Search Results for “hydrogen” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 13:02:47 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “hydrogen” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 18.1.2020 Development of autonomous power engineering systems with hydrogen energy storage https://journal.yuzhnoye.com/content_2020_1-en/annot_18_1_2020-en/ Wed, 13 Sep 2023 11:57:42 +0000 https://journal.yuzhnoye.com/?page_id=31056
Development of autonomous power engineering systems with hydrogen energy storage Authors: Shevchenko A. The projects using hydrogen technologies aimed at attracting solar energy to the infrastructure of energy technological complexes, in particular water desalination systems and for refueling automobile vehicles located in areas with high solar radiation potential, are considered. As such an element, a buffer system based on a hydrogen energy storage device is proposed. The current level of hydrogen technologies that are implemented in electrochemical plants developed at the Institute of Mechanical Engineering named after A. Podgorny of the National Academy of Sciences of Ukraine allows producing and accumulating the hydrogen under high pressure, which eliminates the use of compressor technology. Key words: alternative energy sources , hydrogen , solar energy , hydrogen generator Bibliography: 1.
]]>

18. Development of autonomous power engineering systems with hydrogen energy storage

Organization:

Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 160-169

DOI: https://doi.org/10.33136/stma2020.01.160

Language: Russian

Annotation: The article analyzes the energy potential of alternative sources of Ukraine. The projects using hydrogen technologies aimed at attracting solar energy to the infrastructure of energy technological complexes, in particular water desalination systems and for refueling automobile vehicles located in areas with high solar radiation potential, are considered. During the operation of water desalination plants using a solar power station as an energy source, contingencies are very likely to arise due to either a power outage (due to cloudy weather) or an emergency failure of individual elements of the system. In this case, it is required to ensure its removal from service without loss of technological capabilities (operability). For this purpose, it is necessary to provide for the inclusion in the technological scheme of the energy technological complex of an additional element that ensures operation of the unit for a given time, determined by the regulations for its operation. As such an element, a buffer system based on a hydrogen energy storage device is proposed. The current level of hydrogen technologies that are implemented in electrochemical plants developed at the Institute of Mechanical Engineering named after A. N. Podgorny of the National Academy of Sciences of Ukraine allows producing and accumulating the hydrogen under high pressure, which eliminates the use of compressor technology.

Key words: alternative energy sources, hydrogen, solar energy, hydrogen generator

Bibliography:
1. Syvolapov V. Potentsial vidnovliuvanykh dzherel enerhii v Ukraini. Agroexpert. 2016. № 12 (101). S. 74–77.
2. Züttel A., Remhof A., Borgschulte A., Friedrichs O. Hydrogen: the future energy carrier. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010. № 368(1923). Р. 3329–3342. https://doi.org/10.1098/rsta.2010.0113
3. Vozobnovliaemaia energetika. URL: https://nv.ua/tags/vozobnovljaemaja-enerhetika.htmt (access date: 27.01.2020).
4. Sherif S. A., Barbir F., Veziroglu T. N. Wind energy and the hydrogen economy-review of the technology. Solar energy. 2005. № 78(5). P. 647–660. https://doi.org/10.1016/j.solener.2005.01.002
5. Schlapbach L. Technology: Hydrogen-fuelled vehicles. Nature. 2009. № 460(7257). P. 809. https://doi.org/10.1038/460809a
6. Shevchenko A. A., Zipunnikov M. М., Kotenko А. L., Vorobiova I. O., Semykin V. M. Study of the Influence of Operating Conditions on High Pressure Electrolyzer Efficiency. Journal of Mechanical Engineering. 2019. Vol. 22, № 4. P. 53–60. https://doi.org/10.15407/pmach2019.04.053
7. Clarke R. E., Giddey S., Ciacchi F. T., Badwal S. P. S., Paul B., Andrews J. Direct coupling of an electrolyser to a solar PV system for generating hydrogen. International Journal of Hydrogen Energy. 2009. № 34(6). P. 2531–2542. https://doi.org/10.1016/j.ijhydene.2009.01.053
8. Kunusch C., Puleston P. F., Mayosky M. A., Riera J. Sliding mode strategy for PEM fuel cells stacks breathing control using a super-twisting algorithm. IEEE Transactions on Control Systems Technology. 2009. № 17(1). P. 167–174. https://doi.org/10.1109/TCST.2008.922504
9. Mazloomi K., Gomes C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sustain. Energy Rev. 2012. № 16. P. 3024–3033. https://doi.org/10.1016/j.rser.2012.02.028
10. Sharma S., Ghoshal S. K. Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev. 2015. № 43. P. 1151–1158. https://doi.org/10.1016/j.rser.2014.11.093
11. Prystrii dlia oderzhannia vodniu vysokoho tysku: pat. 103681 Ukraina: MPK6 S 25V 1/12 / V. V. Solovey, A. A. Shevchenko, A. L. Kotenko, O. О. Makarov (Ukrajina). № 2011 15332; zajavl. 26.12.2011; opubl. 10.07.2013, Biul. № 21. 4 s.
12. Shevchenko А. А. Ispolzovanie ELAELov v avtonomnykh energoustanovkakh, kharakterizuyushchikhsia neravnomernostju energopostupleniia. Aviatsionno-kosmicheskaia tekhnika i technologiia: sb. nauch. tr. 1999. Vyp. 13. S. 111–116.
13. Solovey V. V., Zhirov А. S., Shevchenko А. А. Vliianie rezhimnykh faktorov na effektivnost elektrolizera vysokogo davleniia. Sovershenstvovaniie turboustanovok metodami matematicheskogo i fizicheskogo modelirovaniia: sb. nauch. tr. 2003. S. 250–254.
14. Solovey V., Kozak L., Shevchenko A., Zipunnikov M., Campbell R., Seamon F. Hydrogen technology of energy storage making use of windpower potential. Problemy Mashinostroyeniya. Journal of Mechanical Engineering. 2017. Vol. 20, № 1. P. 62–68. https://doi.org/10.17721/fujcV6I2P73-79
15. Solovey V. V., Kotenko А. L., Vorobiova I. О., Shevchenko A. А., Zipunnikov M. М. Osnovnye printsipy raboty i algoritm upravleniya bezmembrannym elektrolizerom vysokogo davleniia. Problemy mashinostroyeniia. 2018. T. 21, №. 4. S. 57–63. https://doi.org/10.15407/pmach2018.04.057
16. Solovey V., Khiem N. T., Zipunnikov M. M., Shevchenko A. A. Improvement of the Membraneless Electrolysis Technology for Hydrogen and Oxygen Generation. French-Ukrainian Journal of Chemistry. 2018. Vol. 6, № 2. P. 73–79. https://doi.org/10.17721/fujcV6I2P73-79
17. Solovey V., Zipunnikov N., Shevchenko A., Vorobjova I., Kotenko A. Energy Effective Membrane-less Technology for High Pressure Hydrogen Electro-chemical Generation. French-Ukrainian Journal of Chemistry. 2018. Vol. 6, № 1. P.151–156. https://doi.org/10.17721/fujcV6I1P151-156
18. Solovey V. V., Zipunnikov М. М., Shevchenko А. А., Vorobiova І. О., Semykin V. M. Bezmembrannyi henerator vodniu vysokoho tysku. Fundamentalni aspekty vidnovliuvano-vodnevoi enerhetyky i palyvno-komirchanykh technologij / za zahal. red. Yu. М. Solonina. Kyiv, 2018. S. 99–107.
19. Matsevytyi Yu. M., Chorna N. A., Shevchenko A. A. Development of a Perspective Metal Hydride Energy Accumulation System Based on Fuel Cells for Wind Energetics. Journal of Mechanical Engineering. 2019. Vol. 22, № 4. P. 48–52. https://doi.org/10.15407/pmach2019.04.048
20. Phillips R., Edwards A., Rome B., Jones D. R., Dunnill C. W. Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design. Int. J. Hydrogen Energy. 2017. № 42. P. 23986–23994. https://doi.org/10.1016/j.ijhydene.2017.07.184
Downloads: 18
Abstract views: 
753
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Plano; Monroe; Ashburn; Seattle; Ashburn; Boardman; Seattle; Portland; San Mateo; Boardman11
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro1
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
16.1.2020 Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations https://journal.yuzhnoye.com/content_2020_1-en/annot_16_1_2020-en/ Wed, 13 Sep 2023 11:18:27 +0000 https://journal.yuzhnoye.com/?page_id=31052
Ignition Processes in Carbon-Monoxide-Hydrogen-Oxygen Mixtures: Twenty-Second Symposium (International) on Combustion.
]]>

16. Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 149-154

DOI: https://doi.org/10.33136/stma2020.01.149

Language: Russian

Annotation: Launch vehicle lift-off is one of the most critical phases of the whole mission requiring special technical solutions to ensure trouble-free and reliable launch. A source of increased risk is the intense thermal and pressure impact of rocket propulsion jet on launch complex elements and on rocket itself. The most accurate parameters of this impact can be obtained during bench tests, which are necessary to confirm the operability of the structure, as well as to clarify the parameters and configuration of the equipment and systems of complex. However, full-scale testing is expensive and significantly increases the development time of the complex. Therefore, a numerical simulation of processes is quite helpful in the design of launch complexes. The presented work contains simulation of liquid rocket engine combustion products jet flowing into the gas duct at the rocket lift-off, taking into account the following input data: the parameters of propulsion system, geometric parameters of launch complex elements, propulsion systems nozzles and gas duct. A three-dimensional geometric model of the launch complex, including rocket and gasduct, was constructed. The thermodynamic parameters of gas in the engine nozzle were verified using NASA CEA code and ANSYS Fluent. When simulating a multicomponent jet, the equations of conservation of mass, energy, and motion were solved taking into account chemical kinetics. The three-dimensional problem was solved in ANSYS Fluent in steady-state approach, using Pressure-based solver and RANS k-omega SST turbulence model. The calculation results are the gas-dynamic and thermodynamic parameters of jets, as well as distribution of gas-dynamic parameters at nozzle exit, in flow and in boundary layer at gas duct surface. The methodology applied in this work makes it possible to qualitatively evaluate the gas-dynamic effect of combustion products jets on gas duct for subsequent optimization of its design.

Key words: liquid rocket engine, combustion products, multicomponent flow, ANSYS Fluent

Bibliography:
1. Bonnie J. McBride, Sanford Gordon. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. II. Users Manual and Program Descriptions: NASA Reference Publication 1311. 1996.
2. Ten-See Wang. Thermophysics Characterization of Kerosene Combustion. Journal of Thermophysics and Heat Transfer. 2001. № 2, Vol. 15. P. 140–147. https://doi.org/10.2514/2.6602
3. Maas U., Warnatz J. Ignition Processes in Carbon-Monoxide-Hydrogen-Oxygen Mixtures: Twenty-Second Symposium (International) on Combustion. The Combustion Institute, 1988. P. 1695–1704. https://doi.org/10.1016/S0082-0784(89)80182-1
4. Timoshenko V. I. Teoreticheskiie osnovy tekhnicheskoj gazovoj dinamiki. Kiev, 2013. S. 154–155.
Downloads: 14
Abstract views: 
652
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Columbus; Monroe; Ashburn; Portland; Ashburn; Boardman9
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro1
16.1.2020  Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations
16.1.2020  Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations
16.1.2020  Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
7.2.2017 Features of Pneumatic Hydraulic Feeding System with the Use of Oxygen-Methane Cryogenic Propellants https://journal.yuzhnoye.com/content_2017_2/annot_7_2_2017-en/ Tue, 08 Aug 2023 12:43:00 +0000 https://journal.yuzhnoye.com/?page_id=29758
2017 (2); 35-40 Language: Russian Annotation: The paper presents the results of comparative investigation into characteristics of methane, kerosene and hydrogen in pair with oxygen.
]]>

7. Features of Pneumatic Hydraulic Feeding System with the Use of Oxygen-Methane Cryogenic Propellants

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (2); 35-40

Language: Russian

Annotation: The paper presents the results of comparative investigation into characteristics of methane, kerosene and hydrogen in pair with oxygen. The peculiarities of each of these components are shown. The optimal parameters are considered of pneumohydraulic supply system, including the designs of tanks, pressurization system and engine supply lines cooling system.

Key words:

Bibliography:
1. Tamura H., Ono F., Kumakawa A. LOX/Methane Staged Combustion Rocket Investigation. AIAA 87-1856.
2. Crocker A., Perry S. System, Sensitivity Studies of a LOX/Methane Expander Cycle Upper Stage Engine. AIAA 98-3674.
3. Kyoung-Ho Kim, Dae-Sung Ju. Development of “Chase-10” liquid rocket engine having 10tf thrust using LOX & LNG (Methane). AIAA-2006-4907. 2014.
4. Evaluation of Parameters of Liquid Oxygen Circulation in Cryogenic LRPS Colling System: Technical Note 22.8234.123 ST / Yuzhnoye SDO. 2014.
5. Belyayev N. M. Pneumohydraulic Systems. Calculation and Designing. М., 1988. 42 p.
6. Pavlyuk Y. S. Ballistic Designing of Rockets: Tutorial for universities. Chelyabinsk, 1996. 92 p.
Downloads: 18
Abstract views: 
234
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Monroe; Ashburn; Seattle; Ashburn; Boardman; San Mateo; Boardman; Ashburn; Boardman11
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Dnipro; Dnipro2
7.2.2017 Features of Pneumatic Hydraulic Feeding System with the Use of Oxygen-Methane Cryogenic Propellants
7.2.2017 Features of Pneumatic Hydraulic Feeding System with the Use of Oxygen-Methane Cryogenic Propellants
7.2.2017 Features of Pneumatic Hydraulic Feeding System with the Use of Oxygen-Methane Cryogenic Propellants
]]>
24.1.2019 Porous Cast Materials (Gasars). Options of Their Use in Space Rocket Hardware https://journal.yuzhnoye.com/content_2019_1-en/annot_24_1_2019-en/ Wed, 24 May 2023 16:01:02 +0000 https://journal.yuzhnoye.com/?page_id=27729
The basis of the process is gas-eutectic conversion in the system metal-hydrogen. The gasars production technological process consists in melting the specified material (metal, alloy, ceramics) in hydrogen (or other active gas) atmosphere at a certain pressure.
]]>

24. Porous Cast Materials (Gasars). Options of Their Use in Space Rocket Hardware

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 163-170

DOI: https://doi.org/10.33136/stma2019.01.163

Language: Russian

Annotation: Gasars is a new type of porous cast materials manufactured on the basis of metals and their alloys, some types of ceramics. The basis of the process is gas-eutectic conversion in the system metal-hydrogen. The process of investigation and creation of gasars was commenced in 1979 in the National Metallurgical Academy of Ukraine and is currently continued in Ukraine, the USA, China, Japan, South Korea, Poland and others. The gasars production technological process consists in melting the specified material (metal, alloy, ceramics) in hydrogen (or other active gas) atmosphere at a certain pressure. After the melt is saturated with active gas to a certain concentration, the crystallization process begins at which the pore formation process is launched. As the pores growth occurs perpendicular to crystallization front, the orientation of heat withdrawal influences pores location. So, for example, to obtain radial porosity, radial heat withdrawal is required. To obtain various structures, along with directed crystallization process, the pressure in crystallization chamber is an important factor, which drives the gasar morphology. The porous structure of gasars is diverse, there are the gasars with longitudinal, cylindrical, spherical, conical pores. It is possible to alternate the porosity layers and monolithic metal layers. The dimensions of gasars pores are in the limits from 10 μm to 10 mm at total porosity from 7 to 55 (75%). However, there is a possibility to obtain the pores with smaller diameter. The mechanical properties of gasars have a number of advantages as compared with conventional porous materials produced by different methods. Subsequent processing of the gasars does not differ from analogous non-porous materials, which is also an advantage over conventional porous materials. And in case when the diameter of pores is less than 50 μm, the exceedance of mechanical properties of gasars as compared with monolithic materials of the same chemical composition is observed. This is caused by the fact that the pores were formed during crystallization and at the action of pressure on a gasar, local hardening occurs. At present, the gasars have already found application as light and strong structural materials, filters, heat exchangers, dampers, slide bearings, catalyst elements, friction materials, etc. The use of gasars in space hardware will help to considerably reduce the mass of launch vehicle structural elements without worsening strength properties. The possibility of welding and soldering the gasars allows finding their application in the structure of propellant systems, compressed gas and propellants supply systems, creating filtering elements based on the gasars, including propellant spraying and mixing systems.

Key words: gasars, gas-eutectic conversion, eutectics, porosity

Bibliography:
1. Shapovalov V. I. Legirovanie vodorodom. D.: Zhurfond, 2013. 385 p.
2. Shapovalov V. TERMEC 2006 // International Conference on Processing and Manufacturing of Advanced Materials, July 4–8, 2006, Vancouver, Canada. Р. 529.
3. Komissarchuk Olga, Xu Zhengbin, Hao Hai, Zhang Xinglu, Karpov V. Pore structure and mechanical properties of directionally solidified porous aluminum alloys / Research & Development. Vol. 11, No.1, January 2014.
4. Karpov V. V., Karpov V. Yu. Vliyanie poristosti na teploprovodnost’ gazov/ Teoriya I praktica metallurgii. 2003. № 4.
Downloads: 23
Abstract views: 
371
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Columbus; Monroe; Ashburn; Ashburn; Seattle; Portland; San Mateo; Boardman; Ashburn12
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Lithuania Šiauliai1
Ukraine Dnipro1
24.1.2019 Porous Cast Materials (Gasars). Options of Their Use in Space Rocket Hardware
24.1.2019 Porous Cast Materials (Gasars). Options of Their Use in Space Rocket Hardware
24.1.2019 Porous Cast Materials (Gasars). Options of Their Use in Space Rocket Hardware

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
21.1.2016 Selection of Optimal Parameters of Wind Desalting System with Hydrogen Energy Storage Unit https://journal.yuzhnoye.com/content_2016_1/annot_21_1_2016-en/ Tue, 23 May 2023 13:16:28 +0000 https://journal.yuzhnoye.com/?page_id=27643
Selection of Optimal Parameters of Wind Desalting System with Hydrogen Energy Storage Unit Authors: Kalnysh R. 2016 (1); 128-132 Language: Russian Annotation: The technique of selection of optimal parameters of a wind-desalinating complex with hydrogen energy storage system based on a wind speed annual prediction module is considered and the demonstration version of the wind-hydrogen complex is developed that allows to analyze operation of the complex and its separate units in real time. (2016) "Selection of Optimal Parameters of Wind Desalting System with Hydrogen Energy Storage Unit" Космическая техника. "Selection of Optimal Parameters of Wind Desalting System with Hydrogen Energy Storage Unit" Космическая техника. quot;Selection of Optimal Parameters of Wind Desalting System with Hydrogen Energy Storage Unit", Космическая техника. Selection of Optimal Parameters of Wind Desalting System with Hydrogen Energy Storage Unit Автори: Kalnysh R.
]]>

21. Selection of Optimal Parameters of Wind Desalting System with Hydrogen Energy Storage Unit

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2016 (1); 128-132

Language: Russian

Annotation: The technique of selection of optimal parameters of a wind-desalinating complex with hydrogen energy storage system based on a wind speed annual prediction module is considered and the demonstration version of the wind-hydrogen complex is developed that allows to analyze operation of the complex and its separate units in real time.

Key words:

Bibliography:
Downloads: 16
Abstract views: 
154
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Monroe; Seattle; Ashburn; Boardman; Seattle; Portland; San Mateo; Boardman; Ashburn10
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro; Dnipro2
21.1.2016 Selection of Optimal Parameters of Wind Desalting System with Hydrogen Energy Storage Unit
21.1.2016 Selection of Optimal Parameters of Wind Desalting System with Hydrogen Energy Storage Unit
21.1.2016 Selection of Optimal Parameters of Wind Desalting System with Hydrogen Energy Storage Unit
]]>