Search Results for “load” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 05 Nov 2024 21:33:15 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “load” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 10.2.2017 Analysis Method of Hydraulic Parameters of Circular Intake Device in Limit Operating Modes https://journal.yuzhnoye.com/content_2017_2/annot_10_2_2017-en/ Fri, 21 Jun 2024 08:45:59 +0000 https://journal.yuzhnoye.com/?page_id=29771
Content 2017 (2) Downloads: 37 Abstract views: 1005 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Boardman; Ashburn; Matawan; Baltimore; Columbus; Columbus; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Ashburn; Ashburn 22 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 6 Ukraine Dnipro; Dnipro 2 Finland Helsinki 1 France 1 Mongolia 1 Canada Monreale 1 Germany Falkenstein 1 Romania Voluntari 1 Netherlands Amsterdam 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Ivanov О.
]]>

10. Analysis Method of Hydraulic Parameters of Circular Intake Device in Limit Operating Modes

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (2); 53-56

Language: Russian

Annotation: The paper presents the experiment-calculated data on hydraulic parameters of ring intake device in different operation modes. The method of their calculation is proposed taking into account limit deviations of influencing factors. Satisfactory convergence of calculated and experiment data is shown.

Key words:

Bibliography:
1. Il’in G. I., Demchenko S. A., Smolensky D. E. Experimental Investigation of Toroidal Tank Intake Device at High-Flowrate Flow Lab. Space Technology. Missile Armaments: Collection of scientific–technical articles. 2013. Issue 1. Dnepropetrovsk. P. 54–59.
2. Vasilina V. G. et al. Autonomous Development Testing of LRPS Pneumatic System Units and Subsystems: Tutorial / V. G. Vasilina, G. I. Il’in, V. F. Nesvit, V. I. Perlik. Kharkiv, 2005. 130 p.
3. Voloshina M. A. et al. On Measurement of Liquid Flow Discontinuity during Development Testing of Flying Vehicle Propellant Tanks Intake Devices. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2010. Issue 2. P. 122–135.
Downloads: 37
Abstract views: 
1005
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Matawan; Baltimore; Columbus; Columbus; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Ashburn; Ashburn22
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro; Dnipro2
Finland Helsinki1
France1
Mongolia1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
10.2.2017 Analysis Method of Hydraulic Parameters of Circular Intake Device in Limit Operating Modes
10.2.2017 Analysis Method of Hydraulic Parameters of Circular Intake Device in Limit Operating Modes
10.2.2017 Analysis Method of Hydraulic Parameters of Circular Intake Device in Limit Operating Modes
]]>
1.1.2020 Solving a problem of optimum curves of descent using the enhanced Euler equation https://journal.yuzhnoye.com/content_2020_1-en/annot_1_1_2020-en/ Thu, 20 Jun 2024 11:13:04 +0000 https://test8.yuzhnoye.com/?page_id=27120
Content 2020 (1) Downloads: 42 Abstract views: 1466 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Boardman; Matawan; Baltimore; Plano; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Seattle; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn 25 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 6 Germany Frankfurt am Main; Falkenstein 2 Ukraine Dnipro; Odessa 2 Belgium Brussels 1 Finland Helsinki 1 Unknown 1 India Panjim 1 Canada Monreale 1 Romania Voluntari 1 Netherlands Amsterdam 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Horbulin V.
]]>

1. Solving a problem of optimum curves of descent using the enhanced Euler equation

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The National Academy of Sciences of Ukraine, Kyiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 3-12

DOI: https://doi.org/10.33136/stma2020.01.003

Language: Russian

Annotation: The purpose of this study is the enhancement of Euler equation possibilities in order to solve the brachistochrone problem that is the determination of a curve of fastest descent. There are two circumstances: 1) the first integral of an Euler equation does not contain a partial derivative of integrand with respect to y in an explicit form; 2) when the classical Euler equation is derived, only the second term of integrand is integrated by parts. This allowed formulating a problem of determination of new conditions of functional extremality. It is assumed that the integrand of the first variation of a functional is equal to zero. Taking into account this pro vision and some other assumptions, the procedures have been determined for simultaneous application of the Euler equation and its analogue being non-invariant in relation to the coordinate system. The brachistochrone problem was solved using these equations: the curves that satisfy the conditions of weak minimum optimality were plotted. The time of a material point’s descent along the suggested curves and the classic extremals was numerically compared. It is shown that the application of suggested curves ensures short descent time as compared to the classic extremals.

Key words: first variation of a functional, joint application of extremality conditions, non-invariance in relation to the coordinate system, parametric shape of the second variation, optimum curves of descent

Bibliography:

1. Bliss G. A. Lektsii po variatsionnomu ischisleniiu. М., 1960. 462 s.
2. Yang L. Lektsii po variatsionnomu ischisleniiu i teorii optimalnogo uravneniia. М.,1974. 488 s.
3. Elsgolts L. E. Differentsialnye uravneniia i variatsionnoe ischislenie. М., 1965. 420 s.
4. Teoriia optimalnykh aerodinamicheskikh form / pod red. А. Miele. М., 1969. 507 s.
5. Shekhovtsov V. S. O minimalnom aerodinamicheskom soprotivlenii tela vrashcheniia pri nulevom ugle ataki v giperzvukovom neviazkom potoke. Kosmicheskaia tekhnika. Raketnoe vooruzhenie: Sb. nauch.-tekhn. st. / GP “KB “Yuzhnoye”. Dnipro, 2016. Vyp. 2. S. 3–8.
6. Sumbatov А. S. Zadacha o brakhistokhrone (klassifikatsiia obobshchenii i nekotorye poslednie resultaty). Trudy MFTI. 2017. T. 9, №3 (35). S. 66–75.

Downloads: 42
Abstract views: 
1466
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Seattle; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Germany Frankfurt am Main; Falkenstein2
Ukraine Dnipro; Odessa2
Belgium Brussels1
Finland Helsinki1
Unknown1
India Panjim1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
1.1.2020 Solving a problem of optimum curves of descent using the enhanced Euler equation
1.1.2020 Solving a problem of optimum curves of descent using the enhanced Euler equation
1.1.2020 Solving a problem of optimum curves of descent using the enhanced Euler equation

Keywords cloud

]]>
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems https://journal.yuzhnoye.com/content_2020_1-en/annot_2_1_2020-en/ https://journal.yuzhnoye.com/?page_id=31001
Content 2020 (1) Downloads: 46 Abstract views: 3675 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Ashburn; Matawan; Baltimore; Plano; Miami; Columbus; Ashburn; Columbus; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Boardman; Seattle 25 Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore 6 Ukraine Dnipro; Sumy; Kovel'; Dnipro; Dnipro 5 Latvia Riga; Riga 2 China Shanghai 1 Finland Helsinki 1 Unknown 1 India Mumbai 1 Canada Monreale 1 Germany Falkenstein 1 Romania Voluntari 1 Netherlands Amsterdam 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Aksenenko O.
]]>

2. Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 13-25

DOI: https://doi.org/10.33136/stma2020.01.013

Language: Russian

Annotation: The scientific and methodological propositions for the designing single-stage guided missiles with the solid rocket motors for advanced multiple launch rocket systems are defined. The guided missiles of multiple launch rocket system are intended for delivering munitions to the given spatial point with required and specified kinematic motion parameters at the end of flight. The aim of the article is an analysis of the development trends of the guided missiles with the solid rocket motors for the multiple launch rocket systems, identifying the characteristics and requirements for the flight trajectories, design parameters, control programs, overall dimensions and mass characteristics, structural layout and aerodynamic schemes of missiles. The formalization of the complex task to optimize design parameters, trajectory parameters and motion control programs for the guided missiles capable of flying along the ballistic, aeroballistic or combined trajectories is given. The complex task belongs to a problem of the optimal control theory with limitations in form of equa lity, inequality and differential constraints. To simplify the problem, an approach to program forming is proposed for motion control in the form of polynomial that brings the problem of the optimal control theory to a simpler problem of nonlinear mathematical programming. When trajectory parameters were calculated the missile was regarded as a material point of variable mass and the combined equations for center-of-mass motion of the guided missile with projections on axes of the terrestrial reference system were used. The structure of the mathematical model was given along with the calculation sequence of the criterion function that was used for determination of the optimal parameters, programs and characteristics. The mathematical model of the guided missile provides adequate accuracy for design study to determine depending on the main design parameters: overall dimensions and mass characteristics of the guided missile in general and its structural comp onents and subsystems; power, thrust and consumption characteristics of the rocket motor; aerodynamic and ballistic characteristics of the guided missile. The developed methodology was tested by determining design and trajectory parameters, overall dimensions and mass characteristics, power and ballistic characteristics of two guided missiles with wings for advanced multiple launch rocket systems produced by the People’s Republic of China, using the limited amount of information available in the product catalog.

Key words: multiple launch rocket systems (MLRS), complex problem of the optimal control theory, problem of nonlinear mathematical programming, main solid rocket motor, limitations for motion parameters and basic characteristics of the guided missiles

Bibliography:
1. Degtyarev A. V. Raketnaia tekhnika. Problemy i perspektivy: izbrannye nauchno-tekhnicheskie publikatsii. Dnepropetrovsk, 2014. 420 s.
2. Pro zatverdzhennia Poriadku zdiisnennia derzhavnoho kontriliu za mizhnarodnymy peredachamy tovariv podviinoho vykorystannia:Postanova Kabinetu Ministriv Ukrainy vid 28 sichnia 2004 r. № 86. Date: 29.11.2018. URL: https://zakon.rada.gov.ua/laws/show/86-2004-%D0%BF (Access date 01.09.2019).
3. Catalogue China Aerospase Long-march International. February, 2017. 136 p.
4. Reaktivnye sistemy zalpovogo ognia zarubezhnykh stran: obzor po materialam otkrytoi pechati za 1987–2016 gg. i interneta. Dnipro, 2016. Ч. I. 205 s.
5. Upravliaemye OTRK i TRK stran mira: obzor po materialam otkrytoi otechestvennoi i zarubezhnoi pechati za 2008–2014 gg. i interneta. Dnipro, 2014. 162 s.
6. Tail controlled rocket demonstrates near-vertical impact at extended range. URL: https://www.army.mil/article-amp/207357/tail_controlled_rocket_demonstrates_near_vertical_impact_at_extended_range (Access date 01.09.2019).
7. SY-400 Short-Range Ballistic Missile. URL: http://www.military-today.com/missiles/sy_400.htm (Access date 01.09.2019).
8. Vohniana “Vilkha”: nova vysokotochna systema zalpovoho vohnyu. Vpershe – detalno. URL: https://defence-ua.com/index.php/statti/4588-vohnyana-vilkha-nova-vysokotochna-systema-zalpovoho-vohnyu-vpershe-detalno (Access date 01.09.2019).
9. Gurov S. V. Reaktivnye sistemy zalpovogo ognia: obzor. 1-е izd. Tula, 2006. 432 s.
10. The new M30A1 GMLRS Alternate Warhead to replace cluster bombs for US Army Central 71601171. URL: https://www.armyrecognition.com/weapons_defence_industry_military_technology_uk/the_new_m30a1_gmlrs_alternate_warhead_to_replace_cluster_bombs_for_us_army_central_71601171.html (Access date 01.09.2019).
11. High-Mobility Artillery Rocket System (HIMARS), a member of MLRS family. URL: https://army-technology.com/projects/himars/ (Access date 01.09.2019).
12. SR-5 Multiple Launch Rocket System. URL: http://www.military-today.com/artillery/sr5.htm (Access date 01.09.2019).
13. Effectivnost slozhnykh system. Dinamicheskie modeli / V. А. Vinogradov, V. А. Hrushchansky, S. S. Dovhodush i dr. М., 1989. 285 s.
14. Ilichev А. V., Volkov V. D., Hrushchansky V. А. Effectivnost proektiruemykh elementov slozhnykh system: ucheb. posobie. М., 1982. 280 s.
15. Krotov V. F., Gurman V. I. Metody I zadachi optimalnogo upravleniia. М., 1973. 446 s.
16. Pontriagin L. S., Boltiansky V. G., Gamkrelidze R. V., Mishchenko Е. F. Matematicheskaia teoriia optimalnykh protsesov. М., 1969. 385 s.
17. Tarasov Е. V. Algoritm optimalnogo proektirovaniia letatelnogo apparata. М., 1970. 364 s.
18. Shcheverov D. N. Proektirovanie bespilotnykh letatelnykh apparatov. М., 1978. 264 s.
19. Siniukov А. М., Volkov L. I., Lvov А. I., Shishkevich А. М. Ballisticheskaia raketa na tverdom toplive / pod red. А. М. Siniukova. М., 1972. 511 s.
20. Burov М. А., Varfolomeev V. I., Volkov L. I. Proektirovanie i ispytanie ballisticheskikh raket / pod red. V. I. Varfolomeeva, М. I. Kopytova. М., 1970. 392 s.
21. Siutkina-Doronina S. V. K voprosu optimizatsii proektnykh parametrov i programm upravleniia raketnogo ob’ekta s raketnym dvigatelem na tverdom toplive. Aviatsionno-kosmicheskaia tekhnika i tekhnologiia. 2017. № 2 (137). S. 44–59.
22. Aksenenko A. V., Baranov E. Yu., Hursky A. I., Klochkov A. S., Morozov A. S., Alpatov A. P., Senkin V. S., Siutkina-Doronina S. V. Metodicheskoe obespechenie dlia optimizatsii na nachalnom etape proektirovaniia proektnykh parametrov, parametrov traektorii i programm upravleniia dvizheniem raketnogo ob’ekta. Kosmicheskaia tekhnika. Raketnoe vooruzhenie: sb. nauch.-tekhn. st. / GP “KB “Yuzhnoye”. Dnipro, 2018. Vyp. 2 (116). S. 101–116. https://doi.org/10.33136/stma2018.02.101
23. Metodicheskoe obespechenie dlia optimizatsii na nachalnom etape proektirovaniia proektnykh parametrov, programm upravleniia, ballisticheskikh, energeticheskikh i gabaritno-massovykh kharakteristik upravliaemykh raketnykh ob’ektov, osushchestvliaiushchikh dvizhenie po aeroballisticheskoi traektorii: otchet po NIR / ITM NANU i GKAU, GP “KB “Yuzhnoye”. Dnepropetrovsk, 2017. 159 S.
24. Senkin V. S. K Vyboru programm upravleniia dvizheniem raketnogo ob’ekta po ballisticheskoi traektorii. Tekhnicheskaia mekhanika. 2018. № 1. S. 48–59.
25. Alpatov A. P., Senkin V. S. Metodicheskoe obespechenie dlia vybora oblika, optimizatsii proektnykh parametrov i programm upravleniia poletom rakety-nositelia. Tekhnicheskaia mekhanika. 2013. № 4. S. 146–161.
26. Alpatov A. P., Senkin V. S. Kompleksnaia zadacha optimizatsii osnovnykh proektnykh parametrov i programm upravleniia dvizheniem raket kosmicheskogo naznacheniia. Tekhnicheskaia mekhanika. 2011. № 4. S. 98–113.
27. Senkin V. S. Optimizatsiia proektnykh parametrov rakety-nositelia sverkhlegkogo klassa. Tekhnicheskaia mekhanika. 2009. № 1. S. 80–88.
28. Lebedev А. А., Gerasiuta N. F. Ballistika raket. М., 1970. 244 s.
29. Razumev V. F., Kovalev B. K. Osnovy proektirovaniia ballisticheskikh raket na tverdom toplive: ucheb. posobie dlia vuzov. М., 1976. 356 s.
30. Erokhin B. Т. Teoreticheskie osnovy oroektirovaniia RDTT. М., 1982. 206 s.
31. Abugov D. I., Bobylev V. М. Teoriia i raschet raketnykh dvigatelei tverdogo topliva: uchebnik dlia mashinostroitelnykh vuzov. М., 1987. 272 s.
32. Shishkov А. А. Gasodinamika porokhovykh raketnykh dvigatelei: inzhenernye metody rascheta. М., 1974. 156 s.
Downloads: 46
Abstract views: 
3675
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Ashburn; Matawan; Baltimore; Plano; Miami; Columbus; Ashburn; Columbus; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Boardman; Seattle25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro; Sumy; Kovel'; Dnipro; Dnipro5
Latvia Riga; Riga2
China Shanghai1
Finland Helsinki1
Unknown1
India Mumbai1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems

Keywords cloud

]]>
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge https://journal.yuzhnoye.com/content_2024_1-en/annot_12_1_2024-en/ Mon, 17 Jun 2024 11:36:02 +0000 https://journal.yuzhnoye.com/?page_id=35070
Content 2024 (1) Downloads: 19 Abstract views: 1661 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Buffalo; Boydton; Boydton; Chicago; Ashburn; Dallas; Seattle; Portland; Seattle 9 Germany Falkenstein; Düsseldorf;; Falkenstein 4 France 1 Unknown 1 China Shenzhen 1 Canada Toronto 1 Ukraine Kremenchuk 1 Slovakia 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Nadtoka V.
]]>

12. Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Ukrainian State University of Science and Technologies2

Page: Kosm. teh. Raket. vooruž. 2024, (1); 102-113

DOI: https://doi.org/10.33136/stma2024.01.102

Language: Ukrainian

Annotation: Steel hardening technology is considered, which implies modification of the steel surface with the method of ion-plasma nitriding in glow discharge. Ion-plasma nitriding is a multi-factor process, which requires the study of the influence of nitriding process conditions on the structure of modified layers, which, in its turn, determines their mechanical properties. The subjects of research included: austenitic steel 12X18Н10T, carbon steel Ст3 and structural steel 45. There were two conditions of plasma creation during the research: free location of samples on the surface of the cathode (configuration I) and inside the hollow cathode (configuration II). Optimal parameters of the ion-plasma nitriding process have been determined, which provide stability of the process and create conditions for intensive diffusion of nitrogen into the steel surface. Hydrogen was added to the argon-nitrogen gaseous medium to intensify the nitriding process. Working pressure in the chamber was maintained within the range of 250-300 Pa, the duration of the process was 120 minutes. Comparative characteristics of the structure and microhardness of the modified surfaces of the steels under study for two ion-plasma nitriding technologies are presented. Metallographic examination of the structure of the surface modified layers in the cross section showed the presence of the laminated nitrided layer, which consists of different phases and has different depths, depending on the material of the sample and treatment mode. Nitrided layer of 12Х18Н10Т steel consisted of four sublayers: upper “white” nitride layer, double diffuse layer and lower transition layer. The total depth of the nitrided layer after the specified treatment time reached 23 μm, use of hollow cathode increased it by 26% to 29 μm. The nitrided layers of steel Ст3 and steel 45 consisted of two sublayers – thick “white” nitride layer and general diffuse layer with a thickness of about 18 μm. The microhardness of the nitrided layer of steel Ст3 was 480 HV, increasing by 2,5 times, and for steel 45 was 440 HV, increasing by 1,7 times. The use of hollow cathode for these steels reduces the depth of the nitrided layer, but at the same time the microhardness increases due to the formation of a thicker and denser nitride layer on the surface. The results of the conducted research can be used to strengthen the surfaces of the steel parts in rocket and space technology, applying high-strength coatings.

Key words: ion nitriding, glow discharge, cross-sectional layer structure, hardening, microhardness

Bibliography:

1. Loskutova T. V., Pogrebova I. S., Kotlyar S. M., Bobina M. M., Kapliy D. A., Kharchenko N. A., Govorun T. P. Physichni ta tekhnologichni parametry azotuvannya stali Х28 v seredovyschi amiaku. Journal nano-elektronnoi physiki. 2023. №1(15). s. 1-4.
2. Al-Rekaby D. W., Kostyk V., Glotka A., Chechel M. The choice of the optimal temperature and time parameters of gas nitriding of steel. Eastern-European journal of Enterprise Technologies. 2016. V. 3/5(81). P.44-49. https://doi.org/10.15587/1729-4061.2016.69809
3. Yunusov A. I., Yesipov R. S. Vliyanie sostava gazovoy sredy na process ionnogo azotirovaniya martensitnoy stali 15Х16К5НР2МВФАБ-Ш. Vestnik nauki. 2023. №5(62). s. 854-863.
4. Zakalov O. V. Osnovy tertya i znoshuvannya u mashinah: navch. posibnik, vydavnytstvo TNTU im. I. Pulyuya, Ternopil. 2011. 332 s.
5. Kindrachuk M. V., Zagrebelniy V. V., Khizhnyak V. G., Kharchenko N. A. Technologichni aspeckty zabespechennya pratsezdatnosti instrument z shvydkorizalnykh staley. Problemy tertya ta znoshuvannya. 2016. №1 (70). S. 67-78.
6. Skiba M. Ye., Stechishyna N. M., Medvechku N. K., Stechishyn M. S., Lyukhovets’ V. V. Bezvodneve azotuvannya u tliyuchomu rozryadi, yak metod pidvyschennya znosostiykisti konstruktsiynykh staley. Visn. Khmelnitskogo natsionalnogo universitetu. 2019. №5. S. 7-12. https://doi.org/10.23939/law2019.22.012
7. Axenov I. I. Vakkumno-dugovye pokrytiya. Technologiya, materialy, struktura i svoistva. Kharkov, 2015. 379 s.
8. Pastukh I. M., Sokolova G. N., Lukyanyuk N. V. Azotirovanie v tleyuschem razryade: sostoyanie i perspektyvy. Problemy trybologii. 2013. №3. S. 18-22.
9. Pastukh I. M. Teoriya i praktika bezvodorodnogo azotirovanniya v tleuschem razryade: izdatelstvo NNTs KhFTI. Kharkov, 2006. 364 s.
10. Sagalovich O. V., Popov V. V., Sagalovich V. V. Plasmove pretsenziyne azotuvannya AVINIT N detaley iz staley i splaviv. Technologicheskie systemy. 2019. №4. S. 50-56.
11. Kozlov A. A. Nitrogen potential during ion nitriding process in glow-discharge plasma. Science and Technique. 2015. Vol. 1. P. 79-90.
12. Nadtoka V., Kraiev M., Borisenko А., Kraieva V. Multi-component nitrated ion-plasma Ni-Cr coating. Journal of Physics and Electronics. 2021. №29(1). Р. 61–64. DOI 10.15421/332108. https://doi.org/10.15421/332108
13. Nadtoka V., Kraiev M., Borisenko A., Bondar D., Gusarova I. Heat-resistant MoSi2–NbSi2 and Cr–Ni coatings for rocket engine combustion chambers and respective vacuum-arc deposition technology/ 74th International Astronautical Congress (IAC-23-C2.4.2), Baku, Azerbaijan, 2-6 October 2023.
14. Kostik K. O., Kostik V. O. Porivnyalniy analiz vplyvu gazovogo ta ionno-plazmovogo azotuvannya na zminu struktury i vlastyvostey legovannoi stali 30Х3ВА. Visnik NTU «KhPI». 2014. №48(1090). S. 21-41.
15. Axenov I. I., Axenov D. S., Andreev A. A., Belous V. A., Sobol’ O.V. Vakuumno-dugovye pokrytiya: technologia, materialy, struktura, svoistva: VANT NNTs KhFTI, Kharkov. 2015. 380 s.
16. Pidkova V. Ya. Modyfikuvannya poverkhni stali 12Х18Н10Т ionnoyu implantatsieyu azotom. Technology audit and production reserves. 2012. Vol. 3/2(5). P. 51-52. https://doi.org/10.15587/2312-8372.2012.4763
17. Kosarchuk V. V., Kulbovsliy I. I., Agarkov O. V. Suchasni metody zmitsnennya i pidvyschennya znosostiykosti par tertya. Ch. 2. Visn. Natsionalnogo transportnogo universytetu. 2016. Vyp. 1(34). S. 202-210.
18. Budilov V. V., Agzamov R. D., Ramzanov K. N. Issledovanie i razrabotka metodov khimiko-termicheskoy obrabotki na osnove strukturno-fasovogo modifitsirovaniya poverkhnisti detaley silnotochnymi razryadami v vakuume. Vestnik UGATU. Mashinostroenie. 2007. T. 9, №1(19). S. 140-149.
19. Abrorov A., Kuvoncheva M., Mukhammadov M. Ion-plasma nitriding of disc saws of the fiber-extracting machine. Modern Innovation, Systems and Technologies. 2021. Vol. 1(3). P. 30-35. https://doi.org/10.47813/2782-2818-2021-1-3-30-35
20. Smolyakova M. Yu., Vershinin D. S., Tregubov I. M. Issledovaniya vliyaniya nizkotemperaturnogo azotirovanniya na strukturno-fasoviy sostav i svoistva austenitnoy stali. Vzaimodeystvie izlecheniy s tverdym telom: materialy 9-oi Mezhdunarodnoy konferentsii (Minsk, 20-22 sentyabrya 2011 g.). Minsk, 2011. S. 80-82.
21. Adhajani H., Behrangi S. Plasma Nitriding of Steel: Topics in Mining, Metallurgy and Material Engineering by series editor Bergmann C.P. 2017. 186 p. https://doi.org/10.1007/978-3-319-43068-3
22. Fernandes B.B. Mechanical properties of nitrogen-rich surface layers on SS304 treated by plasma immersion ion implantation. Applied Surface Science. 2014. Vol. 310. P. 278-283. https://doi.org/10.1016/j.apsusc.2014.04.142
23. Khusainov Yu. G., Ramazanov K. N., Yesipov R. S., Issyandavletova G. B. Vliyanie vodoroda na process ionnogo azotirovanniya austenitnoy stali 12Х18Н10Т. Vestnik UGATU. 2017. №2(76). S. 24-29.
24. Sobol’ O. V., Andreev A. A., Stolbovoy V. A., Knyazev S. A., Barmin A. Ye., Krivobok N. A. Issledovanie vliyaniya rezhimov ionnogo azotirovanniya na strukturu i tverdost’ stali. Vostochno-Yevropeyskiy journal peredovykh tekhnologiy. 2015. №2(80). S. 63-68. https://doi.org/10.15587/1729-4061.2016.63659
25. Kaplun V. G. Osobennosti formirovanniya diffusionnogo sloya pri ionnom azotirovannii v bezvodorodnykh sredakh. FIP. 2003. T1, №2. S. 145.

Downloads: 19
Abstract views: 
1661
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Buffalo; Boydton; Boydton; Chicago; Ashburn; Dallas; Seattle; Portland; Seattle9
Germany Falkenstein; Düsseldorf;; Falkenstein4
France1
Unknown1
China Shenzhen1
Canada Toronto1
Ukraine Kremenchuk1
Slovakia1
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge
12.1.2024 Hardening of steels modifying their surfaces with ion-plasma nitriding in glow discharge

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
13.1.2024 MODEL OF QUALITY MANAGEMENT OF TECHNICAL PREPARATION FOR THE METAL+COMPOSITE JOINTS PRODUCTION https://journal.yuzhnoye.com/content_2024_1-en/annot_13_1_2024-en/ Mon, 17 Jun 2024 11:35:29 +0000 https://journal.yuzhnoye.com/?page_id=35010
Depending on the direction and type of transmitted loads, the structure of the arrangement of elements on the surface of the metal tip can be different. Content 2024 (1) Downloads: 21 Abstract views: 688 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Buffalo; San Francisco; Chicago; Los Angeles; Buffalo; Buffalo; Dallas; Los Angeles; Seattle; Mountain View; Portland; Seattle 12 Germany Falkenstein; Düsseldorf; Falkenstein 3 Slovenia Ljubljana 1 France 1 Unknown 1 China Shenzhen 1 Great Britain London 1 Ukraine Kremenchuk 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Taranenko I.
]]>

13. Model of quality management of technical preparation for the metal+composite joints production

Автори: Taranenko I. M.

Organization: Kharkiv Aviation Institute, Kharkiv, Ukraine

Page: Kosm. teh. Raket. vooruž. 2024, (1); 114-120

DOI: https://doi.org/10.33136/stma2024.01.114

Language: Ukrainian

Annotation: Modern aerospace structures widely use parts, panels and assemblies made of composites. Connecting them to metal tips is quite complicated problem. Known conventional methods of joints using bolts, rivets and adhesive ones do not meet the requirements for a number of reasons related to restrictions on weight, dimensions of joints, their reliability and manufacturability. In the world practice of such joints, many design and technological solutions for “metal+composite” joints are known. Among them, metal-composite heterogeneous connections with transversal fastening joints most fully meet the technical requirements. To connect composite tips of different structures with different shapes and grades of alloys of metal fittings, monolithic (with metal tips) fastening elements, pins (cylindrical, conical, pyramidal, etc.) and sheet microelements are used. The latter are attached to the metal tips in different ways. The microelements themselves can have different shapes from the top view and in longitudinal section. Depending on the direction and type of transmitted loads, the structure of the arrangement of elements on the surface of the metal tip can be different. In such multifactorial conditions, technical preparation of production, including design and technological preparation, is a complex task. It is necessary to consider that the goals of the production of such equipment may differ significantly – prototype (single piece) or mass production with different requirements for them. It is quite difficult to organize such production with technical preparation of high-quality production without a quality management model for the preparation process. The work proposes a comprehensive mathematical model for managing the quality of technical preparation for the production of joints based on a quantitative assessment of the properties of the main manufacturing processes. The controlled parameter in it is a complex quality index, and the controlling parameter is the weight factor of group or individual properties of the component processes. Setting the values of the weight coefficient of a particular property is carried out using an expert or analytical method in the range of values 0…1.0. In this case, the controlled parameter varies within 0.5…3.5. The indicated values are verified by calculation for different joint materials and processes of forming fastening microelements. Conclusions are drawn about the sufficient effectiveness of quality management of technical preparation for the production of metal+composite joints.

Key words: composite parts, joints with metal tips, process properties, quantitative assessment, mathematical model, control and controlled parameters, control algorithms.

Bibliography:

1. Karpov Ya. S. Soedineniya detalej i agregatov iz kompozicionnyh materialov. Har’kov: Nac. aerokosm. un-t im. N. E. Zhukovskogo «HAI», 2006. 359 с. ISBN 966-662-133-9.
2. Vorobej V. V., Sirotkin O. S. Soedineniya konstrukcij iz kompozicionnyh materialov. L.: Mashinostroenie, 1985. 168 p.
3. Bulanov I. M. Tekhnologiya raketnyh i aerokosmicheskih konstrukcij iz kompozici-onnyh materialov: ucheb. dlya vuzov. M.: MGTU im. N.E. Baumana, 1998. 516 p. ISBN 5-7038-1319-0.
4. Eduardo E. Feistauer, Jorge F. dos Santos, Sergio T. Amancio-Filho. A review on direct assembly of through-the-thickness reinforced metal–polymer composite hybrid structures. Polymer Engineering and Science, Published: April 2019. Vol. 59, Issue 4. Р. 661 – 674. https://doi.org/10. 1002/pen.25022.
5. Anna Galińska, Cezary Galiński. Mechanical Joining of Fibre Reinforced Polymer Composites to Metals–A Review. Part II: Riveting, Clinching, Non-Adhesive Form-Locked Joints, Pin and Loop Joining / Polymers. Published 28 July 2020, Vol. 12(8). Issue 1681. Р. 1 – 40. https://doi.org/10.3390/polym12081681. https://www.mdpi.com/2073-4360/12/8/1681/htm.
6. Azgaldov G. The ABC of Qualimetry Toolkit for measuring the immeasurable. G. Azgaldov, A. Kostin, A. Padilla Omiste, Ridero, 2015, 167 p. ISBN 978-5-4474-2248-6, http://www.labrate.ru/kostin/20150831_the_abc_of_qualimetry-text-CC-BY-SA.pdf.
7. Taranenko M. E. Kvalimetriya v listovoj shtampovke : uchebnik. Harkov: Nac. aerokosm. un-t im. N. E. Zhukovskogo «Hark. aviac. in-t», 2015. 133 s.
8. Ovodenko Anatoliy, Ivakin Yan, Frolova Elena, Smirnova Maria. Qualimetric model for assessing the impact of the level of development of corporate information systems on the quality of aerospace instrumentation. SES-2020, E3S Web of Conferences 220, 01017 (2020). 5 p. https://doi.org/10.1051/e3sconf/202022001017.
9. Taranenko I. M. Sravnitel’nyj analiz konstruktivno-tekhnologicheskih reshenij soedinenij metall-kompozit. Aviacionno-kosmicheskaya tekhnika i tekhnologiya. Nauchno-tekhnicheskij zhurnal. Vyp. 4(139). H.: HAI, 2017. Р. 40-49.
10. Krivoruchko A. V. Mekhanicheskaya obrabotka kompozicionnyh materialov pri sborke letatel’nyh apparatav (analiticheskij obzor): monografiya. A. V. Krivoruchko, V. A. Zaloga, V. A. Kolesnik i dr.; pod. obshch. red. prof. V. A. Zalogi. Sumy: «Universitetskaya kniga», 2013. 272 p. ISBN 978-680-694-2.
11. Spravochnik tehnologa-mashinostroitelya. T. 1. Pod red. A. M. Dalskogo, A. G. Kosilovoj, R. K. Mesheryakova. M.: Mashinostroenie, 2003. 656 s.
12. Spravochnik tehnologa-mashinostroitelya. T. 2. Pod red. A.M. Dalskogo, A.G. Kosilovoj, R.K. Mesheryakova. M.: Mashinostroenie, 2003. 944 s.

Downloads: 21
Abstract views: 
688
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Buffalo; San Francisco; Chicago; Los Angeles; Buffalo; Buffalo; Dallas; Los Angeles; Seattle; Mountain View; Portland; Seattle12
Germany Falkenstein; Düsseldorf; Falkenstein3
Slovenia Ljubljana1
France1
Unknown1
China Shenzhen1
Great Britain London1
Ukraine Kremenchuk1
13.1.2024 MODEL OF QUALITY MANAGEMENT OF TECHNICAL PREPARATION FOR THE METAL+COMPOSITE JOINTS PRODUCTION
13.1.2024 MODEL OF QUALITY MANAGEMENT OF TECHNICAL PREPARATION FOR THE METAL+COMPOSITE JOINTS PRODUCTION
13.1.2024 MODEL OF QUALITY MANAGEMENT OF TECHNICAL PREPARATION FOR THE METAL+COMPOSITE JOINTS PRODUCTION

Keywords cloud

]]>
9.1.2024 General-purpose thermostatting module – new approach in development of up-to-date thermostating systems for rocket and space complexes https://journal.yuzhnoye.com/content_2024_1-en/annot_9_1_2024-en/ Mon, 17 Jun 2024 08:48:18 +0000 https://journal.yuzhnoye.com/?page_id=35030
Content 2024 (1) Downloads: 21 Abstract views: 863 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Buffalo; Buffalo; Buffalo; San Jose; Chicago; Saint Louis; New York City; Buffalo; Columbus; Ashburn; Portland 11 Germany Falkenstein; Düsseldorf; Limburg an der Lahn; Falkenstein 4 Canada Toronto; Toronto 2 France 1 Unknown 1 China Shenzhen 1 Ukraine Kremenchuk 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Fateev D.
]]>

9. General-purpose thermostating module – new approach in development of up-to-date thermostating systems for rocket and space complexes

Page: Kosm. teh. Raket. vooruž. 2024, (1); 78-84

DOI: https://doi.org/10.33136/stma2024.01.078

Language: Ukrainian

Annotation: These days when creating any rocket space complex, it is important to ensure its advancement and competitive ability. To create such complex, the technical systems it consists of must be implemented with minimal economic and energy costs. Rocket and space complexes feature the thermostatting system, which ensures the required humidity and temperature conditions in the integrated launch vehicles throughout all the phases of their pre-launch processing. Development of the competitive rocket and space complex also requires the new approach in the development of the thermostatting system. One of the main tasks is to create a system that can be mass-produced and used as part of any rocket and space complex. Solving this problem will significantly reduce the cost of creating and operating the thermostatting systems and the whole rocket and space complex. One of the ways to solve this task is to create a general-purpose thermostatting system. The modular principle for such thermostatting system would be optimal, which means making up a system from separate modules. It simplifies the all-round installation of various system options and simplifies its setup and operation. The paper demonstrates the possibility and prospects of creating modular thermostatting systems, which enable air supply with the required parameters to different consumers. Characteristics and design of the general-purpose thermostatting module are specified, which can be used as the main component without changing anything in the composition of stationary and mobile thermostatting systems.

Key words: rocket and space complex, launch vehicle, technological systems of the ground complex, thermostatting systems, open type system, versatility, modular design.

Bibliography:
  1. . Tsiklon-4M. URL: https://www. yuzhnoye.com.
  2. . KRK «Tsiklon-4M». C4M YZH SPS 090 02 Technicheskoe zadanie na sostavnuyu chast’ OKR «Sistema termostatirovaniya rakety-nositelya i golovnogo bloka» GP «KB «Yuzhnoye». 78 s.
  3. . KRK «Tsiklon-4M». C4M YZH SPS 119 02 Technicheskoe zadanie na sostavnuyu chast OKR «Transportnaya systema termostatirovaniya» GP «KB «Yuzhnoye». 2018. 40 s.
Downloads: 21
Abstract views: 
863
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Buffalo; Buffalo; Buffalo; San Jose; Chicago; Saint Louis; New York City; Buffalo; Columbus; Ashburn; Portland11
Germany Falkenstein; Düsseldorf; Limburg an der Lahn; Falkenstein4
Canada Toronto; Toronto2
France1
Unknown1
China Shenzhen1
Ukraine Kremenchuk1
9.1.2024 General-purpose thermostatting module – new approach in development of up-to-date thermostating systems for rocket and space complexes
9.1.2024 General-purpose thermostatting module – new approach in development of up-to-date thermostating systems for rocket and space complexes
9.1.2024 General-purpose thermostatting module – new approach in development of up-to-date thermostating systems for rocket and space complexes

Keywords cloud

]]>
10.1.2024 METHOD OF AUTONOMOUS DETERMINATION OF THE ROCKET’S REFERENCE ATTITUDE DURING PRE-LAUNCH PROCESSING https://journal.yuzhnoye.com/content_2024_1-en/annot_10_1_2024-en/ Mon, 17 Jun 2024 08:44:04 +0000 https://journal.yuzhnoye.com/?page_id=35018
Content 2024 (1) Downloads: 21 Abstract views: 890 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA San Jose; San Francisco; Clearwater; Chicago; Los Angeles; Ashburn; Buffalo; Los Angeles; Portland; 10 Germany Falkenstein; Düsseldorf;; Falkenstein 4 Singapore Singapore; Singapore 2 Ukraine Uzhhorod; Kremenchuk 2 France 1 Unknown 1 China Shenzhen 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Borscheva O.
]]>

10. Method of autonomous determination of the rocket’s reference attitude during pre-launch processing

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2024, (1); 85-92

DOI: https://doi.org/10.33136/stma2024.01.085

Language: Ukrainian

Annotation: To solve the navigation tasks (determination of the apparent accelerations and angular velocities and calculation of rocket orientation angles) in the rocket engineering, the data from the sensing elements (angular velocity sensors and accelerometers) is used. Accuracy of reference attitude determination of the rocket in the steady mode (at lift-off) has great influence on accuracy of the received navigation data during the flight. Gimballess inertial navigation system, built on the basis of inertial MEMS-sensors of Industry class (three angular velocity sensors and three accelerometers), is taken as the navigation device. In the classical version, the integration of data from angular velocity sensors and from accelerometers is the basis of gimballess inertial navigation system operation. It results in accumulation of errors when solving the navigation task (in particular due to the integration of data from angular velocity sensors). Taking it into consideration, the alternative method of rocket’s reference attitude determination during the pre-launch processing is offered. This method does not use mathematical operations of integration and is autonomous. Initial data, received from the gimballess inertial navigation system, is used as the output data. This data is used to determine the rocket’s reference attitude (orientation of object-centered coordinates in the geographical reference system) in the steady mode. Orientation angles are determined without the integration of data picked up from the angular velocity sensors. The comparative analysis to define the processing efficiency of the navigation device initial data was held during the determination of the rocket’s orientation angles in the steady mode, using the proposed method and Runge-Kutta method. The received results showed that accuracy of the reference attitude determination with the proposed method is higher. Thus, the proposed method will help reduce the errors in determination of the rocket’s reference attitude in the steady mode that in the future will improve the accuracy in determination of navigational parameters during the rocket’s flight.

Key words: navigation system, mems-sensors, accelerometers, angular velocity sensors, reference attitude

Bibliography:
  1. Meleshko V.V., Nesterenko O.I. Besplatformennye inertsialnye navigatsionnye systemy. Ucheb. posobie. Kirovograd: POLIMED – Service, 2011. 164 s.
  2. Vlasik S.N., Gerasimov S.V., Zhuravlyov A.A. Matematicheskaya model besplatformennoy inertsialnoy navigatsionnoy systemy i apparatury potrebitelya sputnikovoi navigatsionnoy systemy aeroballisticheskogo apparata. Nauka i technika Povitryannykh Sil Zbroinykh Sil Ukrainy. 2013. № 2(11). s. 166-169.
  3. Waldenmayer G.G. Protsedura pochatkovoi vystavki besplatformennoy inertsialnoy navigatsionoy systemy z vykorystannyam magnitometra ta rozshirennogo filtra Kalmana. Aeronavigatsini systemy. 2012. s. 8.
  4. Korolyov V.M., Luchuk Ye.V., Zaets Ya.G., Korolyova O.I., Miroshnichenko Yu.V. Analiz svitovykh tendentsiy rozvytku system navigatsii dlya sukhoputnykh viysk. Rozroblennya ta modernizatsia OVT. 2011. №1(4). s.19-29. https://doi.org/10.33577/2312-4458.4.2011.19-29
  5. Avrutov V.V., Ryzhkov L.M. Pro alternativniy metod avtonomnogo vyznachennya shyroty i dovgoty rukhomykh obiektiv. Mekhanika gyroskopichnykh system. 2021. №41. s.  122-131. https://doi.org/10.20535/0203-3771412021269255
  6. Bugayov D.V., Avrutov V.V., Nesterenko O.I. Experimentalne porivnyannya algoritmiv vyznachennya orientatsii na bazi complimentarnogo filtru ta filtru Madjvika. Avtomatizatsiya technologichnykh i biznes-protsesiv. 2020. T. 12, №3. s. 10-19.
  7. Chernyak M.G., Kolesnik V.O. Zmenshennya chasovykh pokhibok inertsialnogo vymiryuvalnogo modulya shlyakhom realizatsii yogo strukturnoi nadlyshkovosti na bazi tryvisnykh micromekhanichnykh vymiruvachiv. Mekhanika giroskopichnykh system. 2020. №39. s. 66-80. https://doi.org/10.20535/0203-3771392020229096
  8. Rudik A.V. Matematichna model pokhibok accelerometriv bezplatformenoi inertsialnoi navigatsinoi systemy. Visnyk Vynnitskogo politechnychnogo institutu. 2017. №2. s. 7-13.
  9. Naiko D.A., Shevchuk O.F. Teoriya iomovirnostey ta matematychna statistika: navch. posib. Vinnytsya: VNAU. 2020. 382 s.
  10. Matveev V.V., Raspopov V.Ya. Osnovy postroeniya bezplatformennykh inertsialnykh navigatsionnykh system. SPb.: GNTs RF OAO «Kontsern «TsNII «Electropribor». 2009. 280 s.
  11. Novatorskiy M.A. Algoritmy ta metody obchislen’ [Electronniy resurs]: navch. posib. dlya stud. KPI im. Igorya Sikorskogo. Kiyv: KPI im. Igorya Sikorskogo. 2019. 407 s.
Downloads: 21
Abstract views: 
890
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA San Jose; San Francisco; Clearwater; Chicago; Los Angeles; Ashburn; Buffalo; Los Angeles; Portland;10
Germany Falkenstein; Düsseldorf;; Falkenstein4
Singapore Singapore; Singapore2
Ukraine Uzhhorod; Kremenchuk2
France1
Unknown1
China Shenzhen1
10.1.2024 METHOD OF AUTONOMOUS DETERMINATION OF THE ROCKET’S REFERENCE ATTITUDE DURING PRE-LAUNCH PROCESSING
10.1.2024 METHOD OF AUTONOMOUS DETERMINATION OF THE ROCKET’S REFERENCE ATTITUDE DURING PRE-LAUNCH PROCESSING
10.1.2024 METHOD OF AUTONOMOUS DETERMINATION OF THE ROCKET’S REFERENCE ATTITUDE DURING PRE-LAUNCH PROCESSING

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
8.1.2024 Theoretic-experimental evaluation of the solid-propellant grain erosive burning https://journal.yuzhnoye.com/content_2024_1-en/annot_8_1_2024-en/ Mon, 17 Jun 2024 08:41:58 +0000 https://journal.yuzhnoye.com/?page_id=35027
Content 2024 (1) Downloads: 15 Abstract views: 506 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Las Vegas; Columbus; Ashburn; Ashburn; Portland 5 Germany Falkenstein; Düsseldorf; Limburg an der Lahn; Falkenstein 4 Singapore Singapore 1 France 1 Unknown 1 China Shenzhen 1 Russia Saint Petersburg 1 Ukraine Kremenchuk 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Taran M.
]]>

8. Theoretic-experimental evaluation of the solid-propellant grain erosive burning

Автори: Taran M. V., Moroz V. G.

Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2024, (1); 72-77

DOI: https://doi.org/10.33136/stma2024.01.072

Language: Ukrainian

Annotation: The high demands for the flow rate and thrust characteristics specified for the modern solid-propellant rocket motors (SRM) under the strict mass and overall dimensions constraints require high level of mass fraction of propellant. And in the process of propellant grain combustion, erosive burning often takes place (increase of propellant burning rate depending on combustion products flow rate along the grain channel). This may play both negative (off-design increase of chamber pressure) and positive role (for example, increasing the launch thrust-to-weight ratio of the rocket). It is typical of the main SRMs of various rocket systems (multiple launch rocket systems, anti-aircraft guided missiles, tactical missiles, boosters). This paper proposes a methodology for calculating the internal ballistic characteristics of a solid propellant rocket motor under erosive burning, which is relatively time and resource consuming. The methodology is based on equidistant model of propellant grain combustion, where grain is divided lengthwise into a number of intervals. For any point of time during the engine operation, burning area and port area of each interval are calculated, taking into account erosive impact on each interval; total burning area is the sum of all intervals burning areas. Gas flow rate in each interval of the grain channel is calculated using gas-dynamic equations. The motor mass flow rate is a mass input sum of all the intervals; and the burning rate in each interval is estimated with proper erosion factor. The combustion chamber pressure had been calculated for four erosive burning models proposed by different authors. All the models showed convergence with the experimental SRM test data sufficient for engineering estimate (in particular, for maximum chamber pressure and combustion time). Selected as a result erosive burning model may be used to design new motors with solid propellants similar in chemical composition, and the model parameters are to be further customized using the test specimens.

Key words: rocket motor, solid propellant, erosive burning, internal ballistic characteristics

Bibliography:
  1. Arkhipov V. Erosionnoe gorenie condensirovannykh system. Sb. tr. ІХ Vserossiyskoy nauch. conf. 2016 g. (FPPSM-2016). Tomsk, 2016.
  2. Mukunda S., Paul P. J. Universal behaviour in erosive burning of solid propellants. Combustion and flame, 1997. https://doi.org/10.1016/S0010-2180(96)00150-2
  3. Sabdenov K. , Erzda M., Zarko V. Ye. Priroda i raschet skorosti erozionnogo goreniya tverdogo raketnogo topliva. Inzhenerniy journal: nauka i innovatsii, 2013. Vyp. 4.
  4. Evlanova A., Evlanov A. A., Nikolaeva Ye. V. Identifikatsiya parametrov erozionnogo goreniya topliva po dannym ognevykh stendovykh ispytaniy. Izvestiya TulGU. Tekhn. nauki. 2014. Vyp. 12, ch. 1.
  5. Yanjie Ma, Futing Bao, Lin Sun, Yang Liu, and Weihua Hui. A New Erosive Burning Model of Solid Propellant Based on Heat Transfer Equilibrium at Propellant Surface. Hindawi International Journal of Aerospace Engineering, Vol. 2020, Article ID 8889333. https://doi.org/10.1155/2020/8889333
  6. Williams, Forman A., Combustion Theory. The Benjamin/Cummings Publishing , Menlo Park, 1985.
  7. Irov Yu. D., Keil E. V., Maslov B.N., Pavlukhin Yu. A., Porodenko V. V.,
    Stepanov Ye. A. Gasodynamicheskie funktsii. Mashinostroenie, Moskva, 1965.
  8. William Orvis. EXCEL dlya uchenykh, inzhenerov i studentov. Kiev: «Junior», 1999.
Downloads: 15
Abstract views: 
506
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Las Vegas; Columbus; Ashburn; Ashburn; Portland5
Germany Falkenstein; Düsseldorf; Limburg an der Lahn; Falkenstein4
Singapore Singapore1
France1
Unknown1
China Shenzhen1
Russia Saint Petersburg1
Ukraine Kremenchuk1
8.1.2024 Theoretic-experimental evaluation of the solid-propellant grain erosive burning
8.1.2024 Theoretic-experimental evaluation of the solid-propellant grain erosive burning
8.1.2024 Theoretic-experimental evaluation of the solid-propellant grain erosive burning

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM https://journal.yuzhnoye.com/content_2024_1-en/annot_11_1_2024-en/ Mon, 17 Jun 2024 08:41:21 +0000 https://journal.yuzhnoye.com/?page_id=35014
Content 2024 (1) Downloads: 18 Abstract views: 774 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Chicago; Columbus; Ashburn; Los Angeles; San Francisco; Portland; San Mateo; Ashburn 8 Germany Falkenstein; Düsseldorf; Falkenstein 3 Unknown ; Hong Kong 2 France 1 China Shenzhen 1 Israel Haifa 1 Canada Toronto 1 Ukraine Kremenchuk 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Semenenko Ye.V., Biliaiev M.
]]>

11. Parameters calculation of the lunar regolith transport system

Organization:

National Academy of Sciences of Ukraine, M.S. Poliakov Institute of geotechnical mechanics1; Ukrainian State University of Science and Technologies2; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2024, (1); 93-101

DOI: https://doi.org/10.33136/stma2024.01.093

Language: Ukrainian

Annotation: The objective of this article is to develop a scientifically proven method of calculation of the auger conveyor parameters, such as the conveyor capacity and the corresponding power of the electrical motor, for different densities and porosities of conveyed materials, the geometrical parameters of the auger, and the specificity of the gravitational fields at the place of transportation. Another objective is to investigate potential limitations of the auger parameters when transporting lunar regolith. To reach these objectives, the known relations for calculating the auger conveyor parameters were applied, as well as the fundamental laws of the granular media mechanics, the principal equations of asynchronous motor electrodynamics, and the behavior of granular media when moving it with the auger conveyor, experimentally studied by the domestic authors. It gave the possibility, for the first time for the lunar environment, to suggest a procedure to calculate the auger conveyor parameters, such as the conveyor capacity and the corresponding power of the electric motor, using known geometrical parameters of the mainline and pipeline, the auger conveyor filling ratio and the parameters of the selected electrical motor. It gave the possibilities to study how the filling ratio of the auger conveyor influences its principal performance parameters and determine potential limitations of the geometrical parameters and the filling ratios of auger conveyors according to the parameters and features of the selected electrical motor. The allowable transportation distances, diameters, other geometrical parameters of auger conveyors, and conveyor filling ratios with the selected electrical motor have been determined. It has been proven that the solutions based on using auger conveyors would be most rational for transporting loose lunar regolith over the Moon’s surface because the auger conveyors are compact and adaptable, and they can be placed inside tubes and laid under the day surface, thereby ensuring the continuous transportation process. Furthermore, they are capable of autonomous operation and can use the electricity produced by solar arrays.

Key words: Moon, regolith, auger, electric motor, capacity, power

Bibliography:

1. Pustovgarov A. A., Osinoviy G. G. Kontseptsiya shlyuzovogo modulya misyachnoi bazy. ХХV Mizhnarodna molodizhna naukovo-praktychna conf. «Lyudyna i cosmos». Zbirnyk tez, NTsAOM, Dnipro, 2023. S. 86 – 87.
2. Semenenko P. V. Sposoby transortirovki poleznykh iskopaemykh ot mesta ikh dobychi k mestu pererabotki v lunnykh usloviyukh. P. V. Semenenko, D. G. Groshelev, G. G. Osinoviy, Ye. V. Semenenko, N. V. Osadchaya. XVII conf. molodykh vchenykh «Geotechnichni problemy rozrobky rodovysch». m. Dnipro, 24 zhovtnya 2019 r. S. 7.
3. Berdnik A. I. Mnogorazoviy lunniy lander. A. I. Berdnyk, M. D. Kalyapin, Yu. A. Lysenko, T. K. Bugaenko. Raketno-kosmichny complexy. 2019. T. 25. №5:3-10. ISSN 1561-8889. https://doi.org/10.15407/knit2019.05.003
4. Semenenko Ye. V., Osadchaya N. V. Traditsionnye i netraditsionnye vydy energii, a takzhe kosmicheskie poleznye iskopaemye v okolozemnom prostranstve. Nauch.-parakt. conf. «Sovremennye raschetno-experimentalnye metody opredeleniya characteristic raketno-kosmicheskoy techniki». m. Dnipro, 10 – 12 grudnya 2019 r. S. 62 – 63.
5. Komatsu pobudue excavator dlya roboty na Misyatsi https://www.autocentre.ua/ua/ news/concept/komatsu-postroit-ekskavator-dlya-raboty-na-lune-1380272.html.
6. Help NASA Design a Robot to Dig on the Moon https://www.nasa.gov/directorates/ stmd/help-nasa-design-a-robot-to-dig-on-the-moon/
7. Robert E. Grimm. Geophysical constaints on the lunar Procellarum KREEP Terrane. Vol. 118, Issue 4. April 2013. P. 768-778. https://agupubs-onlinelibrary-wiley-com.translate. goog/doi/10.1029/2012JE004114?_x_tr_sl=en&_x_tr_tl=ru&_x_tr_hl=ru&_x_tr_pto=sc
https://doi.org/10.1029/2012JE004114
8. Chen Li. A novel strategy to extract lunar mare KREEP-rich metal resources using a silicon collector. Kuixian Wei, Yang Li, Wenhui Ma, Yun Lei, Han Yu, Jianzhong Liu. Journal of Rare Earths Vol. 41, Issue 9, September 2023, P. 1429-1436. https://www-sciencedirect-com.translate.goog/science/article/ abs/pii/S1002072122001910?_x_tr_sl=en&_x_tr_tl=ru&_x_tr_hl=ru&_x_tr_pto=sc https://doi. org/10.1016/j.jre.2022.07.002
9. Moon Village Association https://moon-villageassociation.org/about/
10. GLOBAL MOON VILLAGE. https://space-architect.org/portfolio-item/ global-moon-village//
11. Just G. H. Parametric review of existing regolith excavation techniques for lunar In Situ Resource Utilization (ISRU) and recommendations for future excavation experiments. G. H. Just, Smith K., Joy K. H., Roy M. J. https://doi.org/10.1016/j.pss.2019.104746
https://www.sciencedirect.com/science/article/pii/S003206331930162X
12. Anthony J. Analysis of Lunar Regolith Thermal Energy Storage. Anthony J. Colozza Sverdrup Technology, Inc. Lewis Research Center Group Brook Park, Ohio NASA Contractor Report 189073. November 1991. S-9 https://denning.atmos.colostate.edu/readings/ lunar.regolith.heat.transfer.pdf
13. Obgruntuvannya vykorystannya shneka dlya utilizatsii vidkhodiv vuglezbagachennya z mozhlyvistyu pidvyschennya bezpeki energetychnoi systemy pidpriemstv. SLobodyannikova I. L., Podolyak K. K., Tepla T. D. Materialy XХІ Mizhnarod. conf. molodykh vchennykh (26 zhovt. 2023 roku, m. Dnipro). Dnipro: IGTM im. M.S. Polyakova NAN Ukrainy, 2023. S. 50–55.
14. Kulikivskiy V. L., Paliychuk V. K., Borovskiy V. M. Doslidzhennya travmuvannya zerna gvintovym konveerom. Konstryuvannya, vyrobnitstvo ta exspluatatsiya silskogospodarskykh mashin. 2016. Vyp. 46. S. 160 – 165. https://doi.org/10.3233/EPL-46204
14. Lyubin M. V., Tokarchuk O. A., Yaropud V. M. Osoblyvosti roboty krutopokhylennykh gvyntovykh transporterov pri peremischenni zernovoi produktsii. Tekhnika, energetika, transport APK. 216. № 3(95). S. 235 – 240.
15. Gevko R. B., Vitroviy A. O., Pik A. I. Pidvyschennya tekhnichnogo rivnya gnuchkykh gvyntovykh konveeriv. Ternopil: Aston, 2012. 204 s.
16. Bulgakov B. M., Adamchyuk V. V., Nadikto V. T., Trokhanyak O. M. Teoretichne obgruntuvannya parametriv gnuchkogo gvintovogo konveera dlya transportuvannya zernovykh materialiv. Visnyk agrarnoi nauki. 2023. № 4(841). S. 59 – 66.
17. New Views of the moon. Reviews in mineralogy and geochemistry. Eds. Joliff B.L., Wieczorek M.A., Shearer C.K., Neal C.R. Mineralogical Society of America. Reviews in mineralogy and geochemistry. 2006. Vol. 60. 721 p. DOI: 10.2138/rmg.2006.60.
18. Semenenko Ye. V. Nauchnye osnovy technologiy hydromechanizatsii otkrytoy razrabotki titan-cyrkonovykh rossypey. Yevgeniy Vladimirovich Semenenko. Kiev: Nauk. dumka, 2011. 232 s.

Downloads: 18
Abstract views: 
774
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Chicago; Columbus; Ashburn; Los Angeles; San Francisco; Portland; San Mateo; Ashburn8
Germany Falkenstein; Düsseldorf; Falkenstein3
Unknown; Hong Kong2
France1
China Shenzhen1
Israel Haifa1
Canada Toronto1
Ukraine Kremenchuk1
11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM
11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM
11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
6.1.2024 New methods of load-carrying capacity prediction for the ultimately compressed frame structures https://journal.yuzhnoye.com/content_2024_1-en/annot_6_1_2024-en/ Mon, 17 Jun 2024 07:56:18 +0000 https://journal.yuzhnoye.com/?page_id=34992
New methods of load-carrying capacity prediction for the ultimately compressed frame structures Authors: Muliar Yu. 2024, (1); 51-60 DOI: https://doi.org/10.33136/stma2024.01.051 Language: English Annotation: Amid acute problems that arise in the field of rocket and space technology, mechanical engineering, and other fields and require a workable engineering solution, the problem of prediction and prevention of the unpredicted collapse of the structural members of the structures subjected to loading is considered. Prediction of the load-carrying capacity and residual life of the space frames during the long-term operation is based on the analysis of the stress and strain state, using readings from the strain and displacement pickups installed in the most loaded zones. In this case the yield strength of the structural material or the fatigue strength of the material may be considered as the criterion of the maximum load.
]]>

6. New methods of load-carrying capacity prediction for the ultimately compressed frame structures

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine,1; Kharkiv Aviation Institute, Kharkiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2024, (1); 51-60

DOI: https://doi.org/10.33136/stma2024.01.051

Language: English

Annotation: Amid acute problems that arise in the field of rocket and space technology, mechanical engineering, and other fields and require a workable engineering solution, the problem of prediction and prevention of the unpredicted collapse of the structural members of the structures subjected to loading is considered. Prediction of the load-carrying capacity and residual life of the space frames during the long-term operation is based on the analysis of the stress and strain state, using readings from the strain and displacement pickups installed in the most loaded zones. In this case the yield strength of the structural material or the fatigue strength of the material may be considered as the criterion of the maximum load. At the same time the loss of stability of the compressed structural members used in the load-carrying thin-walled structures are among the potentially dangerous failure modes. In these cases such failure occurs unexpectedly without any visible signs of change in the initial geometry. Application of the adequate diagnostic techniques and methods of prediction of the maximum loads under compression conditions will make it possible to avoid the structural failures. In this case an assembly under test may be used for other purposes. To perform static strength testing, the rocket and space companies use costly compartments of as-built dimension. Therefore, keeping compartments safe solves an important problem of saving financial costs for hardware production. Nowadays this problem is particularly acute when ground testing the new technology prototypes.

Key words: space frames, load-carrying members, stress and strain state, loss of stability, prediction of the structural failure.

Bibliography:
  1. Prochnost raketnyh konstruktsyi. Ucheb. posobie pod redaktsiyei V.I. Mossakovskogo. M.: Vyssh. shk., 1990. S. 359 (in Russian).
  2. Truesdell C. A first course in rational continuum mechanics. The Johns Hopkins University, Baltimore, Maryland, 1972. Russian translation was published by Mir, M., 1975. P. 592.
  3. Rabotnov Yu. Mehanika deformiruyemogo tverdogo tela.: Nauka, 1979. S. 744.
  4. Bolotin V. Nekonservativnyie zadachi teoriyi uprugoy ustoychivosti. Phyzmatgiz, M., 1961. S. 339.
  5. Feodosyev V. Izbrannyie zadachi i voprosy po soprotivleniyu materialov. Nauka. , 1973. S. 400.
  6. Muliar Yu. M., Fedorov V.M., Triasuchev L.M. O vliyanii nachalnyh nesovershenstv na poteryu ustoychivosti sterzhney v usloviyah osevogo szhatiya. Kosmicheskaya tehnicka. Raketnoye vooruzheniye: Sb. nauch.-tehn. st. 2017. Vyp. 1 (113). S. 48-58. https://doi.org/10.15193/zntj/2017/113/210
  7. Volmir A. Ustoychivost deformiruyemyh sistem. M., 1967. S. 984.
  8. Muliar Yu. M. K voprosy ob ustoichivosty szhatogo sterzhnya. Tekhnicheskaya mekhanika. Dnepropetrovsk: ITM. 2000. No S. 51.
  9. Muliar Yu. M., Perlik V.I. O matematicheskom modelnom predstavlenii informatsionnogo polia v nagruzhennoy deformiruyemoy sisteme. Informatsionnyie i telekommunikatsionnyie tehnologii. M.: Mezhdunar. akad. nauk informatizatsii, informatsionnyh protsessov i tehnologiy. 2012. No 15. S. 61.
  10. Koniuhov S. N., Muliar Yu. M., Privarnikov Yu. K. Issledovaniye vliyaniya malyh vozmuschayuschih vozdeystviy na ustoychivost obolochki. Mehanika. 1996. 32,  No 9. S. 50-65.
Downloads: 22
Abstract views: 
836
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Las Vegas; Buffalo; Los Angeles;; Dallas; New Haven; San Francisco; Chicago; Los Angeles; Seattle;; Portland; San Mateo; Ashburn14
Germany Falkenstein; Düsseldorf; Falkenstein3
France1
Unknown1
China Shenzhen1
Singapore Singapore1
Ukraine Kremenchuk1
6.1.2024 New methods of load-carrying capacity prediction for the ultimately compressed frame structures
6.1.2024 New methods of load-carrying capacity prediction for the ultimately compressed frame structures
6.1.2024 New methods of load-carrying capacity prediction for the ultimately compressed frame structures

Keywords cloud

]]>