Search Results for “linear systems” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 05 Nov 2024 20:30:36 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “linear systems” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems https://journal.yuzhnoye.com/content_2020_1-en/annot_2_1_2020-en/ https://journal.yuzhnoye.com/?page_id=31001
Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems Authors: Aksenenko A. 2020, (1); 13-25 DOI: https://doi.org/10.33136/stma2020.01.013 Language: Russian Annotation: The scientific and methodological propositions for the designing single-stage guided missiles with the solid rocket motors for advanced multiple launch rocket systems are defined. To simplify the problem, an approach to program forming is proposed for motion control in the form of polynomial that brings the problem of the optimal control theory to a simpler problem of nonlinear mathematical programming. Key words: multiple launch rocket systems (MLRS) , complex problem of the optimal control theory , problem of nonlinear mathematical programming , main solid rocket motor , limitations for motion parameters and basic characteristics of the guided missiles Bibliography: 1.
]]>

2. Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 13-25

DOI: https://doi.org/10.33136/stma2020.01.013

Language: Russian

Annotation: The scientific and methodological propositions for the designing single-stage guided missiles with the solid rocket motors for advanced multiple launch rocket systems are defined. The guided missiles of multiple launch rocket system are intended for delivering munitions to the given spatial point with required and specified kinematic motion parameters at the end of flight. The aim of the article is an analysis of the development trends of the guided missiles with the solid rocket motors for the multiple launch rocket systems, identifying the characteristics and requirements for the flight trajectories, design parameters, control programs, overall dimensions and mass characteristics, structural layout and aerodynamic schemes of missiles. The formalization of the complex task to optimize design parameters, trajectory parameters and motion control programs for the guided missiles capable of flying along the ballistic, aeroballistic or combined trajectories is given. The complex task belongs to a problem of the optimal control theory with limitations in form of equa lity, inequality and differential constraints. To simplify the problem, an approach to program forming is proposed for motion control in the form of polynomial that brings the problem of the optimal control theory to a simpler problem of nonlinear mathematical programming. When trajectory parameters were calculated the missile was regarded as a material point of variable mass and the combined equations for center-of-mass motion of the guided missile with projections on axes of the terrestrial reference system were used. The structure of the mathematical model was given along with the calculation sequence of the criterion function that was used for determination of the optimal parameters, programs and characteristics. The mathematical model of the guided missile provides adequate accuracy for design study to determine depending on the main design parameters: overall dimensions and mass characteristics of the guided missile in general and its structural comp onents and subsystems; power, thrust and consumption characteristics of the rocket motor; aerodynamic and ballistic characteristics of the guided missile. The developed methodology was tested by determining design and trajectory parameters, overall dimensions and mass characteristics, power and ballistic characteristics of two guided missiles with wings for advanced multiple launch rocket systems produced by the People’s Republic of China, using the limited amount of information available in the product catalog.

Key words: multiple launch rocket systems (MLRS), complex problem of the optimal control theory, problem of nonlinear mathematical programming, main solid rocket motor, limitations for motion parameters and basic characteristics of the guided missiles

Bibliography:
1. Degtyarev A. V. Raketnaia tekhnika. Problemy i perspektivy: izbrannye nauchno-tekhnicheskie publikatsii. Dnepropetrovsk, 2014. 420 s.
2. Pro zatverdzhennia Poriadku zdiisnennia derzhavnoho kontriliu za mizhnarodnymy peredachamy tovariv podviinoho vykorystannia:Postanova Kabinetu Ministriv Ukrainy vid 28 sichnia 2004 r. № 86. Date: 29.11.2018. URL: https://zakon.rada.gov.ua/laws/show/86-2004-%D0%BF (Access date 01.09.2019).
3. Catalogue China Aerospase Long-march International. February, 2017. 136 p.
4. Reaktivnye sistemy zalpovogo ognia zarubezhnykh stran: obzor po materialam otkrytoi pechati za 1987–2016 gg. i interneta. Dnipro, 2016. Ч. I. 205 s.
5. Upravliaemye OTRK i TRK stran mira: obzor po materialam otkrytoi otechestvennoi i zarubezhnoi pechati za 2008–2014 gg. i interneta. Dnipro, 2014. 162 s.
6. Tail controlled rocket demonstrates near-vertical impact at extended range. URL: https://www.army.mil/article-amp/207357/tail_controlled_rocket_demonstrates_near_vertical_impact_at_extended_range (Access date 01.09.2019).
7. SY-400 Short-Range Ballistic Missile. URL: http://www.military-today.com/missiles/sy_400.htm (Access date 01.09.2019).
8. Vohniana “Vilkha”: nova vysokotochna systema zalpovoho vohnyu. Vpershe – detalno. URL: https://defence-ua.com/index.php/statti/4588-vohnyana-vilkha-nova-vysokotochna-systema-zalpovoho-vohnyu-vpershe-detalno (Access date 01.09.2019).
9. Gurov S. V. Reaktivnye sistemy zalpovogo ognia: obzor. 1-е izd. Tula, 2006. 432 s.
10. The new M30A1 GMLRS Alternate Warhead to replace cluster bombs for US Army Central 71601171. URL: https://www.armyrecognition.com/weapons_defence_industry_military_technology_uk/the_new_m30a1_gmlrs_alternate_warhead_to_replace_cluster_bombs_for_us_army_central_71601171.html (Access date 01.09.2019).
11. High-Mobility Artillery Rocket System (HIMARS), a member of MLRS family. URL: https://army-technology.com/projects/himars/ (Access date 01.09.2019).
12. SR-5 Multiple Launch Rocket System. URL: http://www.military-today.com/artillery/sr5.htm (Access date 01.09.2019).
13. Effectivnost slozhnykh system. Dinamicheskie modeli / V. А. Vinogradov, V. А. Hrushchansky, S. S. Dovhodush i dr. М., 1989. 285 s.
14. Ilichev А. V., Volkov V. D., Hrushchansky V. А. Effectivnost proektiruemykh elementov slozhnykh system: ucheb. posobie. М., 1982. 280 s.
15. Krotov V. F., Gurman V. I. Metody I zadachi optimalnogo upravleniia. М., 1973. 446 s.
16. Pontriagin L. S., Boltiansky V. G., Gamkrelidze R. V., Mishchenko Е. F. Matematicheskaia teoriia optimalnykh protsesov. М., 1969. 385 s.
17. Tarasov Е. V. Algoritm optimalnogo proektirovaniia letatelnogo apparata. М., 1970. 364 s.
18. Shcheverov D. N. Proektirovanie bespilotnykh letatelnykh apparatov. М., 1978. 264 s.
19. Siniukov А. М., Volkov L. I., Lvov А. I., Shishkevich А. М. Ballisticheskaia raketa na tverdom toplive / pod red. А. М. Siniukova. М., 1972. 511 s.
20. Burov М. А., Varfolomeev V. I., Volkov L. I. Proektirovanie i ispytanie ballisticheskikh raket / pod red. V. I. Varfolomeeva, М. I. Kopytova. М., 1970. 392 s.
21. Siutkina-Doronina S. V. K voprosu optimizatsii proektnykh parametrov i programm upravleniia raketnogo ob’ekta s raketnym dvigatelem na tverdom toplive. Aviatsionno-kosmicheskaia tekhnika i tekhnologiia. 2017. № 2 (137). S. 44–59.
22. Aksenenko A. V., Baranov E. Yu., Hursky A. I., Klochkov A. S., Morozov A. S., Alpatov A. P., Senkin V. S., Siutkina-Doronina S. V. Metodicheskoe obespechenie dlia optimizatsii na nachalnom etape proektirovaniia proektnykh parametrov, parametrov traektorii i programm upravleniia dvizheniem raketnogo ob’ekta. Kosmicheskaia tekhnika. Raketnoe vooruzhenie: sb. nauch.-tekhn. st. / GP “KB “Yuzhnoye”. Dnipro, 2018. Vyp. 2 (116). S. 101–116. https://doi.org/10.33136/stma2018.02.101
23. Metodicheskoe obespechenie dlia optimizatsii na nachalnom etape proektirovaniia proektnykh parametrov, programm upravleniia, ballisticheskikh, energeticheskikh i gabaritno-massovykh kharakteristik upravliaemykh raketnykh ob’ektov, osushchestvliaiushchikh dvizhenie po aeroballisticheskoi traektorii: otchet po NIR / ITM NANU i GKAU, GP “KB “Yuzhnoye”. Dnepropetrovsk, 2017. 159 S.
24. Senkin V. S. K Vyboru programm upravleniia dvizheniem raketnogo ob’ekta po ballisticheskoi traektorii. Tekhnicheskaia mekhanika. 2018. № 1. S. 48–59.
25. Alpatov A. P., Senkin V. S. Metodicheskoe obespechenie dlia vybora oblika, optimizatsii proektnykh parametrov i programm upravleniia poletom rakety-nositelia. Tekhnicheskaia mekhanika. 2013. № 4. S. 146–161.
26. Alpatov A. P., Senkin V. S. Kompleksnaia zadacha optimizatsii osnovnykh proektnykh parametrov i programm upravleniia dvizheniem raket kosmicheskogo naznacheniia. Tekhnicheskaia mekhanika. 2011. № 4. S. 98–113.
27. Senkin V. S. Optimizatsiia proektnykh parametrov rakety-nositelia sverkhlegkogo klassa. Tekhnicheskaia mekhanika. 2009. № 1. S. 80–88.
28. Lebedev А. А., Gerasiuta N. F. Ballistika raket. М., 1970. 244 s.
29. Razumev V. F., Kovalev B. K. Osnovy proektirovaniia ballisticheskikh raket na tverdom toplive: ucheb. posobie dlia vuzov. М., 1976. 356 s.
30. Erokhin B. Т. Teoreticheskie osnovy oroektirovaniia RDTT. М., 1982. 206 s.
31. Abugov D. I., Bobylev V. М. Teoriia i raschet raketnykh dvigatelei tverdogo topliva: uchebnik dlia mashinostroitelnykh vuzov. М., 1987. 272 s.
32. Shishkov А. А. Gasodinamika porokhovykh raketnykh dvigatelei: inzhenernye metody rascheta. М., 1974. 156 s.
Downloads: 46
Abstract views: 
3687
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Ashburn; Matawan; Baltimore; Plano; Miami; Columbus; Ashburn; Columbus; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Boardman; Seattle25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro; Sumy; Kovel'; Dnipro; Dnipro5
Latvia Riga; Riga2
China Shanghai1
Finland Helsinki1
Unknown1
India Mumbai1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems

Keywords cloud

]]>
14.1.2024 EXPERIMENTAL STUDIES OF THE PERFORMANCE OF PYROTECHNIC DEVICES INSTALLED ON THE LAUNCH VEHICLE SEPARATION SYSTEMS https://journal.yuzhnoye.com/content_2024_1-en/annot_14_1_2024-en/ Mon, 17 Jun 2024 07:52:20 +0000 https://journal.yuzhnoye.com/?page_id=35004
This type of linear shaped charge is one of the most common types of linear shaped charge, which are used in launch vehicle separation systems being developed in Ukraine. Based on the obtained results, it was established that the linear shaped charges under study are operational and meet the requirements for linear shaped charges, installed on launch vehicle separation systems. Key words: cumulative effect , shaped charge , linear shaped charge , separation systems , pyrotechnic separation devices , linear shaped charge parameters. cumulative effect , shaped charge , linear shaped charge , separation systems , pyrotechnic separation devices , linear shaped charge parameters.
]]>

14. Experimental studies of the performance of pyrotechnic devices installed on the launch vehicle separation systems

Автори: Bolyubash Ye. S.

Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2024, (1); 121-128

DOI: https://doi.org/10.33136/stma2024.01.121

Language: Ukrainian

Annotation: Pyrotechnic devices are important elements in rocket and space technology, which to a large degree determine the flight success of the launch vehicles, since they enable instantaneous operations to separate spent stages, change configurations, ensure safety, etc. Pyrotechnic devices are subject to strict requirements for reliability, safety, security and efficiency. The article presents an experimental study of the performance of a linear shaped charge of a launch vehicle stage separation system. This type of linear shaped charge is one of the most common types of linear shaped charge, which are used in launch vehicle separation systems being developed in Ukraine. One of the main characteristics of the linear shaped charge, which determines the efficiency and reliability of the separation process, is the depth of penetration of the cumulative jet into the obstacle. The work studied the effect of a cumulative jet of a linear shaped charge with a semi-cylindrical cumulative part. An experimental confirmation of the performance of this type of linear shaped charge is presented, using the example of a linear shaped charge with a diameter of 5 mm, acting on an obstacle made of aluminum alloy grade 2219. The research methodology, experimental scenario, in particular, a description of the research object and a scheme for measuring test results are presented. Depth of cumulative jet penetration into the obstacle was measured in 60 points along the cut line of the samples under study. A statistical analysis of the experimental results was carried out, in particular, the average penetration depth was determined. An improved formula is proposed for the practical calculation of the penetration depth of a cumulative jet for a linear shaped charge with a semi-cylindrical cumulative part, using an additional correction factor. It is noted that the depth of penetration of a cumulative jet into an obstacle is significantly influenced by technological aspects. Taking into account this influence, the lower limit of the one-sided tolerance interval was determined. Recommendations are provided to improve future experimental procedures. Based on the obtained results, it was established that the linear shaped charges under study are operational and meet the requirements for linear shaped charges, installed on launch vehicle separation systems.

Key words: cumulative effect, shaped charge, linear shaped charge, separation systems, pyrotechnic separation devices, linear shaped charge parameters.

Bibliography:
  1. Petushkov V. G. Pod red. B.Ye.Patona, Priminenie vzryva v svarochnoy technike, K.: Nauk. dumka, 2005, 754 s.
  2. Physika vzryva. Izd. tretie, t. ІІ. Pod red. L. P. Orlenko. Nauka, 2004, 644 s.
  3. Baum F. A., Stanyukovich K. P., Shekhter B. I. Physika vzryva. Gos. izd. FM lit. M. 1959, 800 s.
  4. Kolesnikov K. S., Kozlov V. I., Kokushkin V. V. Dynamika razdeleniya stupeney letatelnykh apparatov. M.: Mashinostroenie. 1977, 224 s.
  5. Kumulyativniy efect ta iogo vykorystannya dlya rozdilennya raketno-kosmichnykh elementiv za dopomogou pyrotechnichnykh prystroiv. Ye. S. Bolyubash. Materialy XVII naukovykh chytan’ «Dniprovska orbita – 2022» (26–28 zhovtnya). Dnipro, 2022. 263 s.
  6. ISO 16269-6:2003 Statistical interpretation of data – Part 6: Determination of statistical tolerance intervals (IDT).
  7. Kobzar A. N. Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov. M.: Phizmatlit, 2006, 816 s.
Downloads: 16
Abstract views: 
1037
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA San Francisco; Dublin; New Haven; Birmingham; Portland; Seattle6
Germany Falkenstein; Düsseldorf; Falkenstein3
Ukraine Dnipro; Kremenchuk2
France1
Unknown1
China Shenzhen1
India1
Canada Toronto1
14.1.2024 EXPERIMENTAL STUDIES OF THE PERFORMANCE OF PYROTECHNIC DEVICES INSTALLED ON THE LAUNCH VEHICLE SEPARATION SYSTEMS
14.1.2024 EXPERIMENTAL STUDIES OF THE PERFORMANCE OF PYROTECHNIC DEVICES INSTALLED ON THE LAUNCH VEHICLE SEPARATION SYSTEMS
14.1.2024 EXPERIMENTAL STUDIES OF THE PERFORMANCE OF PYROTECHNIC DEVICES INSTALLED ON THE LAUNCH VEHICLE SEPARATION SYSTEMS

Keywords cloud

]]>
15.1.2020 Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements https://journal.yuzhnoye.com/content_2020_1-en/annot_15_1_2020-en/ Wed, 13 Sep 2023 11:07:28 +0000 https://journal.yuzhnoye.com/?page_id=31050
Key words: mathematical model , linear systems , singular integral equations , impulse response , defects , criteria for the destruction of stochastically defective bodies , Riemann problem , thermoelastic state Bibliography: 1. mathematical model , linear systems , singular integral equations , impulse response , defects , criteria for the destruction of stochastically defective bodies , Riemann problem , thermoelastic state .
]]>

15. Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements

Organization:

Institute of Mechanical Engineering of Odessa National Polytechnic University, Odessa, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 137-148

DOI: https://doi.org/10.33136/stma2020.01.137

Language: Ukrainian

Annotation: The strength of real solids depends essentially on the defect of the structure. In real materials, there is always a large number of various micro defects, the development of which under the influence of loading leads to the appearance of cracks and their growth in the form of local or complete destruction. In this paper, based on the method of singular integral equations, we present a unified approach to the solution of thermal elasticity problems for bodies weakened by inhomogeneities. The purpose of the work is to take into account the heterogeneities in the materials of the elements of the rocket structures on their functionally-gradient properties, including strength. The choice of the method of investigation of strength and destruction of structural elements depends on the size of the object under study. Micro-research is related to the heterogeneities that are formed in the surface layer at the stage of preparation, the technology of manufacturing structural elements. Defectiveness allows you to adequately consider the mechanism of destruction of objects as a process of development of cracks. In studying the limit state of real elements, weakened by defects and constructing on this basis the theory of their strength and destruction in addition to the deterministic one must consider the probabilistic – statistical approach. In the case of thermal action on structural elements in which there are uniformly scattered, non-interacting randomly distributed defects of the type of cracks, the laws of joint distribution of the length and angle of orientation of which are known, the limiting value of the heat flux for the balanced state of the crack having the length of the “weakest link” is determined. The influence of heterogeneities of technological origin (from the workpiece to the finished product) that occur in the surface layer in the technology of manufacturing structural elements on its destruction is taken into account by the developed model. The strength of real solids depends essentially on the defect of the structure. In real materials, there are always many various micro defects, the development of which under the influence of loading leads to the appearance of cracks and their growth in the form of local or complete destruction. In this paper, based on the method of singular integral equations, we present a unified approach to the solution of thermal elasticity problems for bodies weakened by inhomogeneities. The purpose of the work is to take into account the heterogeneities in the materials of the elements of the rocket structures on their functionally gradient properties, including strength. The choice of the method of investigation of strength and destruction of structural elements depends on the size of the object under study. Micro-research is related to the heterogeneities that are formed in the surface layer at the stage of preparation, the technology of manufacturing structural elements. Defectiveness allows you to adequately consider the mechanism of destruction of objects as a process of development of cracks. In studying the limit state of real elements, weakened by defects and constructing on this basis the theory of their strength and destruction besides the deterministic one must consider the probabilistic – statistical approach. With thermal action on structural elements in which there are uniformly scattered, non-interacting randomly distributed defects of the cracks, the laws of joint distribution of the length and angle of orientation of which are known, the limiting value of the heat flux for the balanced state of the crack having the length of the “weakest link” is determined. The influence of heterogeneities of technological origin (from the workpiece to the finished product) that occur in the surface layer in the technology of manufacturing structural elements on its destruction is taken into account by the developed model. The solution of the singular integral equation with the Cauchy kernel allows one to determine the intensity of stresses around the vertexes of defects of the cracks, and by comparing it with the criterion of fracture toughness for the material of a structural element, one can determine its state. If this criterion is violated, the weak link defect develops into a trunk crack. Also, a criterion correlation of the condition of the equilibrium defect condition with a length of 2l was got, depending on the magnitude of the contact temperature. When the weld is cooled, it develops “hot cracks” that lead to a lack of welding elements of the structures. The results of the simulation using singular integral equations open the possibility to evaluate the influence of thirdparty fillers on the loss of functional properties of inhomogeneous systems. The exact determination of the order and nature of the singularity near the vertices of the acute-angled imperfection in the inhomogeneous medium, presented in the analytical form, is necessary to plan and record the corresponding criterion relations to determine the functional properties of inhomogeneous systems.

Key words: mathematical model, linear systems, singular integral equations, impulse response, defects, criteria for the destruction of stochastically defective bodies, Riemann problem, thermoelastic state

Bibliography:
1. Gakhov F. D. Kraievye zadachi. M.: Nauka,1977. 640 s.
2. Gakhov F. D. Uravneniia tipa svertki. M.: Nauka, 1978.296 s.
3. Litvinchuk G. S. Kraievye zadachi i singuliarnye integralnye uravneniia so sdvigom. M.: Nauka, 1977. 448 s.
4. Muskhelishvili N. I. Singuliarnye integralnye uravneniia. M.: Nauka, 1968. 512 s.
5. Panasiuk V. V. Metod singuliarnykh integralnykh uravnenii v dvukhmernykh zadachakh difraktsii. K.: Nauk. dumka, 1984. 344 s.
6. Siegfried PROSSDORF Einige Klassen singularer Gleichungen.Akademie Verlag Berlin, 1974. 494 s. https://doi.org/10.1007/978-3-0348-5827-4
7. Oborskii G. А. Modelirovanie sistem : monografiia. Odessa: Astroprint, 2013. 664 s.
8. Usov A. V. Matematicheskoe modelirovanie protsessov kontrolia pokrytiia elementov konstruktsii na baze SIU. Problemy mashinostroeniia. 2010. Т.13. №1. s. 98−109.
9. Kunitsyn M. V., Tribocorrosion research of NI-Al2O3/TIO2 composite materials obtained by the method of electrochemical deposition. M.V. Kunitsyn, A.V Usov. Zb. nauk. prats, Suchasni tekhnolohii v mashinobuduvanni. Vyp. 12. Kharkiv: NTU KhPI, 2017. s. 61−70.
10. Savruk M. P. Chislennyi analiz v ploskikh zadachakh teorii tershchin. K.: Nauk. dumka, 1989. 248 s.
11. Usov A. V. Vvedenie v metody optimizatsii i teoriiu tekhnicheskikh sistem. Odessa: Astroprint, 2005. 496 s.
12. Popov G. Ya. Kontsentratsiia uprugikh napriazhenii vozle shtampov, razrezov, tonkikh vkliuchenii i podkreplenii. M.: Nauka, 1982. 344 s.
13. Cherepanov G. P. Mekhanika khrupkogo razrusheniia. M.: Nauka., 1974. 640 s.
14. Stashchuk N. G. Zadachi mekhaniki uprugikh tel s treshchinopodobnymi defectami. K.: Nauk. dumka, 1993. 358 s.
15. Ekobori T. Nauchnye osnovy prochnosti i razrusheniia materialov. Per. s yap. K.: Nauk. dumka, 1978. 352 s.
16. Morozov N. F. Matematicheskie voprosy teorii treshchin. M.: Nauka, 1984. 256 s.
17. Popov G. Ya. Izbrannye trudy. Т. 1, 2. Odessa: VMV, 2007. 896 s.
18. Grigirian G. D., Usov A. V., Chaplia М. Yu. Vliianie shlifovochnykh defektov na prochnost detalei nesushchei sistemy. Vsesoiuzn. konf. Nadezhnost i dolgovechnost mashin i priborov. 1984. s.101−106.
19. Rais Dzh. Matematicheskie metody v mekhanike razrusheniia. Razrushenie. V 2 t. М.: Mir, 1975.Т.2. S. 204−335.
20. Karpenko G. V. Fiziko-khimicheskaia mekhanika konstruktsionnykh materialov: V 2-kh t. K. : Nauk. dumka, 1985. Т. 1 228 s.
21. Kormilitsina Е. А., Salkovskii F. М., Usov A. V., Yakimov А. V. Prichiny poiavliniia defektov pri shlifovanii magnitotverdykh splavov. Tekhnologiia elektrotekhnicheskogo proizvodstva. М.: Energiia. № 4. 1982. s.1−5.
22. Usov A. V. Smeshannaia zadacha termouprugosti dlia kusochno-odnorodnykh tel s vkliucheniiami i treshchinami. IV Vsesoiuzn. konf. Smeshannye zadachi mechaniki deformiruemogo tela: Tez. dokl.-Odessa,1990. s.116.
23. Yakimov А. V., Slobodianyk P. T., Usov A. V. Teplofizika mekhanicheskoi obrabotki. K.: Nauk. dumka,1991. S. 270.
24. Vitvitskii P. M., Popina S. Yu. Prochnost i kriterii khrupkogo razrusheniia stokhaticheski defektnykh tel. K.: Nauk. dumka, 1980. 187 s.
Downloads: 46
Abstract views: 
1766
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore;; Plano; Miami; Columbus; Columbus; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Ashburn; Ashburn; Mountain View; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn27
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Odessa; Dnipro; Kyiv3
Germany;; Falkenstein3
Canada Toronto; Monreale2
Cambodia Phnom Penh1
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
15.1.2020  Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements
15.1.2020  Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements
15.1.2020  Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements

Keywords cloud

]]>
14.1.2020 On the problem of optimum control https://journal.yuzhnoye.com/content_2020_1-en/annot_14_1_2020-en/ Wed, 13 Sep 2023 11:02:31 +0000 https://journal.yuzhnoye.com/?page_id=31048
2020, (1); 133-136 DOI: https://doi.org/10.33136/stma2020.01.133 Language: Russian Annotation: The use of Langrangian multipliers at solution of optimal control problems in linear statement with qua dratic quality criterion leads to the necessity of solving boundary value problem with conditions for multipliers at the right end of control interval. For this purpose, the differential equations for state parameters and Langrangian multipliers are expressed in the form of finite-difference linear relations. The proposed method may be used in the control systems of rockets of various purpose for motion parameters regulation.
]]>

14. On the problem of optimum control

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 133-136

DOI: https://doi.org/10.33136/stma2020.01.133

Language: Russian

Annotation: The use of Langrangian multipliers at solution of optimal control problems in linear statement with qua dratic quality criterion leads to the necessity of solving boundary value problem with conditions for multipliers at the right end of control interval. Solution of the obtained equations for the purpose of regulation synthesis in forward time in this case does not produce stabilizing effect, as a rule. For regulation synthesis, the met hod is widely used of analytical construction of optimal regulator based on stabilizing matrix, which is obtained by solution of algebraic Riccati equation. However, in this case, there are some difficulties ‒ the necessity of calculating the stabilizing matrix, impossibility of calculating this matrix in non-stationary problem. The article proposes the regulation synthesis method by way of solving boundary value problem on regulation cycle i nterval. For this purpose, the differential equations for state parameters and Langrangian multipliers are expressed in the form of finite-difference linear relations. Taking into account that the state parameters and Langrangian multipliers are equal to zero at the end of cycle, the Langrangian multipliers at the beginning of cycle are determined by known values of state parameters for the same moment through solving the above linear system. The obtained values form the regulation law. In consequence of small duration of regulation cycle, an amplifying coefficient is introduced in the regulation law. Its value is determined based on results of preliminary modeling. Efficiency of the proposed method was verified by the example of adopted dynamic system, including non-stationary. The amplifying coefficient is fairly simply selected by the type of stabilization process. The proposed method may be used in the control systems of rockets of various purpose for motion parameters regulation.

Key words: optimal control, regulation law, Langrangian multiplier, regulation cycle interval, amplifying coefficient

Bibliography:
1. Braison A., Kho Yu-Shi. Prikladnaia teoriia optimalnogo upravleniia. М., 1972.
2. Larin V. B. O stabiliziruiushchikh i antistabiliziruiushchikh resheniiakh algebraicheskikh uravnenii Rikkati. Problemy upravleniia i informatiki. 1996. №1-2.
3. Aleksandrov А. G. Optimalnye i additivnye sistemy. М., 1989.
Downloads: 43
Abstract views: 
1034
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Matawan; Baltimore; Boydton; Plano; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Columbus; Ashburn; Seattle; Seattle; Portland; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Ashburn; Boardman; Ashburn25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Canada Toronto; Monreale2
Ukraine Kyiv; Dnipro2
Finland Helsinki1
Unknown1
Algeria Laghouat1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
14.1.2020  On the problem of optimum control
14.1.2020  On the problem of optimum control
14.1.2020  On the problem of optimum control

Keywords cloud

]]>
13.1.2020 Mathematical models of hydraulic servomechanisms of space technology https://journal.yuzhnoye.com/content_2020_1-en/annot_13_1_2020-en/ Wed, 13 Sep 2023 10:58:26 +0000 https://journal.yuzhnoye.com/?page_id=31045
2020, (1); 121-132 DOI: https://doi.org/10.33136/stma2020.01.121 Language: Russian Annotation: Being a final executive element of rocket control systems, a hydraulic actuator is at the same time the main source of various non-linear dependencies in rocket dynamic design whose availability dramatically com plicates theoretical analysis of their dynamics and control systems synthesis.
]]>

13. Mathematical models of hydraulic servomechanisms of space technologynt

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 121-132

DOI: https://doi.org/10.33136/stma2020.01.121

Language: Russian

Annotation: Being a final executive element of rocket control systems, a hydraulic actuator is at the same time the main source of various non-linear dependencies in rocket dynamic design whose availability dramatically com plicates theoretical analysis of their dynamics and control systems synthesis. The required accuracy and complexity of mathematical models of hydraulic servo mechanisms are different for different design phases of guided rockets. The paper deals with the simplest models of hydraulic servo actuators intended to calculate rocket controllability and to define requirements to response and power characteristics of the actuators. To calculate the rocket stability regions and to evaluate own stability of servo actuators, a linearized mathematical model of hydraulic servo actuator is used that takes into account the most important parameters having impact on stability of the servo actuator itself and on that of the rocket: hardness of working fluid, stiffness of elastic suspension of the actuator and control element, slope of mechanical characteristic of the actuator in the area of small control signals, which, as full mathematical model analysis showed, is conditioned only by dimensions of initial axial clearances of slide’s throats. The full mathematical model constructed based on accurate calculations of the balance of fluid flow rate through the slide’s throats allows, as early as at designing phase, determining the values of most important static and dynamic characteristics of a future hydraulic actuator, selecting optimal characteristics of slides based on specified degree of stability and response of servo actuator and conducting final modeling of rocket flight on the integrated control system test benches without using real actuators and loading stands. It is correct and universal for all phases of rockets and their control systems designing and testing. Using this mathematical model, the powerful actuators of a line of intercontinental ballistic missiles with swinging reentry vehicle and the main engines actuators of Zenit launch vehicle first stage were developed. The results of their testing separately and in rockets practically fully comply with the data of theoretical calculations.

Key words: mathematical model, hydraulic actuator, servo actuator, stability, damping, slide

Bibliography:
1. Dinamika gidroprivoda / pod red. V. N. Prokofieva. М., 1972. 292 s.
2. Gamynin N. S. Gidravlicheskii privod system upravleniia. М., 1972. 376 s.
3. Chuprakov Yu. I. Gidroprivod i sredstva gidroavtomatiki. М., 1979. 232 s.
4. Kozak L. R. Geometriia zolotnika i dinamicheskie kharakteristiki gidroprivoda // Visnyk Dnipropetrovskoho universytetu. Vyp. 13, Tom 1. 2009.
Downloads: 38
Abstract views: 
815
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Matawan; Baltimore; Plano; Columbus; Detroit; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn22
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Canada Toronto; Monreale2
India Bengaluru1
Finland Helsinki1
Unknown1
Vietnam1
Algeria1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
13.1.2020  Mathematical models of hydraulic servomechanisms of space technology
13.1.2020  Mathematical models of hydraulic servomechanisms of space technology
13.1.2020  Mathematical models of hydraulic servomechanisms of space technology

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep https://journal.yuzhnoye.com/content_2020_1-en/annot_5_1_2020-en/ Wed, 13 Sep 2023 06:15:53 +0000 https://journal.yuzhnoye.com/?page_id=31026
Features of nonlinear deformation of shell systems with geometrical imperfections.
]]>

5. Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2020, (1); 44-56

DOI: https://doi.org/10.33136/stma2020.01.044

Language: Russian

Annotation: The shell structures widely used in space rocket hardware feature, along with decided advantage in the form of optimal combination of mass and strength, inhomogeneities of different nature: structural (different thicknesses, availability of reinforcements, cuts-holes et al.) and technological (presence of defects arising in manufacturing process or during storage, transportation and unforseen thermomechanical effects). The above factors are concentrators of stress and strain state and can lead to early destruction of structural elements. Their different parts are deformed according to their program and are characterized by different levels of stress and strain state. Taking into consideration plasticity and creeping of material, to determine stress and strain state, the approach is effective where the calculation is divided into phases; in each phase the parameters are entered that characterize the deformations of plasticity and creeping: additional loads in the equations of equilibrium or in boundary conditions, additional deformations or variable parameters of elasticity (elasticity modulus and Poisson ratio). Then the schemes of successive approximations are constructed: in each phase, the problem of elasticity theory is solved with entering of the above parameters. The problems of determining the lifetime of space launch vehicles and launching facilities should be noted separately, as it is connected with damages that arise at alternating-sign thermomechanical loads of high intensity. The main approach in lifetime determination is one that is based on the theory of low-cycle and high-cycle fatigue. Plasticity and creeping of material are the fundamental factors in lifetime substantiation. The article deals with various aspects of solving the problem of strength and stability of space rocket objects with consideration for the impact of plasticity and creeping deformations.

Key words: shell structures, stress and strain state, structural and technological inhomogeneity, thermomechanical loads, low-cycle and high-cycle fatigue, lifetime

Bibliography:
1. Iliushin A. A. Trudy v 4-kh t. М., 2004. T. 2. Plastichnost. 408 s.
2. Ishlinskii А. Yu., Ivlev D. D. Matematicheskaya teoriia plastichnosti. М., 2001. 700 s.
3. Hutchinson J. W. Plastic buckling. Advances in Appl. Mech. 1974. V. 14. P. 67 – 144. https://doi.org/10.1016/S0065-2156(08)70031-0
4. Hudramovich V. S. Ustoichivost uprugo-plasticheskikh obolochek / otv. red. P. I. Nikitin. Kiev, 1987. 216 s.
5. Parton V. Z., Morozov Е. М. Mekhanika uprugoplastichnogo razrusheniia. М., 1985. 504 s.
6. Tomsen E., Yang Ch., Kobaiashi Sh. Mekhanika plasticheskikh deformatsii pri obrabotke metalla. М., 1968. 504 s.
7. Mossakovsky V. I., Hudramovich V. S., Makeev E. M. Kontaktnye vzaimodeistviia elementov obolochechnykh konstruktsii / otv. red. V. L. Rvachev. Kiev, 1988. 288 s.
8. Hudramovych V. S. Contact mechanics of shell structures under local loading. Int. Appl. Mech. 2009. V. 45, No 7. P. 708 – 729. https://doi.org/10.1007/s10778-009-0224-5
9. Iliushin A. A. Trudy v 4-kh t. М., 2009. Т. 4. Modelirovanie dinamicheskikh protsessov v tverdykh telakh i inzhenernye prilozheniia. 526 s.
10. Hudramovich V. S. Plasticheskoe vypuchivanie tsilindricheskoi obolochki konechnoi dliny pri impulsnom lokalnom nagruzhenii. Teoriia obolochek i plastin: tr. 8-i Vsesoiuzn. konf. Po teorii obolochek i plastin (Rostov-na-Donu, 1971 g.). М., 1973. S. 125 – 130.
11. Nelineinye modeli i zadachi mekhaniki deformiruemogo tverdogo tela. Sb. nauch. tr., posv. 70-letiiu so dnia rozhd. Yu. N. Rabotnova / otv. red. K. V. Frolov. М., 1984. 210 s.
12. Binkevich Е. V., Troshin V. G. Ob odnom sposobe linearizatsii uravnenii teorii obolochek srednego izgiba. Prochnost i dolgovechnost elementov konstruktsii: sb. nauch. tr. / otv. red. V. S. Hudramovich. Kiev, 1983. S. 53 – 58.
13. Rabotnov Yu. N. Problemy mekhaniki deformiruemogo tverdogo tela. Izbrannye Trudy / otv. red. K. V. Frolov. М., 1991. 196 s.
14. Hudramovich V. S. Teoriia polzuchesti i ee prilozheniia k raschetu elementov tonkostennykh konstruktsii. Kiev, 2005. 224 s.
15. Hudramovych V. S., Hart E. L., Ryabokon’ S. A. Plastic deformation of nonhomogeneous plates. J. Math. Eng. 2013. V. 78, Iss. 1. P. 181 – 197. https://doi.org/10.1007/s10665-010-9409-5
16. Hart E. L., Hudramovych V. S. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Maintenance 2012. Proceedings of 2th Int. Conf. (Zenica, Bosnia and Herzegovina, 2012). Zenica, 2012. P. 157 – 164.
17. Hudramovich V. S., Hart E. L. Konechnoelementnyi analiz protsessa rasseiannogo razrusheniia ploskodeformiruemykh uprugoplasticheskikh sred s lokalnymi kontsentratsiami napriazhenii. Uprugost i neuprugost: materialy Mezhdunar. simp. Po problemam mekhaniki deform. tel, posv. 105-letiiu so dnia rozhd А. А. Iliushina (Moskva, yanv. 2016 g.). М., 2016. S. 158 – 161.
18. Lazarev Т. V., Sirenko V. N., Degtyarev М. А. i dr. Vysokoproizvoditelnaia vychislitelnaia sistema dlia raschetnykh zadach GP KB “Yuzhnoye”. Raketnaia tekhnika. Novyie vozmozhnosti: nauch.-tekhn. sb. / pod red. A. V. Degtyareva. Dnipro, 2019. S. 407 – 419.
19. Sirenko V. N. O vozmozhnosti provedeniia virtualnyks ispytanii pri razrabotke raketno-kosmicheskoi tekhniki s tseliu opredeleniia nesushchikh svoistv. Aktualni problemy mekhaniky sytsilnoho seredovyshcha i mitsnosti konstruktsii: tezy dop. II Mizhnar. nauk.-tekhn. konf. pam’iati akad. NANU V. І. Mossakovskoho (do storichchia vid dnia narodzhennia). (Dnipro, 2019 r.). Dnipro, 2019. S. 43 – 44.
20. Degtyarev А. V. Shestdesiat let v raketostroyenii i kosmonavtike. Dniepropetrovsk, 2014. 540 s.
21. Mak-Ivili А. Dzh. Analiz avariinykh razrushenii. М., 2010. 416 s.
22. Song Z. Test and launch control technology for launch vehicles. Singapore, 2018. 256 p. https://doi.org/10.1007/978-981-10-8712-7
23. Hudramovich V. S., Sirenko V. N., Klimenko D. V., Daniev Ju. F., Hart E. L. Development of the normative framework methodology for justifying the launcher structures resource of launch vehicles. Strength of Materials. 2019. Vol. 51, No 3. P. 333 – 340. https://doi.org/10.1007/s11223-019-00079-4
24. Grigiliuk E. I., Shalashilin V. V. Problemy nelineinogo deformirovaniia. Metod prodolzheniia po parametru v nelineinykh zadachakh mekhaniki deformiruemogo tverdogo tela. М., 1988. 232 s.
25. Hudramovych V. S. Features of nonlinear deformation of shell systems with geometrical imperfections. Int. Appl. Mech. 2006. Vol. 42, Nо 7. Р. 3 – 37. https://doi.org/10.1007/s10778-006-0204-y
26. Hudramovich V. S. Kriticheskoe sostoianie neuprugikh obolochek pri slozhnom nagruzhenii. Ustoichivost v MDTT: materialy Vsesoiuzn. simp. (Kalinin, 1981 g.) / pod red. V. G. Zubchaninova. Kalinin, 1981. S. 61 – 87.
27. Hudramovich V. S. Ustoichivost i nesushchaia sposobnost plasticheskikh obolochek. Prochnost i dolgovechnost konstruktsii: sb. nauch. tr. / otv. red. V. S. Budnik. Kiev, 1980. S. 15 – 32.
28. Hudramovich V. S., Pereverzev E. S. Nesushchaia sposobnost i dolgovechnost elementov konstruktsii / otv. red. V. I. Mossakovsky. Kiev, 1981. 284 s.
29. Hudramovich V. S., Konovalenkov V. S. Deformirovanie i predelnoie sostoianie neuprugikh obolochek s uchetom istorii nagruzheniia. Izv. AN SSSR. Mekhanika tverdogo tela. 1987. №3. S. 157 – 163.
30. Нudramovich V. S. Plastic and creep instability of shells with initial imperfections. Solid mechanics and its applications / Ed. G. M. L. Gladwell V. 64. Dordrecht, Boston, London, 1997. P. 277–289. https://doi.org/10.1007/0-306-46937-5_23
31. Нudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: proceedings Int. Conf. (Helsinki, Finland, 1999) / Ed. P. Makelainen. Amsterdam, Lousanne, New York, Tokyo, 1999. P. 257–263. https://doi.org/10.1016/B978-008043014-0/50133-5
32. Kushnir R. M., Nikolyshyn М. М., Osadchuk V. А. Pruzhnyi ta pruzhnmoplastychnyi hranychnyi stan obolonok z defectamy. Lviv, 2003. 320 s.
33. Hudramovich V. S. Predelnyi analiz – effektivnyi sposob otsenki konstruktsionnoi prochnosti obolochechnykh system. III Mizhnar. konf. «Mekhanika ruinuvannia i mitsnist konstruktsii» (Lviv, 2003) / pid red. V. V. Panasiuka. Lviv, 2003. S.583–588.
34. Herasimov V. P., Hudramovich V. S., Larionov I. F. i dr. Plasticheskoe razrushenie sostavnykh obolochechnykh konstruktsii pri osevom szhatii. Probl. prochnosti. 1979. №11. S. 58 – 61.
35. Hudramovich V. S. Herasimov V. P., Demenkov A. F. Predelnyi analiz elementov konstruktsii / otv. red. V. S. Budnik. Kiev, 1990. 136 s.
36. Druker D. Makroskopicheskie osnovy teorii khrupkogo razrusheniia. Razrushenie. М., 1973. Т. 1. S. 505 – 569.
37. Galkin V. F., Hudramovich V. S., Mossakovsky V. I., Spiridonov I. N. O vliianii predela tekuchesti na ustoichivost tsilindricheskikh obolochek pri osevom szhatii. Izv. AN SSSR. Mekhanika tverdogo tela. 1973. №3. С 180 – 182.
38. Hudramovich V. S., Dziuba A. P., Selivanov Yu. М. Metody golograficheskoi interferometrii v mechanike neodnorodnykh tonkostennykh konstruktsii. Dnipro, 2017. 288 s.
39. Hudramovich V. S., Skalskii V. R., Selivanov Yu. М. Holohrafichne te akustyko-emisiine diahnostuvannia neodnoridnykh konstruktsii i materialiv / vidpovid. red. Z. Т. Nazarchuk. Lviv, 2017. 488 s.
40. Pisarenko G. S., Strizhalo V. А. Eksperimentalnye metody v mekhanike deformiruemogo tverdogo tela. Kiev, 2018. 242 s.
41. Guz’ A. N., Dyshel M. Sh., Kuliev G. G., Milovanova O. B. Razrushenie i lokalnaia poteria ustoichivosti tonkostennykh tel s vyrezami. Prikl. mekhanika. 1981. Т. 17, №8. S. 3 – 24. https://doi.org/10.1007/BF00884086
42. Hudramovich V. S., Diskovskii I. A., Makeev E. M. Tonkostennye element zerkalnykh antenn. Kiev, 1986. 152 s.
43. Hudramovich V. S., Hart E. L., Klimenko D. V., Ryabokon’ S. A. Mutual influence of openings on strength of shell-type structures under plastic deformation. Strength of Materials. 2013. V. 45, Iss. 1. P. 1 – 9. https://doi.org/10.1007/s11223-013-9426-5
44. Hudramovich V. S., Klimenko D. V., Hart E. L. Vliianie vyrezov na prochnost tsilindricheskikh otsekov raket-nositelei pri neuprugom deformirovanii materiala. Kosmichna nauka i tekhnolohiia. 2017. Т. 23, № 6. S. 12 – 20.
45. Hart E. L., Hudramovich V. S. Proektsiino-iteratsiini skhemy realizatsii variatsiino-sitkovykh metodiv u zadachakh pruzhno-plastychnoho deformuvannia neodnoridnykh tonkostinnykh konstruktsii. Matematychni metody I fizyko-mechanichni polia. 2019. Т. 51, № 3. S. 24 – 39.
46. Nikitin P. I., Hudramovich V. S., Larionov I. F. Ustoichivost obolochek v usloviiakh polzuchesti. Polzuchest v konstruktsiakh: tez. dokl. Vsesoiuzn. Simpoziuma (Dniepropetrovsk, 1982 g.). Dniepropetrovsk, 1982. S. 3 – 5.
47. Hudramovich V. S. Ob issledovaniiakh v oblasti teorii polzuchesti v Institute tekhnicheskoi mekhaniki NANU i GKAU. Tekhn. mekhanika. 2016. №4. S. 85 – 89.
48. Hoff N. J., Jahsman W. E., Nachbar W. A. A study of creep collapse of a long circular shells under uniform external pressure. J. Aerospace Sci. 1959. Vol. 26, No 10. P. 663 – 669. https://doi.org/10.2514/8.8243
49. Barmin I. V. Tekhnologicheskiie obiekty nazemnoi infrastruktury raketno-kosmicheskoi tekhniki. V 2-kh kn. M., 2005. Kn. 1. 412 s. М., 2005. Kn. 2. 376 s.
50. Makhutov N. А., Matvienko D. G., Romanov А. N. Problemy prochnosti, tekhnogennoi bezopasnosti i konstruktsionnogo materialovedenia. М., 2018. 720 s.
51. Gokhfeld D. А., Sadakov О. S. Plastichnost i polzuchest elementov konstruktsii pri povtornykg nagruzheniiakh. М., 1984. 256 s.
52. Troshchenko V. Т., Sosnovskii L. А. Soprotivlenie ustalosti metallov i splavov: spravochnik v 2-kh t. Kiev, 1987. Т. 1. 510 s. Kiev, 1987. Т. 2. 825 s.
53. Manson S. S. and Halford G. R. Fatigue and durability of structural materials. ASM International Material Park. Ohio, USA, 2006. 456 p.
Downloads: 45
Abstract views: 
2609
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Columbus; Matawan; Baltimore; North Bergen; Boydton; Plano; Miami; Dublin; Dublin; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Ashburn; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn28
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Canada Toronto; Toronto; Monreale3
Ukraine Odessa; Dnipro2
Finland Helsinki1
Ethiopia Addis Ababa1
Germany Falkenstein1
Latvia Riga1
Romania Voluntari1
Netherlands Amsterdam1
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Keywords cloud

]]>
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles https://journal.yuzhnoye.com/content_2018_2-en/annot_19_2_2018-en/ Thu, 07 Sep 2023 12:23:58 +0000 https://journal.yuzhnoye.com/?page_id=30801
Monitoring of Dynamic Systems. Interference Protection of Sensors and Connecting Wires of Industrial Automation Systems. Statistically Optimal Linear Estimations and Control. Filtration and Stochastic Control in Dynamic Systems: Collection of articles / Under the editorship of K. Combined Estimation of Complex Systems Characteristics.
]]>

19. Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 157-172

DOI: https://doi.org/10.33136/stma2018.02.157

Language: Russian

Annotation: The measurement errors upon conducting flight tests for launch vehicles are evaluated by considering the interferences and uncertainties in the measurement system procedure. Formal use of this approach can lead to unpredictable consequences. More reliable evaluation of errors upon conducted measurements can be achieved if the measurement process is regarded as a procedure of successive activities for designing, manufacturing, and testing the measurement system and the rocket including measurements and their processing during the after-flight analysis of the received data. The sampling rates of the main controlled parameters are three to ten times higher than the frequency range of their changing. Therefore, it is possible to determine the characteristics of the random error components directly on the basis of registered data. The unrevealed systematic components create the basic uncertainty in the evaluation of the examined parameter’s total measurement error. To evaluate the precision and measurement accuracy of a particular launch, the article suggests specifying the preliminary data on measurement error components determined during prelaunch processing and launch. Basic structures of algorithms for evaluation of precision and measurement accuracy for certain mathematical models that form the measured parameters were considered along with the practical case when static correlation existed among the measured parameters.

Key words: flight tests, sensor, measurement error, mathematical model

Bibliography:
1. Novitsky P. V., Zograf I. A. Evaluation of Measurement Errors. L., 1985. 248 p.
2. Shmutzer E. Relativity Theory. Modern Conception. Way to Unity of Physics. М., 1981. 230 p.
3. Blekhman I. I., Myshkis A. D., Panovenko Y. G. Applied Mathematics: Subject, Logic, Peculiarities of Approaches. К., 1976. 270 p.
4. Moiseyev N. N. Mathematical Problems of System Analysis. М., 1981. 488 p.
5. Bryson A., Ho Yu-Shi. Applied Theory of Optimal Control. М., 1972. 544 p.
6. Yevlanov L. G. Monitoring of Dynamic Systems. М., 1972. 424 p.
7. Sergiyenko A. B. Digital Signal Processing: Collection of publications. 2011. 768 p.
8. Braslavsky D. A., Petrov V. V. Precision of Measuring Devices. М., 1976. 312 p.
9. Glinchenko A. S. Digital Signal Processing: Course of lectures. Krasnoyarsk, 2008. 242 p.
10. Garmanov A. V. Practice of Optimization of Signal-Noise Ratio at ACP Connection in Real Conditions. М., 2002. 9 p.
11. Denosenko V. V., Khalyavko A. N. Interference Protection of Sensors and Connecting Wires of Industrial Automation Systems. SТА. No. 1. 2001. P. 68-75.
12. Garmanov A. V. Connection of Measuring Instruments. Solution of Electric Compatibility and Interference Protection Problems. М., 2003. 41 p.
13. TP ACS Encyclopedia. bookASUTR.ru.
14. Smolyak S. A., Titarenko B. P. Stable Estimation Methods. М., 1980. 208 p.
15. Fomin A. F. et al. Rejection of Abnormal Measurement Results. М., 1985. 200 p.
16. Medich J. Statistically Optimal Linear Estimations and Control. М., 1973. 440 p.
17. Sage E., Mells J. Estimation Theory and its Application in Communication and Control. М., 1976. 496 p.
18. Filtration and Stochastic Control in Dynamic Systems: Collection of articles / Under the editorship of K. T. Leondes. М., 1980. 408 p.
19. Krinetsky E. I. et al. Flight Tests of Rockets and Spacecraft. М., 1979. 464 p.
20. Viduyev N. G., Grigorenko A. G. Mathematical Processing of Geodesic Measurements. К., 1978. 376 p.
21. Aivazyan S. A., Yenyukov I. S., Meshalkin L. D. Applied Statistics. Investigation of Dependencies. М., 1985. 487 p.
22. Sirenko V. N., Il’yenko P. V., Semenenko P. V. Use of Statistic Approaches in Analysis of Gas Dynamic Parameters in LV Vented Bays. Space Technology. Missile Armaments: Collection of scientific-technical articles. Issue 1. P. 43-47.
23. Granovsky V. A., Siraya T. N. Methods of Experimental Data Processing at Measurements. L., 1990. 288 p.
24. Zhovinsky A. N., Zhovinsky V. N. Engineering Express Analysis of Random Processes. М., 1979. 112 p.
25. Anishchenko V. A. Control of Authenticity of Duplicated Measurements in Uncertainty Conditions. University News. Minsk, 2010. No. 2. P. 11-18.
26. Anishchenko V. A. Reliability and Accuracy of Triple Measurements of Analog Technological Variables. University News. Minsk, 2017. No. 2. P. 108-117.
27. Shenk H. Theory of Engineering Experiment. М., 1972. 381 p.
28. Bessonov А. А., Sverdlov L. Z. Methods of Statistic Analysis of Automatic Devices Errors. L., 1974. 144 p.
29. Pugachyov V. N. Combined Methods to Determine Probabilistic Characteristics. М., 1973. 256 p. https://doi.org/10.21122/1029-7448-2017-60-2-108-117
30. Gandin L. S., Kagan R. L. Statistic Methods of Meteorological Data Interpretation. L., 1976. 360 p.
31. Zheleznov I. G., Semyonov G. P. Combined Estimation of Complex Systems Characteristics. М., 1976. 52 p.
32. Vt222М Absolute Pressure Sensor: ТU Vt2.832.075TU. Penza, 1983.
Downloads: 39
Abstract views: 
1075
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Miami; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Seattle; Ashburn; Seattle; Portland; Portland; San Mateo; Des Moines; Boardman; Ashburn23
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Indonesia Jakarta1
China Shanghai1
Finland Helsinki1
Unknown1
Great Britain London1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Belarus Hrodna1
Ukraine Dnipro1
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs https://journal.yuzhnoye.com/content_2018_2-en/annot_12_2_2018-en/ Thu, 07 Sep 2023 11:38:27 +0000 https://journal.yuzhnoye.com/?page_id=30770
An approach to program forming is proposed for motion control in the form of polynomial that brings the problem of the optimal control theory to a simpler problem of nonlinear mathematical programming. The mathematical model of the guided missile provides adequate accuracy for design study to determine: overall dimensions and mass characteristics of the guided missile in general and its structural components and subsystems; power, thrust and consumption characteristics of the main engine; aerodynamic and ballistic characteristics of the guided missile. Key words: complex problem of the optimal control theory , problem of nonlinear mathematical programming , main solid rocket motor , limitations for motion parameters and basic characteristics of the object Bibliography: 1. Effectiveness of Complex Systems. Effectiveness of Designed Complex Systems’ Elements.
]]>

12. Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2018 (2); 101-116

DOI: https://doi.org/10.33136/stma2018.02.101

Language: Russian

Annotation: The main scientific and methodological propositions for designing single-stage guided missiles with main solid rocket motors that are intended for delivering payload to the given spatial point with required and specified kinematic motion parameters are defined. The aim of the article is to develop methodology for the early design phase to improve the basic characteristics of guided missiles, including formalization of complex problem to optimize design parameters, trajectory parameters and motion control programs for guided missiles capable of flying along the ballistic, aeroballistic or combined trajectories. The task is defined as a problem of the optimal control theory with limitations in form of equality, inequality and differential constraints. An approach to program forming is proposed for motion control in the form of polynomial that brings the problem of the optimal control theory to a simpler problem of nonlinear mathematical programming. When trajectory parameters were calculated the missile was regarded as material point of variable mass and the combined equations for center-of-mass motion of the guided missile with projections on axes of the terrestrial reference system were used. The structure of the mathematical model was given along with the calculation sequence of criterion functional that was used for optimization of design parameters, control programs and basic characteristics of the guided missile. The mathematical model of the guided missile provides adequate accuracy for design study to determine: overall dimensions and mass characteristics of the guided missile in general and its structural components and subsystems; power, thrust and consumption characteristics of the main engine; aerodynamic and ballistic characteristics of the guided missile. The developed methodology was tested by solving design problems. Applications of the developed program were studied to present the research results in a user-friendly form.

Key words: complex problem of the optimal control theory, problem of nonlinear mathematical programming, main solid rocket motor, limitations for motion parameters and basic characteristics of the object

Bibliography:
1. Degtyarev A. V. Rocket Engineering: Problems and Prospects. Selected scientific-technical publications. Dnepropetrovsk, 2014. 420 p.
2. Shcheverov D. N. Designing of Unmanned Aerial Vehicles. М., 1978. 264 p.
3. Sinyukov А. М. et al. Ballistic Solid-Propellant Rocket / Under the editorship of A. M. Sinyukov. М., 1972. 511 p.
4. Varfolomeyev V. I. Designing and Testing of Ballistic Rockets / Under the editorship of V. I. Varfolomeyev, M. I. Kopytov. М., 1970. 392 p.
5. Vinogradov V. A., Grushchansky V. A., Dovgodush S. I. et al. Effectiveness of Complex Systems. Dynamic Models. М., 1989. 285 p.
6. Il’ichyov A. V., Volkov V. D., Grushchansky V. A. Effectiveness of Designed Complex Systems’ Elements. М., 1982. 280 p.
7. Krotov V. F., Gurman V. I. Methods and Problems of Optimal Control. М., 1973. 446 p.
8. Pontryagin L. S. et al. Mathematical Theory of Optimal Processes. М., 1969. 385 p.
9. Tarasov E. V. Algorithms of Flying Vehicles Optimal Designing. М., 1970. 364 p.
10. Alpatov A. P., Sen’kin V. S. Complex Task of Optimization of Space Rocket Basic Design Parameters and Motion Control Programs. Technical Mechanics. 2011. No. 4. P. 98-113.
11. Alpatov A. P., Sen’kin V. S. Methodological Support for Selection of Launch Vehicle Configuration, Optimization of Design Parameters and Flight Control Programs. Technical Mechanics. 2013. No. 4. P. 146-161.
12. Sen’kin V. S. Optimization of Super-Light Launch Vehicle Design Parameters. Technical Mechanics. 2009. No. 1. P. 80-88.
13. Sen’kin V. S. Flight Control Optimization and Thrust Optimization of Controllable Rocket Object Main Propulsion System. Technical Mechanics. 2000. No. 1. P. 46-50.
14. Syutkina-Doronina S. V. On Problem of Optimization of Design Parameters and Control programs of a Rocket Object With Solid Rocket Motor. Aerospace Engineering and Technology. 2017. No. 2 (137). P. 44-59.
15. Lebedev А. А., Gerasyuta N. F. Rocket Ballistics. М., 1970. 244 p.
16. Razumov V. F., Kovalyov B. K. Design Basis of Solid-Propellant Ballistic Missiles. М., 1976. 356 p.
17. Yerokhin B. T. SRM Theoretical Design Basis. М., 1982. 206 p.
18. Abugov D. I., Bobylyov V. M. Theory and Calculation of Solid Rocket Motors. М., 1987. 272 p.
19. Shishkov А. А. Gas Dynamics of Powder Rocket Motors. М., 1974. 156 p.
20. Sen’kin V. S. Complex Task of Optimization of Super-Light Solid-Propellant Launch Vehicle Design Parameters and Control Programs. Technical Mechanics. 2012. No. 2. P. 106-121.
21. Methodological Support to Determine in Initial Designing Phase the Design Parameters, Control Programs, Ballistic, Power, and Mass-Dimensional Characteristics of Controllable Rocket Objects Moving In Aeroballistic Trajectory: R&D Report. ITM of NASU and SSAU, Yuzhnoye SDO. Inv. No. 40-09/2017. 2017. 159 p.
Downloads: 42
Abstract views: 
835
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Matawan; Baltimore; Plano; Miami; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Portland; Portland; San Mateo; Des Moines; Boardman; Ashburn; Ashburn24
Unknown; Brisbane;;4
Ukraine Kharkiv; Dnipro; Dnipro; Kyiv4
Singapore Singapore; Singapore; Singapore; Singapore4
Germany Frankfurt am Main; Falkenstein2
Finland Helsinki1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs

Keywords cloud

]]>
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime https://journal.yuzhnoye.com/content_2019_1-en/annot_5_1_2019-en/ Thu, 25 May 2023 12:09:25 +0000 https://journal.yuzhnoye.com/?page_id=27710
It is noted that the physical nonlinearity of the material and statistical approaches determine the strength analysis of useful life. Developing strength standards and useful life calculation basis, it is advisable to use modern methods of engineering diagnostics, in particular, holographic interferometry and acoustic emission, and to develop the high-speed circuits of numerical procedures for on-line calculations when testing the designed systems.
]]>

5. Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime

Organization:

The Institute of Technical Mechanics, Dnipro, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2019, (1); 28-37

DOI: https://doi.org/10.33136/stma2019.01.028

Language: Russian

Annotation: This article contains results of methodology and standards development for life prediction of launch site structures to launch various types’ launch vehicles into near-earth orbit. Launch sites have been built in various countries of the world (European Union, India, China, Korea, Russia, USA, Ukraine, France, Japan, etc.). In different countries they have their own characteristics, depending on the type and performance of the launch vehicles, infrastructure features (geography of the site, nomenclature of the space objects, development level of rocket and space technology), problems that are solved during launches, etc. Solution of various issues, arising in the process of development of the standards for justification of launch site life is associated with the requirement to consider complex problems of strength and life of nonuniform structural elements of launch sites and structures of rocket and space technology. Launch sites are the combination of technologically and functionally interconnected mobile and fixed hardware, controls and facilities, designed to support and carry out all types of operations with integrated launch vehicles. Launch pad, consisting of the support frame, flue duct lining and embedded elements for frame mounting, is one of the principal components of the launcher and to a large extent defines the life of the launch site. Main achievements of Ukrainian scientists in the field of strength and life are specified, taking into account the specifics of various branches of technology. It is noted that the physical nonlinearity of the material and statistical approaches determine the strength analysis of useful life. Main methodological steps of launch site structures life prediction are defined. Service limit of launch site is suggested to be the critical time or the number of cycles (launches) over this period, after which the specified limiting states are achieved in the dangerous areas of the load-bearing elements: critical cracks, destruction, formation of unacceptable plastic deformations, buckling failure, corrosion propagation, etc. Classification of loads acting on the launch sites is given. The useful life of launch site is associated with estimation of the number of launches. Concept of low and multiple-cycle fatigue is used. Developing strength standards and useful life calculation basis, it is advisable to use modern methods of engineering diagnostics, in particular, holographic interferometry and acoustic emission, and to develop the high-speed circuits of numerical procedures for on-line calculations when testing the designed systems.

Key words: classification of loads and failures; shock wave, acoustic and thermal loads; low-cycle fatigue; hierarchical approach in classification; projection-iterative schemes of numerical procedur

Bibliography:

1. Vidy startovykh kompleksov: GP KB «Yuzhnoye»: Rezhim dostupa. http://www.yuzhnoe.com/presscenter/media/ photo/techique/launch-vehique.
2. Modelyuvannya ta optimizatsia v nermomechanitsi electroprovidnykh neodnoridnykh til: u 5 t. / Pid. zag. red. akad. NANU R. M. Kushnira. Lvyv: Spolom, 2006–2011. T. 1: Termomechanika bagatokomponentnykh til nyzkoi electroprovodnosti. 2006. 300 p. T. 2: Mechanotermodiffusia v chastkovo prozorykh tilakh. – 2007. 184 p. T. 3: Termopruzhnist’ termochutlyvykh til. 2009. 412 p. T. 4: Termomechanica namagnychuvannykh electroprovodnykh nermochutlyvykh til. 2010. 256 p. T. 5. Optimizatsia ta identifikatsia v termomechanitsi neodnoridnykh til. 2011. 256 p.
3. Prochnost’ materialov I konstruktsiy / Pod obsch. red. acad. NANU V. T. Troschenko. K.: Academperiodika, 2005.1088 p.
4. Bigus G. A. Technicheskaya diagnostica opasnykh proizvodstvennykh obiektov/ G. A. Bigus, Yu. F. Daniev. М.: Nauka, 2010. 415 p.
5. Bigus G. A., Daniev Yu. F., Bystrova N. A., Galkin D. I. Osnovy diagnostiki technicheskykh ustroistv I sooruzheniy. M.: Izdatelstvo MVTU, 2018. 445 p.
6. Birger I. A., Shorr B. F., IosilevichG. B. Raschet na prochnost’ detaley machin: spravochnik. M.: Mashinostroenie, 1993. 640 p.
7. Hudramovich V. S. Ustoichivost’ uprugoplasticheskykh obolochek. K.: Nauk. dumka, 1987. 216 p.
8. Hudramovich V. S. Teoria polzuchesti i ee prilozhenia k raschetu elementov konstruktsiy. K.: Nauk. dumka, 2005. 224 p.
9. Hudramovich V. S., Klimenko D. V., Gart E. L. Vliyanie vyrezov na prochnost’ cylindricheskykh otsekov raketonositeley pri neuprugom deformirovanii materiala/ Kosmichna nauka i technologia. 2017. T. 23, № 6. P. 12–20.
10. Hudramovich V. S., Pereverzev Ye. S. Nesuschaya sposobnost’ sposobnost’ i dolgovechnost’ elementov konstruktsiy. K.: Nauk. dumka, 1981. 284 p.
11. Hudramovich V. S., SIrenko V. N., Klimenko D. V., Daniev Yu. F. Stvorennya metodologii nornativnykh osnov rozrakhunku resursu konstruktsii startovykh sporud ksomichnykh raket-nosiiv / Teoria ta practika ratsionalnogo proektuvannya, vygotovlennya i ekspluatatsii machinobudivnykh konstruktsiy: materialy 6-oy Mizhnar. nauk.-techn. conf. (Lvyv, 2018). Lvyv: Kinpatri LTD, 2018. P. 5–7.
12. Hudramovich V. S., Skalskiy V. R., Selivanov Yu. M. Golografichne ta akustico-emissine diagnostuvannya neodnoridnykh konstruktsiy i materialiv: monografia/Za red. akad. NANU Z. T. Nazarchuka. Lvyv: Prostir-M, 2017. 492 p.
13. Daniev Y. F. Kosmicheskie letatelnye apparaty. Vvedenie v kosmicheskuyu techniku/ Pod obsch. red. A. N. Petrenko. Dnepropetrovsk: ArtPress, 2007. 456 p.
14. O klassifikatsii startovogo oborudovania raketno-kosmicheskykh kompleksov pri obosnovanii norm prochnosti/ A. V. Degtyarev, O. V. Pilipenko, V.S. Hudramovich, V. N. Sirenko, Yu. F. Daniev, D. V. Klimenko, V. P. Poshivalov// Kosmichna nauka i technologia. 2016. T. 22, №1. P. 3–13. https://doi.org/10.15407/knit2016.01.003
15. Karmishin A. V. Osnovy otrabotky raketno -kosmicheskykh konstruktsiy: monografia. M.: Mashinostroenie, 2007. 480 p.
16. Mossakovskiy V. I. Kontaktnyue vzaimodeistvia elementov obolochechnykh konstruktsiy/ Kosmicheskaya technika. Raketnoye vooruzhenie. Space Technology. Missile Armaments. 2019. Vyp. 1 (117) 37. K.: Nauk. dumka, 1988. 288 p.
17. Pereverzev Ye. S. Sluchainye signaly v zadachakh otsenki sostoyaniya technicheskikh system. K.: Nauk. dumka, 1992. 252 p.
18. Prochnost’, resurs, zhivuchest’ i bezopasnost’ mashin/ Otv. red. N. A. Makhutov. M.: Librokom, 2008. 576 p.
19. Technichna diagnostika materialov I konstruktsiy: Dovidn. posibn. u 8 t. / Za red. acad. NANU Z. N. Nazarchuka. T. 1. Ekspluatatsina degradatsia konstruktsiynykh materialiv. Lvyv: Prostir-M, 2016. 360 p.
20. TEchnologicheskie obiekty nazemnoy infrastructury raketno-kosmicheskoy techniki: monografia/ Pod red. I. V. Barmina. M.: Poligrafiks RPK, 2005. Kn. 1. 412 p.; 2006. Kn. 2. 376 p.
21. Нudrаmоvich V. S. Соntact mechanics of shell structures under local loading/ International Аррlied Месhanics. 2009. Vol. 45, № 7. Р. 708– 729. https://doi.org/10.1007/s10778-009-0224-5
22. Нudrаmоvich V. Еlесtroplastic deformation of nonhomogeneous plates / I. Eng. Math. 2013. Vol. 70, Iss. 1. Р. 181–197. https://doi.org/10.1007/s10665-010-9409-5
23. Нudrаmоvich V. S. Mutual influence of openings on strength of shell-type structures under plastic deformation / Strenght of Materials. 2013. Vol. 45, Iss. 1. Р. 1–9. https://doi.org/10.1007/s11223-013-9426-5
24. Mac-Ivily A. J. Analiz avariynykh razrusheniy / Per. s angl. M.: Technosfera, 2010. 416 p.
25. Наrt Е. L. Ргоjесtion-itеrаtive modification оf the method of local variations for problems with a quadratic functional / Journal of Аррlied Мahtematics and Meсhanics. 2016. Vol. 80, Iss. 2. Р. 156–163. https://doi.org/10.1016/j.jappmathmech.2016.06.005
26. Mesarovich M. Teoria ierarkhicheskykh mnogourovnevykh system/ M. Mesarovich, D. Makho, I. Tohakara / Per. s angl. M.: Mir, 1973. 344 p.

Downloads: 48
Abstract views: 
821
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Springfield; Matawan; North Bergen; Plano; Miami; Miami; Miami; Dublin; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn26
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Germany Frankfurt am Main; Frankfurt am Main; Falkenstein3
Canada Toronto; Toronto; Monreale3
Unknown Hong Kong;2
Finland Helsinki1
India1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime

Keywords cloud

]]>
3.1.2019 Analysis of Spacecraft Control Issues In Early Design Phases https://journal.yuzhnoye.com/content_2019_1-en/annot_3_1_2019-en/ Thu, 25 May 2023 12:09:10 +0000 https://journal.yuzhnoye.com/?page_id=27708
Among the methods of synthesis of the automatic control linear systems developed to date one can emphasize the trend, which has become widely-spread in the engineering area.
]]>

3. Analysis of Spacecraft Control Issues In Early Design Phases

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 15-20

DOI: https://doi.org/10.33136/stma2019.01.015

Language: Russian

Annotation: Mission control of the orbital space plane is one of the actual and complicated applied problems of the theory of mobile objects control. Dynamic configuration of this plane as an object of control is described by the system of non-linear differential equations of higher order. Research of stability of such system is a difficult problem. However, thanks to known theorems of Lyapunov, often stability of the real system can be estimated by the roots of the characteristic equation of the linearized system. Thereupon the stability analysis in the linear setting is the necessary link in the process of orbital space plane control system development. Among the methods of synthesis of the automatic control linear systems developed to date one can emphasize the trend, which has become widely-spread in the engineering area. According to this trend the issues of synthesis of the dynamic regulator, observability and controllability for the orbital space plane are considered. Procedure of selection of the dynamic regulator parameters at the early phase of development of the control system for the orbital space plane motion about the center of mass is suggested. Observability and controllability of the orbital space plane are considered. It is shown that the considered control system of the orbital space plane is observable and controllable, i.e. it is possible to develop the stable dynamic regulator, which provides the required speed and accuracy of the angular position of the orbital space plane during the orbital flight. Factors selection procedure is offered for the factors being the part of the control laws for the control system actuators.

Key words: vector, matrix, dynamic regulator, observability, controllability, stability

Bibliography:

1. Isenberg Ya. Ye., Sukhorebriy V. G. Proektirovanie sistem stabilizatsii nositeley kosmicheskikh apparatov. M.: Mashinostroenie, 1986. 220 p.
2. Kuzovkov N. T. Modalnoe upravlenie i nabludauschie ustroistva. M.: Mashinostroenie, 1976. 184 p.
3. Krasovskiy N. N. Teoria upravlenia dvizheniem. M.: Nauka, 1968. 475 p.
4. Larson Wiley J. and Wertz James R. (editors). Space mission analysis and design. Published Jointly by Microcosm, Inc. (Torrance, California) Kluwer Academic Publishers (Dordrecht / Boston / London), 1992. 865 p.
5. Sidi Marcel J. Spececraft Dynamics and Control. A Practical Engineering Approach. Israel Aircraft Industries Ltd. and Tel Aviv University. Cambridge University press, 1997. 409 p.

Downloads: 50
Abstract views: 
627
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Matawan; Baltimore; Redmond; Plano; Columbus; Ashburn; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Seattle; Tappahannock; Portland;; San Mateo; Boydton; Boydton; Boydton; Boydton; Boydton; Boydton; Des Moines; Boardman; Boardman; Ashburn; Ashburn29
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Unknown Sidney;2
Romania; Voluntari2
Canada Toronto; Monreale2
Belgium Brussels1
Bangladesh Dhaka1
Finland Helsinki1
France1
Germany Falkenstein1
Netherlands Amsterdam1
Ukraine Dnipro1
3.1.2019 Analysis of Spacecraft Control Issues In Early Design Phases
3.1.2019 Analysis of Spacecraft Control Issues In Early Design Phases
3.1.2019 Analysis of Spacecraft Control Issues In Early Design Phases

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>