Search Results for “inert anodes.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 05 Nov 2024 21:10:34 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “inert anodes.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 3.1.2024 Future projects of lunar exploration implemented by Yuzhnoye SDO https://journal.yuzhnoye.com/content_2024_1-en/annot_3_1_2024-en/ Wed, 12 Jun 2024 15:28:59 +0000 https://journal.yuzhnoye.com/?page_id=34965
Based on the analysis of the Lunar Industrial & Research Base conceptual design, such technologies may include rocket propulsion, units and assemblies of liquid-propellant propulsion (TRL 6–9), as well as future designs such as a hydrogen energy accumulator and inert anodes made of ultra-high-temperature ceramics for electrolysis of regolith melts. Key words: rocket propulsion , hydrogen energy accumulator , inert anodes. rocket propulsion , hydrogen energy accumulator , inert anodes.
]]>

3. Future projects of lunar exploration implemented by Yuzhnoye SDO

Page: Kosm. teh. Raket. vooruž. 2024, (1); 19-28

DOI: https://doi.org/10.33136/stma2024.01.019

Language: English

Annotation: Over the past years, the leading space powers have been returning to the idea of expeditions to the Moon and actively designing and manufacturing components for inhabited lunar bases. Yuzhnoye State Design Office has its own concept of a lunar base and, of course, cannot stand aside from the solution of scientific and technical problems related to the Moon exploration. Specialists of Yuzhnoye SDO completed conceptual development of a significant range of technologies required for the Moon exploration: a space transportation system for lunar expeditions; landers to deliver payloads to the surface of the Moon and transport experimental equipment; mobile laboratories; a reconnaissance rover to provide reconnaissance missions on the surface of the Moon; vehicles to provide lifting and transport, assembly and construction, production and technological and soil extraction work on the surface of the Moon; habitat units and other elements of the lunar infrastructure. Taking into account the high costs of lunar exploration, it is clear that international cooperation is the most realistic scenario for Yuzhnoye SDO to participate in the exploration. The U.S. lunar program is the most attractive. Private companies that NASA selects for the lunar programs can become partners of Yuzhnoye. With a view to ensuring the participation of Yuzhnoye SDO in international programs, the current state of global technologies for the Moon exploration was analyzed and opportunities to promote technologies developed by Ukrainian specialists on the international market of space technologies were identified based on the analysis. Taking into account the high level of technologies developed by the potential partners, it is proposed for the first time to consider it advisable to promote Yuzhnoye’s technologies with TRL 6–9 which have already been successfully tested and the innovative technologies developed by the company which have no analogues in the world or surpass the world level in terms of their technological and economic performance. Based on the analysis of the Lunar Industrial & Research Base conceptual design, such technologies may include rocket propulsion, units and assemblies of liquid-propellant propulsion (TRL 6–9), as well as future designs such as a hydrogen energy accumulator and inert anodes made of ultra-high-temperature ceramics for electrolysis of regolith melts.

Key words: rocket propulsion, hydrogen energy accumulator, inert anodes.

Bibliography:
1. Rosiya vtratyla “Lunu-25”, India uspishno zavershyla misiu. Chomu krainy ponovyly gonku za resursy Misyatsa? 23 serpnya 2023. https://www.epravda.com.ua/publications/2023/08/23/703510 (Russia lost Luna-25, India successfully completed the mission. Why have countries renewed the race for lunar resources? August 23, 2023. In Ukrainian)
2. Creech S, Guidi J, Elburn D. Artemis: An overview of NASA’s activities to return humans to the Moon. Paper presented at: 2022 IEEE Aerospace Conference (AERO); 2022 Mar 05-12; Big Sky, Montana.
https://doi.org/10.1109/AERO53065.2022.9843277
3. In-Situ Resource Utilization (ISRU) Demonstration Mission, 2019. https://exploration.esa.int/web/moon/-/60127-in-situ-resource-utilisation-demonstration-mission.
4. Peng Zhang, Wei Dai, Ran Niu, Guang Zhang, +12 authors. Overview of the Lunar In Situ Resource Utilization Techniques for Future Lunar Missions. Journal Space: Science & Technology. 2023, Vol. 3, Р. 1-18. Article ID: 0037. DOI: 10.34133/space.0037
https://doi.org/10.34133/space.0037
5. Lin XU, Hui LI, Pei Z, Zou Y, Wang C. A brief introduction to the International Lunar Research Station Program and the Interstellar Express Mission. Chinese J Space Sci. 2022;42(4):511-513.
https://doi.org/10.11728/cjss2022.04.yg28
6. Li C, Wang C, Wei Y, Lin Y. China’s present and future lunar exploration program. Science. 2019;365(6450):238-239.
https://doi.org/10.1126/science.aax9908
7. Ukrinform, 09 sichnya 2024, https://www.ukrinform.ua/rubric-technology/3804665-aponskij-zond-uvijsov-do-orbiti-misaca-pered-posadkou.html (Ukrinform, January 9, 2024. In Ukrainian).
8. Nimechina priednalasya do programmy vyvchennya Misyatsa Artemis, 15.09.2023, https://www.dw.com/uk/nimeccina-priednalas-do-programi-vivcenna-misaca-artemis/a-66826693 (Germany joined the Artemis moon exploration program, September 15, 2023. In Ukrainian).
9. Grigoriev O. N., Frolov G. A., Evdokimenko Yu. I., Kisel’ V. M., Panasyuk A. D., Melakh L. M., Kotenko V. A., Koroteev A. V. Ultravysokotemperaturnaya keramika dlya aviatsionno-kosmicheskoy techniki, Aviatsionno-kosmicheskaya technika i technologiya, 2012, No 8 (95), st.119-128 (O.N. Grigoriev, G.A. Frolov, Yu.I. Evdokimenko, V.M. Kisel, A.D. Panasyuk, L.M. Melakh, V.A. Kotenko, A.V. Koroteev. Ultra-high-temperature ceramics for aerospace engineering, Aerospace engineering and technology, 2012, No. 8 (95), Р. 119-128. In Russian).
10. Grigoriev O. N. et al. Oxidation of ZrB2-SiC-ZrSi2 ceramics in oxygen. Journal of the European Ceramic Society 30 (2010). 2397-2405.
https://doi.org/10.1016/j.jeurceramsoc.2010.03.016
Downloads: 19
Abstract views: 
619
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Buffalo; Buffalo; Los Angeles; Columbus; Buffalo; Ashburn; Portland; San Mateo; Ashburn; Philadelphia10
Germany Falkenstein; Düsseldorf; Falkenstein3
France1
Unknown1
China Shenzhen1
Canada Toronto1
Ukraine Kremenchuk1
Belgium1
3.1.2024 Future projects of lunar exploration implemented by Yuzhnoye SDO
3.1.2024 Future projects of lunar exploration implemented by Yuzhnoye SDO
3.1.2024 Future projects of lunar exploration implemented by Yuzhnoye SDO

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>