Search Results for “launch complex” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Fri, 26 Apr 2024 09:07:56 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “launch complex” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff https://journal.yuzhnoye.com/content_2020_1-en/annot_3_1_2020-en/ Fri, 29 Sep 2023 18:22:49 +0000 https://journal.yuzhnoye.com/?page_id=32230
Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff Authors: Degtiarov М. Thermal stress analysis of orthotropic plate containing a rectangular hole using complex variable method. (2020) "Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff" Космическая техника. "Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff" Космическая техника. quot;Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff", Космическая техника.
]]>

3. Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 26-33

DOI: https://doi.org/10.33136/stma2020.01.026

Language: Russian

Annotation: The study of thermal strength of the hold-down bay is considered. The hold-down bay is a cylindrical shell with the load-bearing elements as the standing supports. The case of the hold-down bay consists of the following structural elements: four standing supports and the compound cylindrical shell with two frames along the top and bottom joints. The purpose of this study was the development of a general approach for the thermal strength calculation of the hold-down bay. This approach includes two parts. Firstly, the unsteady heat fields on the hold-down bay surface are calculated by means of the semi-empirical method, which is based on the simulated results of the combustion product flow of the main propulsion system. The calculation is provided by using Solid Works software. Then the unsteady stress-strain behavior of the hold-down bay is calculated, taking into consideration the plastoelastic deformations. The material strain bilinear diagram is used. The finiteelement method is applied to the stress-strain behavior calculation by using NASTRAN software. The thermal field is assumed to be constant throughout the shell thickness. As a result of the numerical simulation the following conclusions are made. The entire part of the hold-down bay, which is blown by rocket exhaust jet, is under stress-strain behavior. The stresses of the top frame and the shell are overridden the breaking strength that caused structural failure. The structure of the hold-down bay, which is considered in the paper, is unappropriated to be reusable. The hold-down bay should be reconstructed by reinforcement in order to provide its reusability.

Key words: stress-strain behavior, finite-element method, plastoelastic deformations, breaking strength, reusability

Bibliography:

1. Elhefny A., Liang G. Stress and deformation of rocket gas turbine disc under different loads using finite element modeling. Propulsion and Power Research. 2013. № 2. P. 38–49. https://doi.org/10.1016/j.jppr.2013.01.002
2. Perakis N., Haidn O. J. Inverse heat transfer method applied to capacitively cooled rocket thrust chambers. International Journal of Heat and Mass Transfer. 2019. № 131. P. 150–166. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.048
3. Yilmaz N., Vigil F., Height J., et. al. Rocket motor exhaust thermal environment characterization. Measurement. 2018. № 122. P. 312–319. https://doi.org/10.1016/j.measurement.2018.03.039
4. Jafari M. Thermal stress analysis of orthotropic plate containing a rectangular hole using complex variable method. European Journal of Mechanics A /Solids. 2019. № 73. P. 212–223. https://doi.org/10.1016/j.euromechsol.2018.08.001
5. Song J., Sun B. Thermal-structural analysis of regeneratively cooled thrust chamber wall in reusable LOX / Methane rocket engines. Chinese Journal of Aeronautics. 2017. № 30. P. 1043–1053.
6. Ramanjaneyulu V., Murthy V. B., Mohan R. C., Raju Ch. N. Analysis of composite rocket motor case using finite element method. Materials Today: Proceedings. 2018. № 5. P. 4920–4929.
7. Xu F., Abdelmoula R., Potier-Ferry M. On the buckling and post-buckling of core-shell cylinders under thermal loading. International Journal of Solids and Structures. 2017. № 126–127. P. 17–36.
8. Wang Z., Han Q., Nash D. H., et. al. Thermal buckling of cylindrical shell with temperature-dependent material properties: Conventional theoretical solution and new numerical method. Mechanics Research Communications. 2018. № 92. P. 74–80.
9. Duc N. D. Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear de-formation shell theory. European Journal of Mechanics A /Solids. 2016. № 58. P. 10–30.
10. Trabelsi S., Frikha A., Zghal S., Dammak F. A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Engineering Structures. 2019. № 178. P. 444–459.
11. Trinh M. C., Kim S. E. Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment. Aerospace Science and Technology. 2019. № 84. P. 672–685.
12. Лойцянский Л. Г. Механика жидкости и газа. М., 2003. 840 с.
13. Launder B. E., Sharma B. I. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. International Journal of Heat and Mass Transfer. 1974. № 1. P. 131–138.
14. Михеев М. А., Михеева И. М. Основы теплопередачи. М., 1977. 345 с.
15. Малинин Н. Н. Прикладная теория пластичности и ползучести. М., 1968. 400 с.

Downloads: 23
Abstract views: 
839
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Plano; Columbus; Monroe; Ashburn; Ashburn; Boardman; Seattle; Portland; San Mateo; Boardman; Ashburn12
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Ukraine Dnipro; Dnipro2
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff

Keywords cloud

]]>
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems https://journal.yuzhnoye.com/content_2020_1-en/annot_2_1_2020-en/ Fri, 29 Sep 2023 18:16:07 +0000 https://journal.yuzhnoye.com/?page_id=31001
Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems Authors: Aksenenko A. 2020, (1); 13-25 DOI: https://doi.org/10.33136/stma2020.01.013 Language: Russian Annotation: The scientific and methodological propositions for the designing single-stage guided missiles with the solid rocket motors for advanced multiple launch rocket systems are defined. The formalization of the complex task to optimize design parameters, trajectory parameters and motion control programs for the guided missiles capable of flying along the ballistic, aeroballistic or combined trajectories is given. The complex task belongs to a problem of the optimal control theory with limitations in form of equa lity, inequality and differential constraints. Key words: multiple launch rocket systems (MLRS) ,
]]>

2. Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 13-25

DOI: https://doi.org/10.33136/stma2020.01.013

Language: Russian

Annotation: The scientific and methodological propositions for the designing single-stage guided missiles with the solid rocket motors for advanced multiple launch rocket systems are defined. The guided missiles of multiple launch rocket system are intended for delivering munitions to the given spatial point with required and specified kinematic motion parameters at the end of flight. The aim of the article is an analysis of the development trends of the guided missiles with the solid rocket motors for the multiple launch rocket systems, identifying the characteristics and requirements for the flight trajectories, design parameters, control programs, overall dimensions and mass characteristics, structural layout and aerodynamic schemes of missiles. The formalization of the complex task to optimize design parameters, trajectory parameters and motion control programs for the guided missiles capable of flying along the ballistic, aeroballistic or combined trajectories is given. The complex task belongs to a problem of the optimal control theory with limitations in form of equa lity, inequality and differential constraints. To simplify the problem, an approach to program forming is proposed for motion control in the form of polynomial that brings the problem of the optimal control theory to a simpler problem of nonlinear mathematical programming. When trajectory parameters were calculated the missile was regarded as a material point of variable mass and the combined equations for center-of-mass motion of the guided missile with projections on axes of the terrestrial reference system were used. The structure of the mathematical model was given along with the calculation sequence of the criterion function that was used for determination of the optimal parameters, programs and characteristics. The mathematical model of the guided missile provides adequate accuracy for design study to determine depending on the main design parameters: overall dimensions and mass characteristics of the guided missile in general and its structural comp onents and subsystems; power, thrust and consumption characteristics of the rocket motor; aerodynamic and ballistic characteristics of the guided missile. The developed methodology was tested by determining design and trajectory parameters, overall dimensions and mass characteristics, power and ballistic characteristics of two guided missiles with wings for advanced multiple launch rocket systems produced by the People’s Republic of China, using the limited amount of information available in the product catalog.

Key words: multiple launch rocket systems (MLRS), complex problem of the optimal control theory, problem of nonlinear mathematical programming, main solid rocket motor, limitations for motion parameters and basic characteristics of the guided missiles

Bibliography:
1. Degtyarev A. V. Raketnaia tekhnika. Problemy i perspektivy: izbrannye nauchno-tekhnicheskie publikatsii. Dnepropetrovsk, 2014. 420 s.
2. Pro zatverdzhennia Poriadku zdiisnennia derzhavnoho kontriliu za mizhnarodnymy peredachamy tovariv podviinoho vykorystannia:Postanova Kabinetu Ministriv Ukrainy vid 28 sichnia 2004 r. № 86. Date: 29.11.2018. URL: https://zakon.rada.gov.ua/laws/show/86-2004-%D0%BF (Access date 01.09.2019).
3. Catalogue China Aerospase Long-march International. February, 2017. 136 p.
4. Reaktivnye sistemy zalpovogo ognia zarubezhnykh stran: obzor po materialam otkrytoi pechati za 1987–2016 gg. i interneta. Dnipro, 2016. Ч. I. 205 s.
5. Upravliaemye OTRK i TRK stran mira: obzor po materialam otkrytoi otechestvennoi i zarubezhnoi pechati za 2008–2014 gg. i interneta. Dnipro, 2014. 162 s.
6. Tail controlled rocket demonstrates near-vertical impact at extended range. URL: https://www.army.mil/article-amp/207357/tail_controlled_rocket_demonstrates_near_vertical_impact_at_extended_range (Access date 01.09.2019).
7. SY-400 Short-Range Ballistic Missile. URL: http://www.military-today.com/missiles/sy_400.htm (Access date 01.09.2019).
8. Vohniana “Vilkha”: nova vysokotochna systema zalpovoho vohnyu. Vpershe – detalno. URL: https://defence-ua.com/index.php/statti/4588-vohnyana-vilkha-nova-vysokotochna-systema-zalpovoho-vohnyu-vpershe-detalno (Access date 01.09.2019).
9. Gurov S. V. Reaktivnye sistemy zalpovogo ognia: obzor. 1-е izd. Tula, 2006. 432 s.
10. The new M30A1 GMLRS Alternate Warhead to replace cluster bombs for US Army Central 71601171. URL: https://www.armyrecognition.com/weapons_defence_industry_military_technology_uk/the_new_m30a1_gmlrs_alternate_warhead_to_replace_cluster_bombs_for_us_army_central_71601171.html (Access date 01.09.2019).
11. High-Mobility Artillery Rocket System (HIMARS), a member of MLRS family. URL: https://army-technology.com/projects/himars/ (Access date 01.09.2019).
12. SR-5 Multiple Launch Rocket System. URL: http://www.military-today.com/artillery/sr5.htm (Access date 01.09.2019).
13. Effectivnost slozhnykh system. Dinamicheskie modeli / V. А. Vinogradov, V. А. Hrushchansky, S. S. Dovhodush i dr. М., 1989. 285 s.
14. Ilichev А. V., Volkov V. D., Hrushchansky V. А. Effectivnost proektiruemykh elementov slozhnykh system: ucheb. posobie. М., 1982. 280 s.
15. Krotov V. F., Gurman V. I. Metody I zadachi optimalnogo upravleniia. М., 1973. 446 s.
16. Pontriagin L. S., Boltiansky V. G., Gamkrelidze R. V., Mishchenko Е. F. Matematicheskaia teoriia optimalnykh protsesov. М., 1969. 385 s.
17. Tarasov Е. V. Algoritm optimalnogo proektirovaniia letatelnogo apparata. М., 1970. 364 s.
18. Shcheverov D. N. Proektirovanie bespilotnykh letatelnykh apparatov. М., 1978. 264 s.
19. Siniukov А. М., Volkov L. I., Lvov А. I., Shishkevich А. М. Ballisticheskaia raketa na tverdom toplive / pod red. А. М. Siniukova. М., 1972. 511 s.
20. Burov М. А., Varfolomeev V. I., Volkov L. I. Proektirovanie i ispytanie ballisticheskikh raket / pod red. V. I. Varfolomeeva, М. I. Kopytova. М., 1970. 392 s.
21. Siutkina-Doronina S. V. K voprosu optimizatsii proektnykh parametrov i programm upravleniia raketnogo ob’ekta s raketnym dvigatelem na tverdom toplive. Aviatsionno-kosmicheskaia tekhnika i tekhnologiia. 2017. № 2 (137). S. 44–59.
22. Aksenenko A. V., Baranov E. Yu., Hursky A. I., Klochkov A. S., Morozov A. S., Alpatov A. P., Senkin V. S., Siutkina-Doronina S. V. Metodicheskoe obespechenie dlia optimizatsii na nachalnom etape proektirovaniia proektnykh parametrov, parametrov traektorii i programm upravleniia dvizheniem raketnogo ob’ekta. Kosmicheskaia tekhnika. Raketnoe vooruzhenie: sb. nauch.-tekhn. st. / GP “KB “Yuzhnoye”. Dnipro, 2018. Vyp. 2 (116). S. 101–116. https://doi.org/10.33136/stma2018.02.101
23. Metodicheskoe obespechenie dlia optimizatsii na nachalnom etape proektirovaniia proektnykh parametrov, programm upravleniia, ballisticheskikh, energeticheskikh i gabaritno-massovykh kharakteristik upravliaemykh raketnykh ob’ektov, osushchestvliaiushchikh dvizhenie po aeroballisticheskoi traektorii: otchet po NIR / ITM NANU i GKAU, GP “KB “Yuzhnoye”. Dnepropetrovsk, 2017. 159 S.
24. Senkin V. S. K Vyboru programm upravleniia dvizheniem raketnogo ob’ekta po ballisticheskoi traektorii. Tekhnicheskaia mekhanika. 2018. № 1. S. 48–59.
25. Alpatov A. P., Senkin V. S. Metodicheskoe obespechenie dlia vybora oblika, optimizatsii proektnykh parametrov i programm upravleniia poletom rakety-nositelia. Tekhnicheskaia mekhanika. 2013. № 4. S. 146–161.
26. Alpatov A. P., Senkin V. S. Kompleksnaia zadacha optimizatsii osnovnykh proektnykh parametrov i programm upravleniia dvizheniem raket kosmicheskogo naznacheniia. Tekhnicheskaia mekhanika. 2011. № 4. S. 98–113.
27. Senkin V. S. Optimizatsiia proektnykh parametrov rakety-nositelia sverkhlegkogo klassa. Tekhnicheskaia mekhanika. 2009. № 1. S. 80–88.
28. Lebedev А. А., Gerasiuta N. F. Ballistika raket. М., 1970. 244 s.
29. Razumev V. F., Kovalev B. K. Osnovy proektirovaniia ballisticheskikh raket na tverdom toplive: ucheb. posobie dlia vuzov. М., 1976. 356 s.
30. Erokhin B. Т. Teoreticheskie osnovy oroektirovaniia RDTT. М., 1982. 206 s.
31. Abugov D. I., Bobylev V. М. Teoriia i raschet raketnykh dvigatelei tverdogo topliva: uchebnik dlia mashinostroitelnykh vuzov. М., 1987. 272 s.
32. Shishkov А. А. Gasodinamika porokhovykh raketnykh dvigatelei: inzhenernye metody rascheta. М., 1974. 156 s.
Downloads: 16
Abstract views: 
1542
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Plano; Columbus; Monroe; Ashburn; Ashburn; Portland; San Mateo; Boardman; Boardman10
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro; Dnipro2
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems

Keywords cloud

]]>
13.1.2017 Reliability Evaluation of ILV Thermostating System Mating Hoses https://journal.yuzhnoye.com/content_2017_1/annot_13_1_2017-en/ Fri, 22 Sep 2023 15:13:28 +0000 https://journal.yuzhnoye.com/?page_id=29483
By calculation method, high reliability level was confirmed of hoses of joints being an interface elements of launch vehicle launch complexes.
]]>

13. Reliability Evaluation of ILV Thermostating System Mating Hoses

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; State Enterprise “Ukrainian Research Design-Technological Institute of Elastomer Materials and Products”, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2017 (1); 84-87

Language: Russian

Annotation: The technique is proposed of reliability evaluation of space launch vehicle low pressure air thermostating system joints hoses. By calculation method, high reliability level was confirmed of hoses of joints being an interface elements of launch vehicle launch complexes.

Key words:

Bibliography:
1. Development of Single Action Units’ Hoses of Cyclone-4 Space Launch System Thermostating System: SOW for R&D 2G40.12.8599.608TЗ/Yuzhnoye SDO. 2009. 41 p.
2. Abramov E. I., Kolesnichenko K. A., Maslov V. T. Hydraulic Actuator Elements (Guide). Kyiv, 1969. 320 p.
3. Shor Y. B., Kuzmin F. I. Tables for Reliability Analysis and Control. М, 1968. 286 p.
4. Ventsel E. S. Theory of Probability. М., 1964. 576 p.
Downloads: 22
Abstract views: 
442
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Monroe; Ashburn; Seattle; Ashburn; Boardman; Seattle; Portland; San Mateo11
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Ukraine Dnipro; Dnipro2
Belarus Vitebsk1
13.1.2017 Reliability Evaluation of ILV Thermostating System Mating Hoses
13.1.2017 Reliability Evaluation of ILV Thermostating System Mating Hoses
13.1.2017 Reliability Evaluation of ILV Thermostating System Mating Hoses
]]>
21.1.2020 Contemporary approaches to the improvement of methods of space launch system operation for commercial launches of ILV https://journal.yuzhnoye.com/content_2020_1-en/annot_21_1_2020-en/ Wed, 13 Sep 2023 12:05:46 +0000 https://journal.yuzhnoye.com/?page_id=31081
The main task of presented works was approbation of new approaches to improvement of space launch systems operation quality and operation process effectiveness by the example of prospective Cyclone-4M space rocket complex.
]]>

21. Contemporary approaches to the improvement of methods of space launch system operation for commercial launches of ILV

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 184-192

DOI: https://doi.org/10.33136/stma2020.01.184

Language: Russian

Annotation: The article deals with the problems of applying new approaches to formation and improvement of operation system. Turning of space hardware and services into marketable commodity requires their new qualities that determine competitiveness. The main task of presented works was approbation of new approaches to improvement of space launch systems operation quality and operation process effectiveness by the example of prospective Cyclone-4M space rocket complex. The works to form and improve its operation system were performed using the methods based on general theory of space systems operation and the pocedures based on the results of research work conducted by Yuzhnoye SDO in 2015 for analytical evaluation of launch services costs. The topicality of the article is confirmed by the results of practical application of new approaches in main directions of Cyclone-4M space rocket complex operation system improvement, which allowed increasing commercial attractibility of Yuzhnoye SDO-developed systems due to reduction of direct recurring costs and annual expenses. The article describes the course of development of operation model of a created object; based on investigation of the processes of this model, the object’s performance characteristics are detemined. The basis of the article are the organizational-and-technical decisions used herewith and the results obtained for Cyclone-4M space rocket complex. The article is of practical interest for specialists involved in creation of space rocket complexes and other sophisticated systems where the operation system is a multi-level organizational-technical system.

Key words: space hardware, launch services, performance characteristics, operation model, organizational-and-technical decisions

Bibliography:
1. Analiticheskaia otsenka ob’ema rabot i zatrat na puskovye uslugi i napravleniia rabot dlia ikh snizheniia v perspektivnykh RKK razrabotki GP “KB “Yuzhnoye”: tekhn. otchet / GP “KB “Yuzhnoye”. Dnepropetrovsk, 2015. 344 s.
2. Teoriia i praktika ekspluatatsii ob’ektov kosmicheskoi infrastruktury: monografiia / N. D. Anikeichik i dr. SPb., 2006. Т. 1: Ob’ekty kosmicheskoi infrastruktury. 400 s.
3. Ispytaniia i ekspluatatsiia raketnykh kompleksov: kurs lektsii / А. V. Agarkov i dr.; pod red. А. V. Degtyareva. GP “KB “Yuzhnoye”. Dnipro, 2016. Kn. 1. 505 s.
Downloads: 14
Abstract views: 
419
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Plano; Monroe; Ashburn; Seattle; Ashburn; Portland; Boardman8
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Dnipro1
21.1.2020  Contemporary approaches to the improvement of methods of space launch system operation for commercial launches of ILV
21.1.2020  Contemporary approaches to the improvement of methods of space launch system operation for commercial launches of ILV
21.1.2020  Contemporary approaches to the improvement of methods of space launch system operation for commercial launches of ILV

Keywords cloud

]]>
17.1.2020 Acoustic problems of rocket launch https://journal.yuzhnoye.com/content_2020_1-en/annot_17_1_2020-en/ Wed, 13 Sep 2023 11:36:44 +0000 https://journal.yuzhnoye.com/?page_id=31054
Acoustic problems of rocket launch Authors: Hrinchenko V. 2020, (1); 155-159 DOI: https://doi.org/10.33136/stma2020.01.155 Language: Russian Annotation: Due to an increase of power of rocket engines, the high intensity sound field generated by the exhaust jets have become an important factor, which determines the success rate of a rocket launch. Ensuring a successful launch of a rocket system became harder due to new engineering problems. Identification and definition of acoustic sources structure within a complex supersonic jet, being a one of the most important scientific problems, which have to be solved to find the ways to control accoustic radiation. It is recommended to use big amounts of water-air mix to protect the launch pad from damage.
]]>

17. Acoustic problems of rocket launch

Organization:

Institute of Hydromechanics of National Academy of Sciences of Ukraine, Kyiv, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 155-159

DOI: https://doi.org/10.33136/stma2020.01.155

Language: Russian

Annotation: Due to an increase of power of rocket engines, the high intensity sound field generated by the exhaust jets have become an important factor, which determines the success rate of a rocket launch. Ensuring a successful launch of a rocket system became harder due to new engineering problems. Identification and definition of acoustic sources structure within a complex supersonic jet, being a one of the most important scientific problems, which have to be solved to find the ways to control accoustic radiation. A three components of acoustic sources can be defined here – broadband signals from large and small components of of turbulent jet and tonal signals which usually being overlooked during the estimation of overall sound pressure level. The paper considers various aspects of acoustics of the launch of rocket systems, which includes characteristics of acoustic sources in supersonic jets, possibilities and physical limitation factors, under which it is possible to control the sound radiation. Among the possible ways to control the process of sound generation by a jet, a method of water injection in a jet is being studied. While saving the general thrust of the engine this method can not greatly reduce the sound radiation by a jet. It is recommended to use big amounts of water-air mix to protect the launch pad from damage. Significant progress on the topic of understanding the process of sound generation by supersonic jets can be achieved via mathematical modeling of sound radiation. The latest achievements of mathematical modeling of sound generation by supersonic jets being presented.

Key words: Acoustics of rocket launch, acoustic efficiency of a jet, semi-empirical models of of jet acoustics, numeric-computational methods in aeroacoustics, control of jet-generated acoustic levels

Bibliography:
1. Lighthill M. J. On Sound Generated Aerodynamically: I. General Theory. Proc. Roy. Soc. London Ser. A, 211. 1952. Р. 564–581. https://doi.org/10.1098/rspa.1952.0060
2. Tam C. K. W. Jet noise. Theoretical Computftional Fluid Dynamics. 1998. No 10. Р. 393–405. https://doi.org/10.1007/s001620050072
3. Lubert C. P. Sixty years of launch vehicle acoustics. Proc.Mtgs.Acoust. Vol. 31. 2017. https://doi.org/10.1121/2.0000704
4. Ask the Astronaut: What does launch feel like? URL: https://www.airspacemag. com/ask-astronaut/ask-astronaut-what-does-launch-feel-what-thoughts-and-emotions-run-through-your-mind-180959920/
5. Tim P. Ask an Astronaut: My Guide to Life in Space. 2018. 272 p.
6. Saucer B. What’s the Deal with Rocket Vibration? MIT Technology Review. July 15, 2009. URL: https://www.technology-review.com/s/414364https:/whats-the-deal-with-rocket-vibrations/
7. Ross D. Mechanics of Underwater noise. 1976. 266 p.
8. Varnier J. Experimental study and simulation of rocket engine free jet noise. AIAA J. 2001. Vol. 39, Nо 10. P. 1851–1859. https://doi.org/10.2514/2.1199
9. Eldred K. M. Acoustic loads generated by the propulsion system. NASA SP-8072, 1971. 49 p.
10. Balakrishnan P., Srinivason K. Impinging get noise reduction using non-circular jets. Applied Acoustics. 2019. Vol. 143. Р. 19-30. https://doi.org/10.1016/j.apacoust.2018.08.016
11. Tsutsumi S. Acoustic generation mechanism of a supersonic jet impinging on deflectors / S. Tsutsumi, R. Takaki, Y. Nakanishi, K. Okamoto, S. Teramoto 52th AIAA Aerospace Sci. Meet. AIAA Pap. 2014-0882. 2014. 12 p. https://doi.org/10.2514/6.2014-0882
12. Ahuja K. K., Manes J. P., Massey K. C., Calloway A. B. An Evaluation of various concepts of Reducing Supersonic Jet Noise, AIAA-90-3982. AIAA 13th Aeroacoustic Conference, 1990. Р. 1-21. https://doi.org/10.2514/6.1990-3982
13. Krathapalli A., Lenkatakrishnan L., Elovarsan R., Laurenco L. Supersonic Jet Noise Suppression by Water Injection. AIAA 2000-2025. 6th AIAA/CEAS Aeroacoustic Conference, 2000. Р. 1-25.
14. Moratilla-Vega M. A., Lackhole K., Janicka J., Xia H., Page C. J. Jet Noise Analysis using an Efficient LES/ High-Order Acoustic Coupling Method. Computer and Fluid. 2020. https://doi.org/10.1016/j.compfluid.2020.104438
Downloads: 16
Abstract views: 
587
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; North Bergen; Plano; Columbus; Monroe; Ashburn; Ashburn; Seattle; Boardman; Ashburn10
Singapore Singapore; Singapore; Singapore; Singapore4
Brazil Joinville1
Ukraine Dnipro1
17.1.2020  Acoustic problems of rocket launch
17.1.2020  Acoustic problems of rocket launch
17.1.2020  Acoustic problems of rocket launch

Keywords cloud

]]>
16.1.2020 Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations https://journal.yuzhnoye.com/content_2020_1-en/annot_16_1_2020-en/ Wed, 13 Sep 2023 11:18:27 +0000 https://journal.yuzhnoye.com/?page_id=31052
A source of increased risk is the intense thermal and pressure impact of rocket propulsion jet on launch complex elements and on rocket itself. Therefore, a numerical simulation of processes is quite helpful in the design of launch complexes. The presented work contains simulation of liquid rocket engine combustion products jet flowing into the gas duct at the rocket lift-off, taking into account the following input data: the parameters of propulsion system, geometric parameters of launch complex elements, propulsion systems nozzles and gas duct. A three-dimensional geometric model of the launch complex, including rocket and gasduct, was constructed.
]]>

16. Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 149-154

DOI: https://doi.org/10.33136/stma2020.01.149

Language: Russian

Annotation: Launch vehicle lift-off is one of the most critical phases of the whole mission requiring special technical solutions to ensure trouble-free and reliable launch. A source of increased risk is the intense thermal and pressure impact of rocket propulsion jet on launch complex elements and on rocket itself. The most accurate parameters of this impact can be obtained during bench tests, which are necessary to confirm the operability of the structure, as well as to clarify the parameters and configuration of the equipment and systems of complex. However, full-scale testing is expensive and significantly increases the development time of the complex. Therefore, a numerical simulation of processes is quite helpful in the design of launch complexes. The presented work contains simulation of liquid rocket engine combustion products jet flowing into the gas duct at the rocket lift-off, taking into account the following input data: the parameters of propulsion system, geometric parameters of launch complex elements, propulsion systems nozzles and gas duct. A three-dimensional geometric model of the launch complex, including rocket and gasduct, was constructed. The thermodynamic parameters of gas in the engine nozzle were verified using NASA CEA code and ANSYS Fluent. When simulating a multicomponent jet, the equations of conservation of mass, energy, and motion were solved taking into account chemical kinetics. The three-dimensional problem was solved in ANSYS Fluent in steady-state approach, using Pressure-based solver and RANS k-omega SST turbulence model. The calculation results are the gas-dynamic and thermodynamic parameters of jets, as well as distribution of gas-dynamic parameters at nozzle exit, in flow and in boundary layer at gas duct surface. The methodology applied in this work makes it possible to qualitatively evaluate the gas-dynamic effect of combustion products jets on gas duct for subsequent optimization of its design.

Key words: liquid rocket engine, combustion products, multicomponent flow, ANSYS Fluent

Bibliography:
1. Bonnie J. McBride, Sanford Gordon. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. II. Users Manual and Program Descriptions: NASA Reference Publication 1311. 1996.
2. Ten-See Wang. Thermophysics Characterization of Kerosene Combustion. Journal of Thermophysics and Heat Transfer. 2001. № 2, Vol. 15. P. 140–147. https://doi.org/10.2514/2.6602
3. Maas U., Warnatz J. Ignition Processes in Carbon-Monoxide-Hydrogen-Oxygen Mixtures: Twenty-Second Symposium (International) on Combustion. The Combustion Institute, 1988. P. 1695–1704. https://doi.org/10.1016/S0082-0784(89)80182-1
4. Timoshenko V. I. Teoreticheskiie osnovy tekhnicheskoj gazovoj dinamiki. Kiev, 2013. S. 154–155.
Downloads: 14
Abstract views: 
660
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Columbus; Monroe; Ashburn; Portland; Ashburn; Boardman9
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro1
16.1.2020  Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations
16.1.2020  Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations
16.1.2020  Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
13.1.2020 Mathematical models of hydraulic servomechanisms of space technology https://journal.yuzhnoye.com/content_2020_1-en/annot_13_1_2020-en/ Wed, 13 Sep 2023 10:58:26 +0000 https://journal.yuzhnoye.com/?page_id=31045
The required accuracy and complexity of mathematical models of hydraulic servo mechanisms are different for different design phases of guided rockets. Using this mathematical model, the powerful actuators of a line of intercontinental ballistic missiles with swinging reentry vehicle and the main engines actuators of Zenit launch vehicle first stage were developed.
]]>

13. Mathematical models of hydraulic servomechanisms of space technologynt

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 121-132

DOI: https://doi.org/10.33136/stma2020.01.121

Language: Russian

Annotation: Being a final executive element of rocket control systems, a hydraulic actuator is at the same time the main source of various non-linear dependencies in rocket dynamic design whose availability dramatically com plicates theoretical analysis of their dynamics and control systems synthesis. The required accuracy and complexity of mathematical models of hydraulic servo mechanisms are different for different design phases of guided rockets. The paper deals with the simplest models of hydraulic servo actuators intended to calculate rocket controllability and to define requirements to response and power characteristics of the actuators. To calculate the rocket stability regions and to evaluate own stability of servo actuators, a linearized mathematical model of hydraulic servo actuator is used that takes into account the most important parameters having impact on stability of the servo actuator itself and on that of the rocket: hardness of working fluid, stiffness of elastic suspension of the actuator and control element, slope of mechanical characteristic of the actuator in the area of small control signals, which, as full mathematical model analysis showed, is conditioned only by dimensions of initial axial clearances of slide’s throats. The full mathematical model constructed based on accurate calculations of the balance of fluid flow rate through the slide’s throats allows, as early as at designing phase, determining the values of most important static and dynamic characteristics of a future hydraulic actuator, selecting optimal characteristics of slides based on specified degree of stability and response of servo actuator and conducting final modeling of rocket flight on the integrated control system test benches without using real actuators and loading stands. It is correct and universal for all phases of rockets and their control systems designing and testing. Using this mathematical model, the powerful actuators of a line of intercontinental ballistic missiles with swinging reentry vehicle and the main engines actuators of Zenit launch vehicle first stage were developed. The results of their testing separately and in rockets practically fully comply with the data of theoretical calculations.

Key words: mathematical model, hydraulic actuator, servo actuator, stability, damping, slide

Bibliography:
1. Dinamika gidroprivoda / pod red. V. N. Prokofieva. М., 1972. 292 s.
2. Gamynin N. S. Gidravlicheskii privod system upravleniia. М., 1972. 376 s.
3. Chuprakov Yu. I. Gidroprivod i sredstva gidroavtomatiki. М., 1979. 232 s.
4. Kozak L. R. Geometriia zolotnika i dinamicheskie kharakteristiki gidroprivoda // Visnyk Dnipropetrovskoho universytetu. Vyp. 13, Tom 1. 2009.
Downloads: 12
Abstract views: 
370
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Monroe; Ashburn; Ashburn; Seattle; San Mateo; Ashburn9
Singapore Singapore; Singapore2
Ukraine Dnipro1
13.1.2020  Mathematical models of hydraulic servomechanisms of space technology
13.1.2020  Mathematical models of hydraulic servomechanisms of space technology
13.1.2020  Mathematical models of hydraulic servomechanisms of space technology

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
20.2.2018 The Use of Special Devices during Launch Pad Development Testing https://journal.yuzhnoye.com/content_2018_2-en/annot_20_2_2018-en/ Thu, 07 Sep 2023 12:27:24 +0000 https://journal.yuzhnoye.com/?page_id=30805
Advantages of the pad loading device include low materials consumption, low cost in comparison with composite weights (with large load values), provision of the required modes for applying and removing the test load, controlled separate loading of each support of the launch pad, high mobility, short duration of testing, possibility of using launch pads of other rocket complexes with lower or equal test load values for testing.
]]>

20. The Use of Special Devices during Launch Pad Development Testing

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 173-177

DOI: https://doi.org/10.33136/stma2018.02.173

Language: Russian

Annotation: One of the tasks of the development tests conducted on a launch pad is verification of its strength properties. The tests are carried out after the launch pad was manufactured and assembled on-site as well as during the whole operating period (if necessary). Load mode was chosen in consideration of cost and possibility of providing the required loading conditions. Two modes of creating the required test load were examined: usage of weights with corresponding mass (load simulators) or special devises (which have smaller mass as compared with load simulators). The descriptions, basic characteristics, advantages and disadvantages of composite and bulk weights and pad loading device are given. This article studies the pad loading device under development. This device enables to conduct static nondestructive tests on the launch pad in order to check its strength after manufacturing and during the whole operating period. The device consists of the load-bearing frame, hydraulic system, locks, control system and measurement system. Advantages of the pad loading device include low materials consumption, low cost in comparison with composite weights (with large load values), provision of the required modes for applying and removing the test load, controlled separate loading of each support of the launch pad, high mobility, short duration of testing, possibility of using launch pads of other rocket complexes with lower or equal test load values for testing. Therefore, the pad loading device enables to achieve the required test load values while having considerably smaller dimensions and mass as compared with composite weights and bigger functional possibilities as compared with bulk weights. Small overall dimensions and operability reduce the number of needed personnel and equipment.

Key words: weight for testing, test load, loading device

Bibliography:
1. ISO 14625:2007. Space systems. Ground support equipment for use at launch, landing or retrieval sites. General requirement. Brought in 01.11.2007. 32 p.
2. Launch Vehicle Mass Dummy: Patent RU2491211 RF: MPK B64G 5/00, B64G 7/00, F42B 15/00 / Dneprotyazhmash. Published 27.08.2013. 12 p.
3. Method of Poles Static Testing and Poles Static Test Device: Patent RU2173747: RF E02D 33/00 / NPSF Fundamentspetstroy. Published 20.09.2001. 10 p.
4. ISO 16290:2013. Space systems. Definition of the Technology Readiness Levels (TRLs) and their criteria of assessment. Brought in 14.10.2013. 20 p.
Downloads: 17
Abstract views: 
376
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Monroe; Columbus; Ashburn; Seattle; Portland; San Mateo; Ashburn10
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro1
20.2.2018 The Use of Special Devices during Launch Pad Development Testing
20.2.2018 The Use of Special Devices during Launch Pad Development Testing
20.2.2018 The Use of Special Devices during Launch Pad Development Testing

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles https://journal.yuzhnoye.com/content_2018_2-en/annot_19_2_2018-en/ Thu, 07 Sep 2023 12:23:58 +0000 https://journal.yuzhnoye.com/?page_id=30801
Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles Authors: Aksiuta О. 2018 (2); 157-172 DOI: https://doi.org/10.33136/stma2018.02.157 Language: Russian Annotation: The measurement errors upon conducting flight tests for launch vehicles are evaluated by considering the interferences and uncertainties in the measurement system procedure. Combined Estimation of Complex Systems Characteristics. (2018) "Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles" Космическая техника.
]]>

19. Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 157-172

DOI: https://doi.org/10.33136/stma2018.02.157

Language: Russian

Annotation: The measurement errors upon conducting flight tests for launch vehicles are evaluated by considering the interferences and uncertainties in the measurement system procedure. Formal use of this approach can lead to unpredictable consequences. More reliable evaluation of errors upon conducted measurements can be achieved if the measurement process is regarded as a procedure of successive activities for designing, manufacturing, and testing the measurement system and the rocket including measurements and their processing during the after-flight analysis of the received data. The sampling rates of the main controlled parameters are three to ten times higher than the frequency range of their changing. Therefore, it is possible to determine the characteristics of the random error components directly on the basis of registered data. The unrevealed systematic components create the basic uncertainty in the evaluation of the examined parameter’s total measurement error. To evaluate the precision and measurement accuracy of a particular launch, the article suggests specifying the preliminary data on measurement error components determined during prelaunch processing and launch. Basic structures of algorithms for evaluation of precision and measurement accuracy for certain mathematical models that form the measured parameters were considered along with the practical case when static correlation existed among the measured parameters.

Key words: flight tests, sensor, measurement error, mathematical model

Bibliography:
1. Novitsky P. V., Zograf I. A. Evaluation of Measurement Errors. L., 1985. 248 p.
2. Shmutzer E. Relativity Theory. Modern Conception. Way to Unity of Physics. М., 1981. 230 p.
3. Blekhman I. I., Myshkis A. D., Panovenko Y. G. Applied Mathematics: Subject, Logic, Peculiarities of Approaches. К., 1976. 270 p.
4. Moiseyev N. N. Mathematical Problems of System Analysis. М., 1981. 488 p.
5. Bryson A., Ho Yu-Shi. Applied Theory of Optimal Control. М., 1972. 544 p.
6. Yevlanov L. G. Monitoring of Dynamic Systems. М., 1972. 424 p.
7. Sergiyenko A. B. Digital Signal Processing: Collection of publications. 2011. 768 p.
8. Braslavsky D. A., Petrov V. V. Precision of Measuring Devices. М., 1976. 312 p.
9. Glinchenko A. S. Digital Signal Processing: Course of lectures. Krasnoyarsk, 2008. 242 p.
10. Garmanov A. V. Practice of Optimization of Signal-Noise Ratio at ACP Connection in Real Conditions. М., 2002. 9 p.
11. Denosenko V. V., Khalyavko A. N. Interference Protection of Sensors and Connecting Wires of Industrial Automation Systems. SТА. No. 1. 2001. P. 68-75.
12. Garmanov A. V. Connection of Measuring Instruments. Solution of Electric Compatibility and Interference Protection Problems. М., 2003. 41 p.
13. TP ACS Encyclopedia. bookASUTR.ru.
14. Smolyak S. A., Titarenko B. P. Stable Estimation Methods. М., 1980. 208 p.
15. Fomin A. F. et al. Rejection of Abnormal Measurement Results. М., 1985. 200 p.
16. Medich J. Statistically Optimal Linear Estimations and Control. М., 1973. 440 p.
17. Sage E., Mells J. Estimation Theory and its Application in Communication and Control. М., 1976. 496 p.
18. Filtration and Stochastic Control in Dynamic Systems: Collection of articles / Under the editorship of K. T. Leondes. М., 1980. 408 p.
19. Krinetsky E. I. et al. Flight Tests of Rockets and Spacecraft. М., 1979. 464 p.
20. Viduyev N. G., Grigorenko A. G. Mathematical Processing of Geodesic Measurements. К., 1978. 376 p.
21. Aivazyan S. A., Yenyukov I. S., Meshalkin L. D. Applied Statistics. Investigation of Dependencies. М., 1985. 487 p.
22. Sirenko V. N., Il’yenko P. V., Semenenko P. V. Use of Statistic Approaches in Analysis of Gas Dynamic Parameters in LV Vented Bays. Space Technology. Missile Armaments: Collection of scientific-technical articles. Issue 1. P. 43-47.
23. Granovsky V. A., Siraya T. N. Methods of Experimental Data Processing at Measurements. L., 1990. 288 p.
24. Zhovinsky A. N., Zhovinsky V. N. Engineering Express Analysis of Random Processes. М., 1979. 112 p.
25. Anishchenko V. A. Control of Authenticity of Duplicated Measurements in Uncertainty Conditions. University News. Minsk, 2010. No. 2. P. 11-18.
26. Anishchenko V. A. Reliability and Accuracy of Triple Measurements of Analog Technological Variables. University News. Minsk, 2017. No. 2. P. 108-117.
27. Shenk H. Theory of Engineering Experiment. М., 1972. 381 p.
28. Bessonov А. А., Sverdlov L. Z. Methods of Statistic Analysis of Automatic Devices Errors. L., 1974. 144 p.
29. Pugachyov V. N. Combined Methods to Determine Probabilistic Characteristics. М., 1973. 256 p. https://doi.org/10.21122/1029-7448-2017-60-2-108-117
30. Gandin L. S., Kagan R. L. Statistic Methods of Meteorological Data Interpretation. L., 1976. 360 p.
31. Zheleznov I. G., Semyonov G. P. Combined Estimation of Complex Systems Characteristics. М., 1976. 52 p.
32. Vt222М Absolute Pressure Sensor: ТU Vt2.832.075TU. Penza, 1983.
Downloads: 16
Abstract views: 
507
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Monroe; Ashburn; Seattle; Seattle; Portland; San Mateo; Ashburn10
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Dnipro1
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
15.2.2018 Topical Issues of Creation of Space Rocket Thermostatic System Mating Points https://journal.yuzhnoye.com/content_2018_2-en/annot_15_2_2018-en/ Thu, 07 Sep 2023 12:09:41 +0000 https://journal.yuzhnoye.com/?page_id=30786
The article is concluded with following: the basic requirements have been formulated for ground complexes thermostating systems joints to ensure space rockets prelaunch processing and launch, in doing so, the topical problems were defined; the scientific principles were proposed to design the thermostating systems joints for comprehensive solution of the topical problems , including potential critical situations; the thermostating systems joints have been developed, manufactured and have successfully passed the ground development tests with simulation of the conditions maximally close to operating ones at static operating air pressures and in off-nominal situations.
]]>

15. Topical Issues of Creation of Space Rocket Thermostatic System Mating Points

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; State Enterprise “Ukrainian Research Design-Technological Institute of Elastomer Materials and Products”, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2018 (2); 132-138

DOI: https://doi.org/10.33136/stma2018.02.132

Language: Russian

Annotation: The problem is defined of designing the space rocket low-pressure air thermostating systems joints. The basic requirements imposed to the joints from the side of space rocket and ground complex are determined and stated. For this purpose, the analysis of operating conditions and possible situations during rocket launches is made. Besides, the methodological principles based on problematic, systematic, and structuralfunctional approach were applied using the theoretical and empirical capabilities, attraction of general scientific and special investigation methods, as well as historical and logical methods. The list of topical issues is reflected for implementation in joint’s design. The ways are proposed to create the joints meeting the requirements imposed. As a result, it was ascertained that the joints can be made of simpler and at the same time failure-free design in the form of combined triune rubber hose fitted with a metal fixation/release unit installed on a sealing flange in a special groove. Of special note is the versatility of the proposed technical solution for use in any of the space launch systems known in the world’s practice. The article is concluded with following: the basic requirements have been formulated for ground complexes thermostating systems joints to ensure space rockets prelaunch processing and launch, in doing so, the topical problems were defined; the scientific principles were proposed to design the thermostating systems joints for comprehensive solution of the topical problems , including potential critical situations; the thermostating systems joints have been developed, manufactured and have successfully passed the ground development tests with simulation of the conditions maximally close to operating ones at static operating air pressures and in off-nominal situations.

Key words: planetary roving vehicle, self-propelled modular platform, generic module, interchangeability

Bibliography:
1. Bigun S. A., Khorolsky M. S et al. Types and Design Features of Thermostating System Mating Points of Launch Vehicle Payload Units and Launch Vehicle and Spacecraft Bays. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2013. Issue 1. 123 p.
2. Bigun S. A., Khorolsky M. S et al. Experimental Investigations of Cyclone-4 ILV Thermostating System Mating Points Test Results. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2016. Issue 2. 105 p.
Downloads: 19
Abstract views: 
276
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Monroe; Seattle; Ashburn; Seattle; Seattle; San Mateo; Boardman; Ashburn; Boardman12
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro1
15.2.2018 Topical Issues of Creation of Space Rocket Thermostatic System Mating Points
15.2.2018 Topical Issues of Creation of Space Rocket Thermostatic System Mating Points
15.2.2018 Topical Issues of Creation of Space Rocket Thermostatic System Mating Points

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>