Search Results for “integrated launch vehicle” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 05 Nov 2024 20:59:24 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “integrated launch vehicle” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 9.1.2024 General-purpose thermostatting module – new approach in development of up-to-date thermostating systems for rocket and space complexes https://journal.yuzhnoye.com/content_2024_1-en/annot_9_1_2024-en/ Mon, 17 Jun 2024 08:48:18 +0000 https://journal.yuzhnoye.com/?page_id=35030
Rocket and space complexes feature the thermostatting system, which ensures the required humidity and temperature conditions in the integrated launch vehicles throughout all the phases of their pre-launch processing.
]]>

9. General-purpose thermostating module – new approach in development of up-to-date thermostating systems for rocket and space complexes

Page: Kosm. teh. Raket. vooruž. 2024, (1); 78-84

DOI: https://doi.org/10.33136/stma2024.01.078

Language: Ukrainian

Annotation: These days when creating any rocket space complex, it is important to ensure its advancement and competitive ability. To create such complex, the technical systems it consists of must be implemented with minimal economic and energy costs. Rocket and space complexes feature the thermostatting system, which ensures the required humidity and temperature conditions in the integrated launch vehicles throughout all the phases of their pre-launch processing. Development of the competitive rocket and space complex also requires the new approach in the development of the thermostatting system. One of the main tasks is to create a system that can be mass-produced and used as part of any rocket and space complex. Solving this problem will significantly reduce the cost of creating and operating the thermostatting systems and the whole rocket and space complex. One of the ways to solve this task is to create a general-purpose thermostatting system. The modular principle for such thermostatting system would be optimal, which means making up a system from separate modules. It simplifies the all-round installation of various system options and simplifies its setup and operation. The paper demonstrates the possibility and prospects of creating modular thermostatting systems, which enable air supply with the required parameters to different consumers. Characteristics and design of the general-purpose thermostatting module are specified, which can be used as the main component without changing anything in the composition of stationary and mobile thermostatting systems.

Key words: rocket and space complex, launch vehicle, technological systems of the ground complex, thermostatting systems, open type system, versatility, modular design.

Bibliography:
  1. . Tsiklon-4M. URL: https://www. yuzhnoye.com.
  2. . KRK «Tsiklon-4M». C4M YZH SPS 090 02 Technicheskoe zadanie na sostavnuyu chast’ OKR «Sistema termostatirovaniya rakety-nositelya i golovnogo bloka» GP «KB «Yuzhnoye». 78 s.
  3. . KRK «Tsiklon-4M». C4M YZH SPS 119 02 Technicheskoe zadanie na sostavnuyu chast OKR «Transportnaya systema termostatirovaniya» GP «KB «Yuzhnoye». 2018. 40 s.
Downloads: 16
Abstract views: 
763
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Buffalo; Buffalo; Buffalo; Chicago; Saint Louis; New York City; Buffalo; Columbus; Portland9
Germany Falkenstein; Limburg an der Lahn; Falkenstein3
France1
Unknown1
China Shenzhen1
Ukraine Kremenchuk1
9.1.2024 General-purpose thermostatting module – new approach in development of up-to-date thermostating systems for rocket and space complexes
9.1.2024 General-purpose thermostatting module – new approach in development of up-to-date thermostating systems for rocket and space complexes
9.1.2024 General-purpose thermostatting module – new approach in development of up-to-date thermostating systems for rocket and space complexes

Keywords cloud

]]>
5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight https://journal.yuzhnoye.com/content_2024_1-en/annot_5_1_2024-en/ Thu, 13 Jun 2024 06:00:42 +0000 https://journal.yuzhnoye.com/?page_id=34981
2024, (1); 40-50 DOI: https://doi.org/10.33136/stma2024.01.040 Language: English Annotation: Despite stringent environmental requirements, modern launch vehicles/integrated launch vehicles (LV/ILV) burn toxic propellants such as NTO and UDMH.
]]>

5. Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight

Page: Kosm. teh. Raket. vooruž. 2024, (1); 40-50

DOI: https://doi.org/10.33136/stma2024.01.040

Language: English

Annotation: Despite stringent environmental requirements, modern launch vehicles/integrated launch vehicles (LV/ILV) burn toxic propellants such as NTO and UDMH. Typically, such propellants are used in the LV/ILV upper stages, where a small amount of propellant is contained; however, some LV/ILV still use such fuel in all sustainer propulsion stages. For launch vehicles containing toxic rocket propellants, flight accidents may result in the failed launch vehicle falling to the Earth’s surface, forming large zones of chemical damage to people (the zones may exceed blast and fire zones). This is typical for accidents occurring in the first stage flight segment, when an intact launch vehicle or its components (usually individual stages) with rocket propellants will reach the Earth’s surface. An explosion and fire following such an impact will most likely lead to a massive release of toxicant and contamination of the surface air. An accident during the flight segment of the LV/ILV first stage with toxic rocket propellants, equipped with a flight termination system that implements emergency engine shutdown in case of detection of an emergency situation, has been considered. To assess the risk of toxic damage to a person located at a certain point, it is necessary to mathematically describe the zone within which a potential impact of the failed LV/ILV will entail toxic damage to the person (the so-called zone of dangerous impact of the failed LV/ILV). The complexity of this lies in the need to take into account the characteristics of the atmosphere, primarily the wind. Using the zone of toxic damage to people during the fall of the failed launch vehicle, which is proposed to be represented by a combination of two figures: a semicircle and a half-ellipse, the corresponding zone of dangerous impact of the failed LV/ILV is constructed. Taking into account the difficulties of writing the analytical expressions for these figures during the transition to the launch coordinate system and further integration when identifying the risk, in practical calculations we propose to approximate the zone of dangerous impact of the failed LV/ILV using a polygon. This allows using a known procedure to identify risks. A generalization of the developed model for identifying the risk of toxic damage to people involves taking into account various types of critical failures that can lead to the fall of the failed LV/ILV, and blocking emergency engine shutdown during the initial flight phase. A zone dangerous for people was constructed using the proposed model for the case of the failure of the Dnepr launch vehicle, where the risks of toxic damage exceed the permissible level (10–6). The resulting danger zone significantly exceeds the danger zone caused by the damaging effect of the blast wave. Directions for further improvement of the model are shown, related to taking into account the real distribution of the toxicant in the atmosphere and a person’s exposure to a certain toxic dose.

Key words: launch vehicle, critical failure, flight accident, zone of toxic damage to people, zone of dangerous impact of the failed launch vehicle, risk of toxic damage to people.

Bibliography:
  1. Hladkiy E. H. Protsedura otsenky poletnoy bezopasnosti raket-nositeley, ispolzuyuschaya geometricheskoe predstavlenie zony porazheniya obiekta v vide mnogougolnika. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2015. Vyp. 3. S. 50 – 56. [Hladkyi E. Procedure for evaluation of flight safety of launch vehicles, which uses geometric representation of object lesion zone in the form of a polygon. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2015. Issue 3. Р. 50 – 56. (in Russian)].
  2. Hladkiy E. H., Perlik V. I. Vybor interval vremeni blokirovki avariynogo vyklucheniya dvigatelya na nachalnom uchastke poleta pervoy stupeni. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-tech. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2011. Vyp. 2. s. 266 – 280. [Hladkyi E., Perlik V. Selection of time interval for blocking of emergency engine cut off in the initial flight leg of first stage. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2011. Issue 2. Р. 266 – 280. (in Russian)].
  3. Hladkiy E. H., Perlik V. I. Matematicheskie modeli otsenki riska dlya nazemnykh obiektov pri puskakh raket-nositeley. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2010. Vyp. 2. S. 3 – 19. [Hladkyi E., Perlik V. Mathematic models for evaluation of risk for ground objects during launches of launch-vehicles. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2010. Issue 2. P. 3 – 19. (in Russian)].
  4. NPAOP 0.00-1.66-13. Pravila bezpeki pid chas povodzhennya z vybukhovymy materialamy promyslovogo pryznachennya. Nabrav chynnosti 13.08.2013. 184 s [Safety rules for handling explosive substances for industrial purposes. Consummated 13.08.2013. 184 p.
    (in Ukranian)].
  5. AFSCPMAN 91-710 RangeSafetyUserRequirements. Vol. 1. 2016 [Internet resource]. Link : http://static.e-publishing.af.mil/production/1/afspc/publicating/
    afspcman91-710v1/afspcman91-710. V. 1. pdf.
  6. 14 CFR. Chapter III. Commercial space transportation, Federal aviation administration, Department of transportation, Subchapter C – Licensing, part 417 – Launch Safety, 2023 [Internet resource]. Link: http://law.cornell.edu/cfr/text/14/part-417.
  7. 14 CFR. Chapter III. Commercial space transportation, Federal aviation administration, Department of transportation, Subchapter C – Licensing, part 420 License to Operate a Launch Site. 2022 [Internet resource]. Link: http://law.cornell.edu/cfr/text/14/part-420.
  8. ISO 14620-1:2018 Space systems – Safety requirements. Part 1: System safety.
  9. 9 GOST 12.1.005-88. Systema standartov bezopasnosti truda. Obschie sanitarno-gigienicheskie trebovaniya k vozdukhu rabochei zony. [GOST 12.1.005-88. Labor safety standards system. General sanitary and hygienic requirements to air of working zone].
  10. 10 Rukovodyaschiy material po likvidatsii avarijnykh bolshykh prolivov okislitelya АТ (АК) i goruchego NDMG. L.:GIPKh, 1981, 172 s. [Guidelines on elimination of large spillages of oxidizer NTO and fuel UDMH. L.:GIPH, 1981, 172 p. (in Russian)].
  11. 11 Kolichestvennaya otsenka riska chimicheskykh avariy. Kolodkin V. M., Murin A. V., Petrov A. K., Gorskiy V. G. Pod red. Kolodkina V. M. Izhevsk: Izdatelskiy dom «Udmurtskiy universitet», 2001. 228 s. [Quantitative risk assessment of accident at chemical plant. Kolodkin V., Murin A., Petrov A., Gorskiy V. Edited by Kolodkin V. Izhevsk: Udmurtsk’s University. Publish house, 2001. 228 p. (in Russian)].
Downloads: 32
Abstract views: 
884
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Buffalo; Buffalo; Las Vegas; Chicago; Chicago; Saint Louis; Saint Louis; New York City; Buffalo; Buffalo; Buffalo; Buffalo; Los Angeles; Chicago; Dallas; New Haven; New Haven; Buffalo; Phoenix; Chicago; San Francisco; Los Angeles; San Francisco; Portland24
Germany Falkenstein; Falkenstein2
France1
Unknown1
China Shenzhen1
Romania1
Singapore Singapore1
Ukraine Kremenchuk1
5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight
5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight
5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight

Keywords cloud

]]>
2.1.2024 New and advanced liquid rocket engines of the Yuzhnoye SDO https://journal.yuzhnoye.com/content_2024_1-en/annot_2_1_2024-en/ Wed, 12 Jun 2024 15:04:41 +0000 https://journal.yuzhnoye.com/?page_id=34964
2024, (1); 9-18 DOI: https://doi.org/10.33136/stma2024.01.009 Language: Ukrainian Annotation: Specialized design office for liquid engines was established on July 22, 1958 to develop engines and propulsion systems, powered by liquid propellants to be installed on the combat missile systems and integrated launch vehicles (LV), developed by Yuzhnoye SDO.
]]>

2. New and advanced liquid rocket engines of the Yuzhnoye SDO

Page: Kosm. teh. Raket. vooruž. 2024, (1); 9-18

DOI: https://doi.org/10.33136/stma2024.01.009

Language: Ukrainian

Annotation: Specialized design office for liquid engines was established on July 22, 1958 to develop engines and propulsion systems, powered by liquid propellants to be installed on the combat missile systems and integrated launch vehicles (LV), developed by Yuzhnoye SDO. Moreover, liquid engines design office was assigned with manufacturing and testing of the main rocket engines, developed by NPO Energomash and to be installed on Yuzhnoye-developed launch vehicles. Over the past 66 years Yuzhnoye SDO has developed more than 40 liquid rocket engines (LRE) of various purpose, designed both to gas-generator cycle and to staged combustion cycle. Seventeen of them were commercially produced by Yuzhmash PA and installed on launch vehicles. Nowadays Yuzhnoye propulsion experts keep working on development of the advanced liquid rocket engines powered both by cryogenic and hypergolic propellants, which satisfy the majority of launch service market demands. Within the framework of extensive cooperation with foreign space companies, on a contract basis, Yuzhnoye propulsion experts are working on the design and development testing of the liquid rocket engines, as well as their components. The accumulated vast experience in the development of liquid rocket engines nowadays enables high scientific and technical level in the creation of up-to-date engines, demanded in the world market. Significant steps in this area have been made by the experts from the Yuzhnoye propulsion division and then subsequent manufacture and delivery by Yuzhmash PA of the engine intended for the European rocket Vega Stage 4; and designing the individual components for the engines with thrusts ranging from 500 kgf to 200 tf ordered by foreign customers. This article provides the review of current and scheduled activities of the Yuzhnoye SDO to develop the liquid rocket engines within the thrust ranges from ~ 40 kgf to ~ 500 tf.

Key words: LOX-kerosene liquid rocket engines, hypergolic propellant liquid rocket engines, staged combustion cycle, main rocket engine, thrust, specific thrust impulse.

Bibliography:
  1. Zhidkostnye raketnye dvigateli, dvigatelnye ustanovki, bortovye istochniki moschnosti, razrabotannye KB dvigatelnykh ustanovok GP«KB «Yuzhnoye». Za nauk. red. akad. NAN Ukrainy S.M. Konyukhova, kand. tekhn. nauk V.M. Shnyakina. Dnipropetrovsk: DP «KB «Pivdenne», 2008. 466 ark.
  2. Prokopchyuk O. O., Shulga V. A., Khromyuk D. S., Sintyuk V. O. Zhidkostnye raketnye dvigateli GP«KB «Yuzhnoye»: nauk.-tekhn. zbirnyk. Za nauk. red. akademika NAN Ukrainy
    O. V. Degtyareva. Dnipro: ART-PRES, 2019. 440 ark.
Downloads: 21
Abstract views: 
857
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Buffalo; Buffalo; Chicago; Chicago; Chicago; Saint Louis; Saint Louis; Chicago; Dallas; Los Angeles; Los Angeles; Ashburn; Los Angeles; San Francisco; Portland15
Germany Falkenstein; Falkenstein2
France1
China Shenzhen1
Hungary Budapest1
Ukraine Kremenchuk1
2.1.2024 New and advanced liquid rocket engines of  the Yuzhnoye SDO
2.1.2024 New and advanced liquid rocket engines of  the Yuzhnoye SDO
2.1.2024 New and advanced liquid rocket engines of  the Yuzhnoye SDO

Keywords cloud

]]>
13.1.2020 Mathematical models of hydraulic servomechanisms of space technology https://journal.yuzhnoye.com/content_2020_1-en/annot_13_1_2020-en/ Wed, 13 Sep 2023 10:58:26 +0000 https://journal.yuzhnoye.com/?page_id=31045
...hydraulic actuator, selecting optimal characteristics of slides based on specified degree of stability and response of servo actuator and conducting final modeling of rocket flight on the integrated control system test benches without using real actuators and loading stands. Using this mathematical model, the powerful actuators of a line of intercontinental ballistic missiles with swinging reentry vehicle and the main engines actuators of Zenit launch vehicle first stage were developed.
]]>

13. Mathematical models of hydraulic servomechanisms of space technologynt

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 121-132

DOI: https://doi.org/10.33136/stma2020.01.121

Language: Russian

Annotation: Being a final executive element of rocket control systems, a hydraulic actuator is at the same time the main source of various non-linear dependencies in rocket dynamic design whose availability dramatically com plicates theoretical analysis of their dynamics and control systems synthesis. The required accuracy and complexity of mathematical models of hydraulic servo mechanisms are different for different design phases of guided rockets. The paper deals with the simplest models of hydraulic servo actuators intended to calculate rocket controllability and to define requirements to response and power characteristics of the actuators. To calculate the rocket stability regions and to evaluate own stability of servo actuators, a linearized mathematical model of hydraulic servo actuator is used that takes into account the most important parameters having impact on stability of the servo actuator itself and on that of the rocket: hardness of working fluid, stiffness of elastic suspension of the actuator and control element, slope of mechanical characteristic of the actuator in the area of small control signals, which, as full mathematical model analysis showed, is conditioned only by dimensions of initial axial clearances of slide’s throats. The full mathematical model constructed based on accurate calculations of the balance of fluid flow rate through the slide’s throats allows, as early as at designing phase, determining the values of most important static and dynamic characteristics of a future hydraulic actuator, selecting optimal characteristics of slides based on specified degree of stability and response of servo actuator and conducting final modeling of rocket flight on the integrated control system test benches without using real actuators and loading stands. It is correct and universal for all phases of rockets and their control systems designing and testing. Using this mathematical model, the powerful actuators of a line of intercontinental ballistic missiles with swinging reentry vehicle and the main engines actuators of Zenit launch vehicle first stage were developed. The results of their testing separately and in rockets practically fully comply with the data of theoretical calculations.

Key words: mathematical model, hydraulic actuator, servo actuator, stability, damping, slide

Bibliography:
1. Dinamika gidroprivoda / pod red. V. N. Prokofieva. М., 1972. 292 s.
2. Gamynin N. S. Gidravlicheskii privod system upravleniia. М., 1972. 376 s.
3. Chuprakov Yu. I. Gidroprivod i sredstva gidroavtomatiki. М., 1979. 232 s.
4. Kozak L. R. Geometriia zolotnika i dinamicheskie kharakteristiki gidroprivoda // Visnyk Dnipropetrovskoho universytetu. Vyp. 13, Tom 1. 2009.
Downloads: 32
Abstract views: 
777
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Matawan; Baltimore; Plano; Columbus; Detroit; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn21
Singapore Singapore; Singapore; Singapore; Singapore4
Finland Helsinki1
Unknown1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
13.1.2020  Mathematical models of hydraulic servomechanisms of space technology
13.1.2020  Mathematical models of hydraulic servomechanisms of space technology
13.1.2020  Mathematical models of hydraulic servomechanisms of space technology

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
9.1.2020 Experimental investigation of a liner-free propellant tank made from polymer composite materials https://journal.yuzhnoye.com/content_2020_1-en/annot_9_1_2020-en/ Wed, 13 Sep 2023 10:43:08 +0000 https://journal.yuzhnoye.com/?page_id=31035
The materials used and propellant tank manufacturing technologies ensure leak-tightness of load-bearing shell at liquid nitrogen operating pressure of 7.5 kgf/cm2 and strength at excess pressure of 15 kgf/cm2 and allow conducting approbation of prospective stage of the integrated launch vehicle.
]]>

9. Experimental investigation of a liner-free propellant tank made from polymer composite materials

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 90-98

DOI: https://doi.org/10.33136/stma2020.01.090

Language: Russian

Annotation: The exploratory and experimental investigations were conducted into design of propellant tank made of composite polymer materials for work in cryogenic environment at operating pressure of 7.5 kgf/cm2 . When determining the configuration of a liner-free composite propellant tank, the main requirement was ensuring its leak-tightness at internal excess pressure and cryogenic temperature effect. The world experience of creating similar designs was analyzed and the requirements were defined imposed on configuration of propellant tank load-bearing shells. Before defining the final configuration, the types of materials, reinforcing patterns, and possible ways to ensure leak-tightness were analyzed, and preliminary tests were conducted of physical and mechanical characteristics of thin-wall samples of composite materials and tubular structures with different reinforcing patterns. The tests of carbon plastic samples were conducted at different curing modes to determine the most effective one from the viewpoint of strength characteristics and the tests for permeability by method of mouthpiece were conducted. The tests of pilot propellant tank showed that the calculated values of deformations and displacements differ from the experimental values by no more than 10 %. Using the parameters measurement results from the tests on liquid nitrogen, the empirical formulas were obtained to calculate linear thermal expansion coefficient of the package of materials of load -bearing shell. The empirical dependences were constructed of relative ring deformations at load-bearing shell middle section on pressure and temperature. The tests confirmed correctness of adopted solutions to ensure strength and leak-tightness of propellant tank load-bearing shell at combined effect on internal excess pressure and cryogenic temperature, particularly at cyclic loading. The materials used and propellant tank manufacturing technologies ensure leak-tightness of load-bearing shell at liquid nitrogen operating pressure of 7.5 kgf/cm2 and strength at excess pressure of 15 kgf/cm2 and allow conducting approbation of prospective stage of the integrated launch vehicle.

Key words: load-bearing shell, permeability, cryogenic propellant, relative deformations, linear thermal expansion coefficient

Bibliography:
1. Frantsevich I. М., Karpinos D. М. Kompozitsionnye materialy voloknistogo stroeniia. K., 1970.
2. TSM YZH ANL 009 00. Composite fuel tank for ILV, Dnipro, Yuzhnoye SDO, 2019.
3. Zheng H., Zeng X., Zhang J., Sun H. The application of carbon fiber composites in cryotank. Solidification. 2018. https://doi.org/10.5772/intechopen.73127
Downloads: 41
Abstract views: 
1829
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Los Angeles; North Bergen; Dublin; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman23
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Unknown;2
Germany; Falkenstein2
Ukraine Dnipro; Odessa2
Finland Helsinki1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
9.1.2020  Experimental investigation of a liner-free propellant tank made from polymer composite materials
9.1.2020  Experimental investigation of a liner-free propellant tank made from polymer composite materials
9.1.2020  Experimental investigation of a liner-free propellant tank made from polymer composite materials

Keywords cloud

]]>
12.2.2017 Determination Procedure for Pneudraulic System and Its Components No-Failure Operation Probability https://journal.yuzhnoye.com/content_2017_2/annot_12_2_2017-en/ Wed, 09 Aug 2023 11:32:23 +0000 https://journal.yuzhnoye.com/?page_id=29785
2017 (2); 60-64 Language: Russian Annotation: The calculation procedure is proposed, the analysis is made and the ranges of optimal probability values of no-failure operation of pneumohydraulic propellant supply system and its elements are determined based on general requirements to integrated launch vehicle.
]]>

12. Determination Procedure for Pneudraulic System and Its Components No-Failure Operation Probability

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (2); 60-64

Language: Russian

Annotation: The calculation procedure is proposed, the analysis is made and the ranges of optimal probability values of no-failure operation of pneumohydraulic propellant supply system and its elements are determined based on general requirements to integrated launch vehicle.

Key words:

Bibliography:
1. Berlow R., Proshan F. Statistic Reliability Theory and Dependability Tests / Translation from English. М., 1984. 328 p.
2. Lloyd D., Lipov M. Reliability. Organization of Investigation, Methods, Mathematical Apparatus / Translation from English; Under the editorship of Buslenko N. P. М.,1964. 686 p.
3. Ensuring Reliability of Prospective Injection Means. URL: http://www. sciential.ru/technology/kosmos/199.html.
4. Yuzhnoye SDO Rockets and Spacecraft / Under general editorship of S. N. Konyukhov. Dnepropetrovsk, 2000. 236 p.
5. Degtyarev A. V. et al. System Approach to Development of Modular Launch Vehicle Family / A. V. Degtyarev, А. E. Kahanov, N. G. Litvin, V. A. Shulga. DNU News (Series RKT; Issue 15). Vol. 1. 2012.
6. Reliability Analysis of Taurus-II LV Stage One Core Structure Pneumohydraulic Propellants Supply System: Technical Report / Taurus-II. 21.18231.123 ОТ. Yuzhnoye SDO, 2016. 35 p.
Downloads: 44
Abstract views: 
522
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Columbus; Matawan; Baltimore;; Detroit; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; Columbus; Des Moines; Boardman; Boardman; Ashburn22
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore11
Ukraine Dnipro; Dnipro2
Belgium Brussels1
Cambodia Phnom Penh1
Finland Helsinki1
Great Britain London1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Unknown1
12.2.2017 Determination Procedure for Pneudraulic System and Its Components No-Failure Operation Probability
12.2.2017 Determination Procedure for Pneudraulic System and Its Components No-Failure Operation Probability
12.2.2017 Determination Procedure for Pneudraulic System and Its Components No-Failure Operation Probability
]]>
5.2.2017 Structural Perfection of Cyclone-4 Integrated Launch Vehicle https://journal.yuzhnoye.com/content_2017_2/annot_5_2_2017-en/ Tue, 08 Aug 2023 12:36:28 +0000 https://journal.yuzhnoye.com/?page_id=29750
Structural Perfection of Cyclone-4 Integrated Launch Vehicle Authors: Zhuk N. 2017 (2); 25-28 Language: Russian Annotation: The comparison of Integrated Launch Vehicles structural perfection coefficients shows that Yuzhnoyedeveloped Cyclone-4 launch vehicle has structural perfection at the best world rocket model level Key words: Bibliography: 1. (2017) "Structural Perfection of Cyclone-4 Integrated Launch Vehicle" Космическая техника. "Structural Perfection of Cyclone-4 Integrated Launch Vehicle" Космическая техника. quot;Structural Perfection of Cyclone-4 Integrated Launch Vehicle", Космическая техника. Structural Perfection of Cyclone-4 Integrated Launch Vehicle Автори: Zhuk N. Structural Perfection of Cyclone-4 Integrated Launch Vehicle Автори: Zhuk N. Structural Perfection of Cyclone-4 Integrated Launch Vehicle Автори: Zhuk N. Structural Perfection of Cyclone-4 Integrated Launch Vehicle Автори: Zhuk N.
]]>

5. Structural Perfection of Cyclone-4 Integrated Launch Vehicle

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (2); 25-28

Language: Russian

Annotation: The comparison of Integrated Launch Vehicles structural perfection coefficients shows that Yuzhnoyedeveloped Cyclone-4 launch vehicle has structural perfection at the best world rocket model level

Key words:

Bibliography:
1. Fundamentals of Spacecraft Launch Vehicles Designing / Under the editorship of V. P. Mishin. М., 1991. 415 p.
2. Kobelev V. N., Milovanov A. G. Launch vehicles: Tutorial. М., 1993. 185 p.
3. Umansky S. P. Launch Vehicles. Launch Sites. М., 2001. 216 p.
4. Kobelev V. N., Milovanov A. G. Spacecraft Injection Means. М., 2009. 528 p.
Downloads: 34
Abstract views: 
343
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Plano; Monroe; Ashburn; Seattle; Seattle; Ashburn; Boardman; Ashburn; Tappahannock; San Mateo; Des Moines; Boardman; Boardman; Ashburn16
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Unknown Canberra;2
Finland Helsinki1
Great Britain London1
France1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
5.2.2017 Structural Perfection of Cyclone-4 Integrated Launch Vehicle
5.2.2017 Structural Perfection of Cyclone-4 Integrated Launch Vehicle
5.2.2017 Structural Perfection of Cyclone-4 Integrated Launch Vehicle
]]>
16.1.2017 Principal Directions for Creation of Integrated Launch Vehicle Autonomous Onboard Flight Safety System https://journal.yuzhnoye.com/content_2017_1/annot_16_1_2017-en/ Wed, 28 Jun 2023 12:02:33 +0000 https://journal.yuzhnoye.com/?page_id=29514
Principal Directions for Creation of Integrated Launch Vehicle Autonomous Onboard Flight Safety System Authors: Deno О. (2017) "Principal Directions for Creation of Integrated Launch Vehicle Autonomous Onboard Flight Safety System" Космическая техника. "Principal Directions for Creation of Integrated Launch Vehicle Autonomous Onboard Flight Safety System" Космическая техника. quot;Principal Directions for Creation of Integrated Launch Vehicle Autonomous Onboard Flight Safety System", Космическая техника. Principal Directions for Creation of Integrated Launch Vehicle Autonomous Onboard Flight Safety System Автори: Deno О. Principal Directions for Creation of Integrated Launch Vehicle Autonomous Onboard Flight Safety System Автори: Deno О. Principal Directions for Creation of Integrated Launch Vehicle Autonomous Onboard Flight Safety System Автори: Deno О. Principal Directions for Creation of Integrated Launch Vehicle Autonomous Onboard Flight Safety System Автори: Deno О.
]]>

16. Principal Directions for Creation of Integrated Launch Vehicle Autonomous Onboard Flight Safety System

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (1); 100-106

Language: Russian

Annotation: The basic principles of building the flight safety systems for the space launch vehicles operated at present, the structure of autonomous onboard flight safety system that meets the requirements of the international regulatory documents in the field of space launch vehicle flight safety assurance, the feasibility of building the space launch vehicle autonomous onboard flight safety system developed in Ukraine are considered and the main directions of system’s components creation are defined.

Key words:

Bibliography:
1. Convention on International Responsibility for Damage Caused by Space Objects. Adopted by Resolution 2777 (XXVI) of the UN General Assembly of 29.11.1971.
2. Ideology of Constructing Autonomous Flight Safety System: Technical Report / Yuzhnoye SDO. Dnipropetrovsk, 2015. 91 p.
3. Safety Requirements of Western and Eastern Ranges: Maintenance Work Request 127-1. Т. 1. 1997. P. 1-24.
3. Bull James B., Lanzi Raymond J. An Autonomous Flight Safety System. 2016. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080044860.pdf.
Downloads: 39
Abstract views: 
972
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Boydton; Miami; Miami; Columbus; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Boardman; Seattle;; San Mateo; San Mateo; Columbus; Des Moines; Boardman; Boardman; Ashburn; Boardman; Seattle24
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro; Kyiv; Dnipro3
Unknown; Hong Kong2
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
16.1.2017 Principal Directions for Creation of Integrated Launch Vehicle Autonomous Onboard Flight Safety System
16.1.2017 Principal Directions for Creation of Integrated Launch Vehicle Autonomous Onboard Flight Safety System
16.1.2017 Principal Directions for Creation of Integrated Launch Vehicle Autonomous Onboard Flight Safety System
]]>
7.1.2017 Static Approach Application in Analysis of Gas-Dynamic Parameters in Launch Vehicle Vented Bays https://journal.yuzhnoye.com/content_2017_1/annot_7_1_2017-en/ Tue, 27 Jun 2023 12:14:44 +0000 https://journal.yuzhnoye.com/?page_id=29425
Zenit-3SL Integrated Launch Vehicle.
]]>

7. Static Approach Application in Analysis of Gas-Dynamic Parameters in Launch Vehicle Vented Bays

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (1); 43-47

Language: Russian

Annotation: The methodology is proposed of probabilistic assessment of fulfilment of the requirements to gas dynamic parameters in launch vehicle vented bays in the cases when it is impossible to categorically ensure satisfaction of all limitations. By the example of Zenit LV it is shown that when using the statistic assessment, it is possible to considerably expand the launch vehicles application field from the viewpoint of ensuring required conditions in the spacecraft area.

Key words:

Bibliography:
1. Calculation of Venting Parameters in Zenit-3SL ILV Bays PLB, US and IB in Injection Leg. Zenit-3SL 21.13651.122 ОТ: Technical Report. Dnipropetrovsk, 1998. 104 p.
2. Verification of Gas Dynamic and Design Parameters of Thermostating System and Globalstar SC X-Panels Local Blow off System: Report on research work / NASU ITM No12-12/97. 1997. 79 p.
3. Idelchik I. E. Guide on Hydraulic Resistances / Under the editorship of M. O. Steinberg. 3rd edition revised and enlarged. М., 1992. 672 p.
4. Kremer N. Sh. Theory of Probability and Mathematical Statistics: Tutorial. М., 2010. 551 p.
5. Zenit-3SL Integrated Launch Vehicle. Zenit-2S Launch Vehicle. Aerodynamic Analysis. P. 1. Materials on Aero Gas Dynamics. Book 5. Zenit-2S / Thuraya Р01.05: RBD Materials. Dnipropetrovsk, 2000. 120 p.
Downloads: 33
Abstract views: 
405
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Seattle; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn21
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Dnipro; Dnipro2
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
7.1.2017 Static Approach Application in Analysis of Gas-Dynamic Parameters in Launch Vehicle Vented Bays
7.1.2017 Static Approach Application in Analysis of Gas-Dynamic Parameters in Launch Vehicle Vented Bays
7.1.2017 Static Approach Application in Analysis of Gas-Dynamic Parameters in Launch Vehicle Vented Bays
]]>
9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source https://journal.yuzhnoye.com/content_2019_1-en/annot_9_1_2019-en/ Thu, 25 May 2023 12:09:50 +0000 https://journal.yuzhnoye.com/?page_id=27714
2019, (1); 64-71 DOI: https://doi.org/10.33136/stma2019.01.064 Language: Russian Annotation: During lift-off of integrated launch vehicles, the propulsion system jet generates acoustic field. The method was developed that allows modeling the acoustic fields during integrated launch vehicle lift-off based on determination of acoustic sources type. The modeling of integrated launch vehicle propulsion system (ILV PS) jet acoustic field as bulky radiation source was performed in the rocket flight leg where ILV ascent altitude does not exceed ~ 25 m. Key words: integrated launch vehicle , acoustic field , sound pressure Bibliography: 1. integrated launch vehicle , acoustic field , sound pressure .
]]>

9. Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Oles Honchar Dnipro National University, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2019, (1); 64-71

DOI: https://doi.org/10.33136/stma2019.01.064

Language: Russian

Annotation: During lift-off of integrated launch vehicles, the propulsion system jet generates acoustic field. Therewith, the loads can be created that are critical for the launching equipment, rocket body and especially for the spacecraft, which are under the fairing. To take into account the effects on these elements, it is necessary to determine the characteristics of generated acoustic field. The method was developed that allows modeling the acoustic fields during integrated launch vehicle lift-off based on determination of acoustic sources type. In particular, modeling of Cyclone-4M ILV jet acoustic radiation by bulky source was performed. This provided the possibility to calculate acoustic pressure amplitudes in ILV ambient medium and to evaluate acoustic effect on the rocket body at certain points. The method is expected to be used to investigate kR wave parameter. The modeling of integrated launch vehicle propulsion system (ILV PS) jet acoustic field as bulky radiation source was performed in the rocket flight leg where ILV ascent altitude does not exceed ~ 25 m. In this case, one should be based on the value of boundary frequency fb =150 Hz which separates two types of acoustic field: fb ˂ 150 Hz – front of acoustic wave of spherical type, fb > 150 Hz – front of acoustic wave of flat type. The algorithm and program of calculation of sound pressure levels were developed in JAVA language. The characteristics of acoustic fields sound pressure levels were calculated depending on radiation frequency taking into account environmental temperature. The maximal acoustic pressure level in 150 Hz frequency in the payload area outside the fairing – 155 dB, in the instrumentation bay area – 157 dB, in the intertank bay area – 172 dB, in the aft bay area – 182 dB. In the frequencies lower than 150 Hz, the sound pressure levels are lower. The calculation data are presented graphically.

Key words: integrated launch vehicle, acoustic field, sound pressure

Bibliography:

1. Dementiev V. K. O maximalnykh akusticheskykh nagruzkakh na rekety pri starte/ V. K. Dementiev, G. Ye. Dumnov, V. V. Komarov, D.A. Melnikov// Kosmonavtika I raketostroenie. 2000. Vyp. 19. P. 44-55.
2. Tsutsumi S., Ishii T., Ut K., Tokudone S., Chuuouku Y., Wado K. Acoustic Design of Launch Pad for Epsilon Launch Vehicle / Proceedings of AJCPP2014 . Asian Joint Conference on Propulsion and Power, March 5- 8, 2014, Jeju Island, Korea. AJCPP2014-090.
3. Panda J., Mosher R., Porter D.J. Identification of Noise Sources during Rocket Engine Test Firings and a Rocket Launch a Microphone Phased-Array // NASA / TM2013-216625, December 2013. P. 1-20.
4. Sokol G. I. Metod opredeleniya vida istochnikov akusticheskogo izlucheniya v pervye secundy starta raket kosmicheskogo naznacheniya/ G. I. Sokol// Systemne proektuvannya ta analiz characteristic aerokosmichoi techniki: Zb. nauk. pr. 2018. XXIV. Dnipro: Lira, 2018. P. 91-101.
5. Sokol G. I., Frolov V. P., Kotlov V. Yu. / Volnovoy parameter kak kriteriy v osnove metoda issledovaniya akusticheskikh istochnikov pro starte raket/ Aviatsionno-kosmicheskaya technika I technologia. 2018. 3 (147), May-June 2018. Kharkov: KhAI, 2018. P. 4-13. DОІ:http://doi.org /10.20535/0203- 3771332017119600.
6. Rzhevkin S. N. Kurs lektsiy po teorii zvuka/ S. N. Rzhevkin. M.: MGU, 1960. 261 p.
7. Tyulon V. N. Vvedenie v teoriyu izlucheniya I rasseyaniya zvuka / V. N. Tyulin. M.: Nauka, 1976. 253 p.
8. Sapozhkov M. A. Electroakustica/ M. A. Sapozhkov. M.: Svyaz, 1978. 272 p.
9. Grinchenko V. T., Vovk V. V., Matsipura V. T.. Osnovy akustiki. Kyiv: Nauk. dumka, 2007. 640 p.
10. Ultrazvuk: Malaya enciclopedia. M.: Nauka, 1983. 400 p.
11. Volkov K. N. Turbulentnye strui – staticheskie modeli i modelirovanie krupnykh vikhrey/ K. N. Volkov, V. N. Emelyanov, V. A. Zazimko. M.: Fizmatlit, 2013. 960 p.
12. Schildt G. Java 8. Polnoe rukovodstvo. 9-e izd. M.: Wiliams, 2015. 137 p.

Downloads: 41
Abstract views: 
879
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Springfield; Matawan; Baltimore; Plano; Miami; Miami; Dublin; Dublin; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Seattle; Tappahannock; Boydton; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn28
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Unknown1
Ukraine Dnipro1
9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source
9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source
9.1.2019 Modeling of Cyclone-4M Rocket Jet Acoustic Emission by Volumetric Source

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>