No. 4. 2006. Р. 820-827. https://doi.org/10.2514/1.14952
8. Spalart P., Allmaras S. A one-equation turbulence model for aerodynamic flows: Technical Report. American Institute of Aero-nautics and Astronautics. AIAA-92-0439. 1992. Р. 5-21. https://doi.org/10.2514/6.1992-439
9. Launder B. E., Spalding D. B. Lectures in Mathematical Models of Turbulence. London, 1972. Р. 157-162.
10. Rajasekaran A., Babu V. Numerical Simulation of Three-dimensional Reacting Flow in a Model Supersonic Combustor. Journal of Propulsion and Power. Vol. 22. No. 4. 2006. Р. 820-827. https://doi.org/10.2514/1.14952
11. Ten-See Wang. Multidimensional Unstructured Grid Liquid Rocket-Engine Nozzle Performance and Heat Transfer Analysis. Journal of Propulsion and Power. Vol. 22. No. 1. 2006. 21 р. https://doi.org/10.2514/1.14699
12. Hyun Ko, Woong-Sup Yoon. Performance Analysis of Secondary Gas Injection into a Conical Rocket Nozzle. Journal of Propulsion and Power. Vol. 18, No. 3. 2002. Р. 585-591. https://doi.org/10.2514/2.5972
13. Wilson E. A., Adler D., Bar-Yoseph P. Thrust-Vectoring Nozzle Performance Mode-ling. Journal of Propulsion and Power. Vol. 19, No. 1. 2003. Р. 39-47. https://doi.org/10.2514/2.6100
14. Gross A., Weiland C. Numerical Simulation of Hot Gas Nozzle Flows. Journal of Propulsion and Power. Vol. 20, No. 5. 2004. Р. 879-891. https://doi.org/10.2514/1.5001
15. Gross A., Weiland C. Numerical Simulation of Separated Cold Gas Nozzle Flows. Journal of Propulsion and Power. Vol. 20, No. 3. 2004. Р. 509-519. https://doi.org/10.2514/1.2714
16. Deck S., Guillen P. Numerical Simulation of Side Loads in an Ideal Truncated Nozzle. Journal of Propulsion and Power. Vol. 18, No. 2. 2002. Р. 261-269. https://doi.org/10.2514/2.5965
17. Östlund J., Damgaard T., Frey M. Side-Load Phenomena in Highly Overexpanded Rocket Nozzle. Journal of Propulsion and Power. Vol. 20, No. 4. 2004. Р. 695-704. https://doi.org/10.2514/1.3059
18. Goldberg U. C. Separated Flow Treatment with a New Turbulence Model. AIAA Journal. Vol. 24, No. 10. 1986. Р. 1711-1713. https://doi.org/10.2514/3.9509
19. Golovin V.S., Kolchugin B.A., Labuntsov D.A. Experimental Investigation of Heat Exchange and Critical Heat Loads at Water Boiling in Free Motion Conditions. 1963. Vol. 6, No 2. p. 3-7.
20. Mikheyev М. А., Mikheyeva I. M. Heat-Transfer Principles. 2nd edition stereotyped. М., 1977. 343 p.
21. Kutateladze S. S., Leontyev A. I. Heat-Mass Exchange and Friction in Turbulent Boundary Layer. М., 1972. 341 p.
Downloads: 29
Abstract views: 
1066
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; North Bergen; Plano; Phoenix; Monroe; Ashburn; Columbus; Columbus; Ashburn; Seattle; Tappahannock; San Mateo; Des Moines; Boardman; Boardman; Ashburn18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests
10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests
10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall https://journal.yuzhnoye.com/content_2018_2-en/annot_7_2_2018-en/ Thu, 07 Sep 2023 11:12:23 +0000 https://journal.yuzhnoye.com/?page_id=30754
Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall Authors: Konokh V. 2018 (2); 57-67 DOI: https://doi.org/10.33136/stma2018.02.057 Language: Russian Annotation: During experimental investigation of the dynamic characteristics of a pneumatic test bench for testing liquid rocket engine high-flowrate automatic units, the effect was detected of 20-35% sound speed increase in the gas flow moving along the channel with corrugated wall (metal hose) which is a part of test bench drain system. Problems of High-Temperature Engineering: Collection of scientific works.
]]>

7. Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2018 (2); 57-67

DOI: https://doi.org/10.33136/stma2018.02.057

Language: Russian

Annotation: During experimental investigation of the dynamic characteristics of a pneumatic test bench for testing liquid rocket engine high-flowrate automatic units, the effect was detected of 20-35% sound speed increase in the gas flow moving along the channel with corrugated wall (metal hose) which is a part of test bench drain system. The article presents the results of experiments and the task of theoretical justification of the effect is solved. It is indicated that its causes may be two mutually complementary factors – a decrease of gas compressibility at eddy motion and oscillations of metal hose wall. The physical model is considered that describes variation of gas elasticity and density in the conditions of high flow vorticity. It is supposed that in the near-wall layer of the channel, toroidal vortexes (vortex rings) are formed, which move into turbulent core of the flow where their size decreases and the velocity of rotation around the ring axis of torus increases. The spiral shape of the corrugation ensures also axial rotation, which increases vortexes stability. The intensive rotation around the ring axis creates considerable centrifugal forces; as a result, the dependence of pressure on gas density and the sound speed increase. The mathematical model has been developed that describes coupled longitudinal-lateral oscillations of gas and channel’s corrugated shell. It is indicated that in the investigated system, two mutually influencing wave types are present – longitudinal, which mainly transfer gas pressure pulses along the channel and lateral ones, which transfer the shell radial deformation pulses. As a result of modeling, it has been ascertained that because of the lateral oscillations of the wall, the propagation rate of gas pressure longitudinal waves (having the same wave length as in the experiments at test bench) turns out to be higher than adiabatic sound speed.

Key words: rocket engine automatic units, pneumatic test bench, metal hose, corrugated shell, toroidal vortex, longitudinal-lateral oscillations

Bibliography:
1. Shevchenko S. A. Experimental Investigation of Dynamic Characteristics of Gas Pressure Regulator in Multiple Ignition LRE Starting System. Problems of Designing and Manufacturing Flying Vehicle Structures: Collection of scientific works. 2015. Issue 4 (84). P. 49-68.
2. Shevchenko S. A., Valivakhin S. A. Results of Mathematical Modeling of Transient Processes in Gas Pressure Regulator. NTU “KhPI” News. 2014. No. 39 (1082). P. 198-206.
3. Shevchenko S. A., Valivakhin S. A. Mathematical Model of Gas Pressure Regulator. NTU “KhPI” News. 2014. No. 38 (1061). P. 195-209.
4. Shevchenko S. A., Konokh V. I., Makoter A. P. Gas Dynamic Resistance and Sound Speed in Channel with Corrugated Wall. NTU “KhPI” News. 2016. No. 20 (1192). P. 94-101.
5. Flexible Metal Hoses. Catalogue. Ufimsky Aggregate Company “Hydraulics”, 2001.
6. Loytsyansky L.G. Liquid and Gas Mechanics. М., 1978. 736 p.
7. Prisnyakov V. F. et al. Determination of Gas Parameters at Vessel Emptying Taking into Account Compressibility and Manifold Resistance. Problems of High-Temperature Engineering: Collection of scientific works. 1981. P. 86-94.
8. Kirillin V. A., Sychyov V. V., Sheydlin A. E. Technical Thermodynamics. М., 2008. 486 p.
9. Grekhov L. V., Ivashchenko N. A., Markov V. A. Propellant Equipment and Control Systems of Diesels. М., 2004. 344 p.
10. Sychyov V. V., Vasserman A. A., Kozlov A. D. et al. Thermodynamic Properties of Air. М., 1978. 276 p.
11. Shariff K., Leonard A. Vortex rings. Annu. Rev. Fluid Mech. 1992. Vol. 24. P. 235-279. https://doi.org/10.1146/annurev.fl.24.010192.001315
12. Saffman F. Vortex Dynamics. М., 2000. 376 p.
13. Akhmetov D. G. Formation and Basic Parameters of Vortex Rings. Applied Mechanics and Theoretical Physics. 2001. Vol. 42, No 5. P. 70–83.
14. Shevchenko S. A., Grigor’yev A. L., Stepanov M. S. Refinement of Invariant Method for Calculation of Gas Dynamic Parameters in Rocket Engine Starting Pneumatic System Pipelines. NTU “KhPI” News. 2015. No. 6 (1115). P. 156-181.
Downloads: 27
Abstract views: 
1034
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Plano; Columbus; Phoenix; Los Angeles; Monroe; Ashburn; Seattle; Ashburn; Seattle; Tappahannock; San Mateo; Des Moines; Boardman; Boardman; Ashburn17
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro; Dnipro2
Unknown Brisbane1
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall

Keywords cloud

]]>
9.1.2018 On the Peculiarities of High-Temperature Rocket Propellants Drain from Delivery Means to Filling Tank for Closed Drain https://journal.yuzhnoye.com/content_2018_1-en/annot_9_1_2018-en/ Tue, 05 Sep 2023 06:29:31 +0000 https://journal.yuzhnoye.com/?page_id=30460
On the Peculiarities of High-Temperature Rocket Propellants Drain from Delivery Means to Filling Tank for Closed Drain Authors: Pozdieiev H. 2018 (1); 53-57 DOI: https://doi.org/10.33136/stma2018.01.053 Language: Russian Annotation: The paper presents the variation of parameters of gas-vapor mixture of hypergolic rocket propellant components in a filling tank in the process of rocket propellant components filling into it with “closed drainage” depending on tank filing coefficient and initial parameters of environment in the tank. (2018) "On the Peculiarities of High-Temperature Rocket Propellants Drain from Delivery Means to Filling Tank for Closed Drain" Космическая техника. "On the Peculiarities of High-Temperature Rocket Propellants Drain from Delivery Means to Filling Tank for Closed Drain" Космическая техника.
]]>

9. On the Peculiarities of High-Temperature Rocket Propellants Drain from Delivery Means to Filling Tank for Closed Drain

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (1); 53-57

DOI: https://doi.org/10.33136/stma2018.01.053

Language: Russian

Annotation: The paper presents the variation of parameters of gas-vapor mixture of hypergolic rocket propellant components in a filling tank in the process of rocket propellant components filling into it with “closed drainage” depending on tank filing coefficient and initial parameters of environment in the tank.

Key words:

Bibliography:
1. Cosmodrome / Under the general editorship of A. P. Vol’sky. М., 1977.
2. Berezhkovsky M. I. Storage and Transportation of Chemical Products. М., 1973.
3. Selection and Justification of Technology of Rocket Propellants Drain from Tank-Containers into OFS, FFS Tanks: Technical Note Cyclone-4 22.6840.155 СТ. Yuzhnoye SDO, 2005.
Downloads: 29
Abstract views: 
746
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore; North Bergen; Boydton; Plano; Columbus; Phoenix; Monroe; Ashburn; Seattle; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn16
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Ukraine Dnipro; Odessa2
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
9.1.2018 On the Peculiarities of High-Temperature Rocket Propellants Drain from Delivery Means to Filling Tank for Closed Drain
9.1.2018 On the Peculiarities of High-Temperature Rocket Propellants Drain from Delivery Means to Filling Tank for Closed Drain
9.1.2018 On the Peculiarities of High-Temperature Rocket Propellants Drain from Delivery Means to Filling Tank for Closed Drain
]]>
7.1.2018 Prospective Gas Purification Device for LRE Test Bench https://journal.yuzhnoye.com/content_2018_1-en/annot_7_1_2018-en/ Tue, 05 Sep 2023 06:22:22 +0000 https://journal.yuzhnoye.com/?page_id=30456
Prospective Gas Purification Device for LRE Test Bench Authors: Sheiko А. 2018 (1); 39-45 DOI: https://doi.org/10.33136/stma2018.01.039 Language: Russian Annotation: The paper considers the project of prospective integrated gas purification device for large-sized LRE test stand. The prognostic mathematical models are presented for evaluation of ecological indices of the integrated gas purification equipment. Applied Gas Dynamics. MODELING OF CHEMICAL AND PHASE EQUILIBRIUMS AT HIGH TEMPERATURES (ACTPA.4 рс). (2018) "Prospective Gas Purification Device for LRE Test Bench" Космическая техника.
]]>

7. Prospective Gas Purification Device for LRE Test Bench

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (1); 39-45

DOI: https://doi.org/10.33136/stma2018.01.039

Language: Russian

Annotation: The paper considers the project of prospective integrated gas purification device for large-sized LRE test stand. The prognostic mathematical models are presented for evaluation of ecological indices of the integrated gas purification equipment.

Key words:

Bibliography:
1. Sokolov E. Y., Zinger N. M. Jet Devices. 3rd edition, revised. М., 1989. 352 p.
2. Abramovich G. N. Applied Gas Dynamics. In 2 parts. Part 1: Study guide for technical universities. 3rd edition, revised and enlarged. М., 1991. 600 p.
3. MODELING OF CHEMICAL AND PHASE EQUILIBRIUMS AT HIGH TEMPERATURES (ACTPA.4 рс). Version1:16. Description of Use. М., 1996. 51 p.
4. Gusev N. G., Belyayev V. A. Radioactive Emissions in Biosphere. М., 1991. 255 p.
5. Noise Control in Industry: Guide / Under the general editorship of E. Y. Yudin. М., 1985. 400 p.
6. Calculation and Measurement of Characteristics of Noise Created in Far Acoustic Field by Jet Aircraft / Under the editorship of L. I. Sorokin. М., 1968. 100 p.
7. GOST 31295.2-2005. Noise. Sound Attenuation at Propagation on Terrain. P. 2. General Calculation Method. 35 p.
Downloads: 28
Abstract views: 
497
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Columbus; Detroit; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman19
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
7.1.2018 Prospective Gas Purification Device for LRE Test Bench
7.1.2018 Prospective Gas Purification Device for LRE Test Bench
7.1.2018 Prospective Gas Purification Device for LRE Test Bench
]]>
2.1.2018 Dehydration of Hydrocarbon Fuels by Method of Over-Saturation Drop https://journal.yuzhnoye.com/content_2018_1-en/annot_2_1_2018-en/ Mon, 04 Sep 2023 12:45:06 +0000 https://journal.yuzhnoye.com/?page_id=30403
Use of Liquid Propellants at Low Temperatures. Calculated Evaluation and Experimental Check of RPC Degassing and Saturation by Helium for Filling Cyclone-4 LV: Technical Note Cyclone-4.
]]>

2. Dehydration of Hydrocarbon Fuels by Method of Over-Saturation Drop

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (1); 6-12

DOI: https://doi.org/10.33136/stma2018.01.006

Language: Russian

Annotation: An alternative method of kerosene dehydration is proposed, which is based on application of cyclic technology of supersaturation decrease using dry nitrogen. A comparison of nitrogen and time specific consumption in dehydration operations is done and recommendations are given for their use in the cosmodromes’ launch complexes fuel storage and preparation facilities.

Key words:

Bibliography:

1. Zrelov V. N., Seryogin E. P. Liquid Rocket Propellants. М., 1975. 320 p.
2. Energy-Intensive Fuels for Aircraft and Rocket Engines / Under the editorship of L. S. Yanovsky. М., 2009. 400 p.
3. Soyuz-2. URL: https://ru.wikipedia.org/wiki/Soyuz-2_(launch vehicle family).
4. Angara. URL: https://ru.wikipedia.org/wiki/Angara_(launch vehicle).
5. Zenit-2. URL: https://ru.wikipedia.org/wiki/Zenit-2_(launch vehicle).
6. Leshchiner L. B., Ul’yanov I. E. Designing of Aircraft Fuel Systems. М., 1975. 344 p.
7. Zenit Space Launch System from the Eyes of its Developers / Under the editorship of e.d. professor V. N. Solov’yov, e.d. professor G. P. Biryukov, N. S. Kozhukhov, N. I. Kursenkova. М., 2003. 213 p.
8. Space Rocketry Ground Infrastructure Technological Facilities: Engineering Manual. Book 1. М., 2005. 416 p.
9. Investigation of Prospective Propellant Preparation Technologies: Scientific-Technical Report 21.18258.173ОТ / Yuzhnoye SDO. 2016. 115 p.
10. Shleifer A. A., Litvinov A. N. Prospective Technologies to Prepare Propellants with Improved Performance Properties. Ul’yanovsk, 1989. 215 p.
11. Englin B. A. Use of Liquid Propellants at Low Temperatures. 3-rd edition revised and enlarged. М., 1980. 207 p.
12. Volkov A. I., Zharsky I. M. Big Chemical Guide. Minsk, 2005. 608 p.
13. Calculated Evaluation and Experimental Check of RPC Degassing and Saturation by Helium for Filling Cyclone-4 LV: Technical Note Cyclone-4. 22.6849.123 СТ / Yuzhnoye SDO. 2005. 29 p.

Downloads: 26
Abstract views: 
636
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Dublin; Detroit; Phoenix; Monroe; Ashburn; Ashburn; Tappahannock; Portland; Des Moines; Boardman; Boardman; Ashburn15
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
2.1.2018 Dehydration of Hydrocarbon Fuels by Method of Over-Saturation Drop
2.1.2018 Dehydration of Hydrocarbon Fuels by Method of Over-Saturation Drop
2.1.2018 Dehydration of Hydrocarbon Fuels by Method of Over-Saturation Drop
]]>
8.2.2017 Analysis Method of Nitrogen Tetroxide Tanks Generating Pressurization Systems https://journal.yuzhnoye.com/content_2017_2/annot_8_2_2017-en/ Tue, 08 Aug 2023 12:49:21 +0000 https://journal.yuzhnoye.com/?page_id=29763
2017 (2); 41-48 Language: Russian Annotation: The paper considers the method of calculation of generative pressurization system for a tank with nitrogen tetroxide in which an attempt is made to model the temperature stratification of gas in the tank throughout the height of the tank.
]]>

8. Analysis Method of Nitrogen Tetroxide Tanks Generating Pressurization Systems

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (2); 41-48

Language: Russian

Annotation: The paper considers the method of calculation of generative pressurization system for a tank with nitrogen tetroxide in which an attempt is made to model the temperature stratification of gas in the tank throughout the height of the tank. The applied physical model takes into account the impact of gas dynamic processes, heat-mass-exchange, and chemical reactions on gas parameters in the tank. The satisfactory convergence of the calculation results with the experimental data is shown.

Key words:

Bibliography:
1. Antonov V. A., Logvinenko A. I., Moseiko V. A. et al. Calculation of Long-Range Missiles Fuel (UDMH) Tanks Pressurization with Hot Gases. Defense Engineering. 1967. No. 10.
2. Belyayev N. M. Launch Vehicle Propellant Tanks Pressurization Systems. М., 1974. 336 p.
3. Test Facilities and Development Testing of Liquid Rocket Engines / А. G. Galeyev, K. P. Denisov, V. I. Ishchenko, V. A. Liseikin, G. G. Saydov, А. Y. Cherkashin. М., 2012. 362 p.
4. Thermal Dynamic and Thermal Physical properties of Combustion Products. Vol. 4 / Under the editorship of V. P. Glushko. М., 1974. 263 p.
5. Thermodynamic and Transfer Properties of Chemically Reacting Gas Systems. Part 1 / Under the editorship of A. K. Krasin, B. V. Nesterenko et al. Minsk, 1967. 206 p.
Downloads: 25
Abstract views: 
259
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Plano; Miami; Dublin; Columbus; Monroe; Ashburn; Ashburn; Boardman; Tappahannock; Des Moines; Boardman; Boardman; Ashburn14
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Dnipro; Dnipro2
Finland Helsinki1
Unknown Hong Kong1
Romania Voluntari1
Netherlands Amsterdam1
8.2.2017 Analysis Method of Nitrogen Tetroxide Tanks Generating Pressurization Systems
8.2.2017 Analysis Method of Nitrogen Tetroxide Tanks Generating Pressurization Systems
8.2.2017 Analysis Method of Nitrogen Tetroxide Tanks Generating Pressurization Systems
]]>