Search Results for “loading device” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Wed, 06 Nov 2024 11:40:32 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “loading device” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 20.2.2018 The Use of Special Devices during Launch Pad Development Testing https://journal.yuzhnoye.com/content_2018_2-en/annot_20_2_2018-en/ Thu, 07 Sep 2023 12:27:24 +0000 https://journal.yuzhnoye.com/?page_id=30805
The descriptions, basic characteristics, advantages and disadvantages of composite and bulk weights and pad loading device are given. This article studies the pad loading device under development. Advantages of the pad loading device include low materials consumption, low cost in comparison with composite weights (with large load values), provision of the required modes for applying and removing the test load, controlled separate loading of each support of the launch pad, high mobility, short duration of testing, possibility of using launch pads of other rocket complexes with lower or equal test load values for testing. Therefore, the pad loading device enables to achieve the required test load values while having considerably smaller dimensions and mass as compared with composite weights and bigger functional possibilities as compared with bulk weights. Key words: weight for testing , test load , loading device Bibliography: 1. weight for testing , test load , loading device .
]]>

20. The Use of Special Devices during Launch Pad Development Testing

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 173-177

DOI: https://doi.org/10.33136/stma2018.02.173

Language: Russian

Annotation: One of the tasks of the development tests conducted on a launch pad is verification of its strength properties. The tests are carried out after the launch pad was manufactured and assembled on-site as well as during the whole operating period (if necessary). Load mode was chosen in consideration of cost and possibility of providing the required loading conditions. Two modes of creating the required test load were examined: usage of weights with corresponding mass (load simulators) or special devises (which have smaller mass as compared with load simulators). The descriptions, basic characteristics, advantages and disadvantages of composite and bulk weights and pad loading device are given. This article studies the pad loading device under development. This device enables to conduct static nondestructive tests on the launch pad in order to check its strength after manufacturing and during the whole operating period. The device consists of the load-bearing frame, hydraulic system, locks, control system and measurement system. Advantages of the pad loading device include low materials consumption, low cost in comparison with composite weights (with large load values), provision of the required modes for applying and removing the test load, controlled separate loading of each support of the launch pad, high mobility, short duration of testing, possibility of using launch pads of other rocket complexes with lower or equal test load values for testing. Therefore, the pad loading device enables to achieve the required test load values while having considerably smaller dimensions and mass as compared with composite weights and bigger functional possibilities as compared with bulk weights. Small overall dimensions and operability reduce the number of needed personnel and equipment.

Key words: weight for testing, test load, loading device

Bibliography:
1. ISO 14625:2007. Space systems. Ground support equipment for use at launch, landing or retrieval sites. General requirement. Brought in 01.11.2007. 32 p.
2. Launch Vehicle Mass Dummy: Patent RU2491211 RF: MPK B64G 5/00, B64G 7/00, F42B 15/00 / Dneprotyazhmash. Published 27.08.2013. 12 p.
3. Method of Poles Static Testing and Poles Static Test Device: Patent RU2173747: RF E02D 33/00 / NPSF Fundamentspetstroy. Published 20.09.2001. 10 p.
4. ISO 16290:2013. Space systems. Definition of the Technology Readiness Levels (TRLs) and their criteria of assessment. Brought in 14.10.2013. 20 p.
Downloads: 37
Abstract views: 
839
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Miami; Phoenix; Monroe; Seattle; Columbus; Ashburn; Ashburn; Seattle; Portland; San Mateo; Des Moines; Boardman; Ashburn18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Germany;; Falkenstein3
Unknown;2
Finland Helsinki1
Japan1
Mongolia1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
20.2.2018 The Use of Special Devices during Launch Pad Development Testing
20.2.2018 The Use of Special Devices during Launch Pad Development Testing
20.2.2018 The Use of Special Devices during Launch Pad Development Testing

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
14.1.2019 Technique of Determination of SRM Operational Life Taking into Account Materials and Elements Strength Margins https://journal.yuzhnoye.com/content_2019_1-en/annot_14_1_2019-en/ Wed, 24 May 2023 16:00:23 +0000 https://journal.yuzhnoye.com/?page_id=27719
Methodology provides the estimation of safety margins in all phases of storage and operation of the device, consideration of the impact of the active factors (mass, temperature, loading, process of material aging), performance of calculations for the chosen specific zones of the device.
]]>

14. Technique of Determination of SRM Operational Life Taking into Account Materials and Elements Strength Margins

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 95-101

DOI: https://doi.org/10.33136/stma2019.01.096

Language: Russian

Annotation: Service life (resource) of the device (system, structure, material) is one of the major factors, which defines the reliable performance of the device or necessity of its replacement. The purpose of this paper is to develop the engineering methodology to estimate the service life of the device to support the well-founded design decision-making. The methodology of estimation of the service life of material or structure is based on the generalization of great amount of Yuzhnoye SDO experimental data and theoretical research on the impact of various factors (properties of materials, loads, storage and operation conditions) on their service life on the ground of strength analysis. At the same time, service life definition is based on the results of stress and deformation analyses and their comparison with strength properties of the applied material (tensile strength and deformation properties). Strength properties of the material should be reduced to test conditions in terms of temperature, pressure, rate of loading, degrees of material aging etc. Methodology provides the estimation of safety margins in all phases of storage and operation of the device, consideration of the impact of the active factors (mass, temperature, loading, process of material aging), performance of calculations for the chosen specific zones of the device. It is shown that the service life estimation is in general case a probabilistic observation because of the random combination of the influencing factors (strength properties, storage and operation conditions, loads). Analysis of experimental and computation data as applied to solid-propellant rocket engine shows that the most dangerous zones, which define the service life, are the fuel charge channel (deformations at launch), a fuel-body coupling zone (breakaway coupling stress) and a “lock” zone of the release collar (concentration of shear and breakaway stresses and deformations). Developed methodological guidelines of the engineering estimate of the service life can be used as the computational basis for the service life of materials and structures in the phase of system design and updating of the assumed design solutions.

Key words: stress, deformation, service life, aging, load

Bibliography:

1. Lyashevskiy A. V., Mironov Ye. A., Vedernikov M. V. Prognozirovanie srokov prigodnosti tverdykh raketnykh topliv metodom Roentgen-computrnoy tomografii// Aviatsionnaya i raketno-kosmichaskaya technika. №2. 2015. P. 118-123.
2. Schubert H., Menke K. Service Life Determination of Rocket Motors by Comprehensive Property Analysis of Propellant Grain / Athens, Greece, May, 1996, Simposium. №41 P. 1-10.
3. Hufferd W. L. Service Life Assessment for Space Launch Vehicles / Athens, Greece, May, 1996, Simposium. №46. P. 1-9.
4. Faulkner G. S., Tod D. Service Life Prediction Methodologies Aspects of the TTCP KTA-14 UK Programme / Athens, Greece, May, 1996, Simposium. – №24. P. 1-13.
5. Francis E. C. (England), Busswell H. J. Improvements in Rocket Motor Service Life Prediction / Athens, Greece, May, 1996, Simposium. №27. P. 1-13.
6. Collingwood G. A., Dixon M. D., Clark L. M., Becker E. B. Solid Rocket Motor Service Life Prediction Using Nonlinear Viscoelastic Analysis and Probabilistic Approach / Athens, Greece, May, 1996, Simposium. №29. P. 1-8.
7. Zharkov A. S., Anisimov I. I., Maryash V. I. Physiko-chimichaskie process v izdeliyakh iz vysokoenergetycheskykh kondensirovannykh materialov pri dlitelnoy ekspluatatsii/ Physicheskaya mezomechanika. №9/4. 2006. P. 93-106.
8. Gul’ V. Ye. Struktura i prochnost’ polymerov. M.: Chimia, 1971. P. 10-23, 189-209.
9. Pavlov P. A. Osnovy engeneernykh raschetov elementov machin na ustalostnuyu i dlitelnuyu prochnost’. L.: Mashinostroenie, 1988. P. 65-70.
10. Ushkin N. P. Sposoby proektnoy otsenki resursa RDTT i obespechaniya ego dlitelnoy ekspluatatsii/ Kosmicheskaya technika. Raketnoye vooruzhenie: Sb. nauch.- techn. st. 2016. Vyp. 1. Dnepropetrovsk: GP KB «Yuzhnoye». P. 110-116.

Downloads: 44
Abstract views: 
237
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore;; Plano; Miami; Miami; Columbus; Columbus; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Seattle; Tappahannock; Portland; Portland; San Mateo; San Mateo; San Mateo; Columbus; Des Moines; Boardman; Ashburn27
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
India Karnal; Tiruchchirappalli2
China Shanghai1
Unknown1
Great Britain London1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
14.1.2019 Technique of Determination of SRM Operational Life Taking into Account Materials and Elements Strength Margins
14.1.2019 Technique of Determination of SRM Operational Life Taking into Account Materials and Elements Strength Margins
14.1.2019 Technique of Determination of SRM Operational Life Taking into Account Materials and Elements Strength Margins

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
7.1.2023 Specificity of using rubbers as structural materials for making connector assemblies of temperature conditioning systems https://journal.yuzhnoye.com/content_2023_1-en/annot_7_1_2023-en/ Fri, 12 May 2023 16:10:58 +0000 https://test8.yuzhnoye.com/?page_id=26991
Vibration impulsive loading during pyromixture combustion is reduced by optimization of explosive quantity, finding its minimum to provide the reliable activation of the device. Functional testing of the device, using the pendulum suspension and measuring separation speed and vibration impulsive loading, showed that body parts of the shear explosive bolt with segments are separated without significant impact loads and discharge of high-temperature gases and debris, providing reliable separation of compartments and units without damaging the sensitive equipment.
]]>

7. Specificity of using rubbers as structural materials for making connector assemblies of temperature conditioning systems

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; State Enterprise DINTEM Ukrainian Research Design-Technological Institute of Elastomer Materials and Products2

Page: Kosm. teh. Raket. vooruž. 2023 (1); 63-69

DOI: https://doi.org/10.33136/stma2023.01.063

Language: Ukrainian

Annotation: Explosive bolts are widely used as actuating devices in the spacecraft separation systems. Explosive bolt body is divided into parts as a result of engagement of the pyromixture placed inside. Activated explosive bolts have negative mechanical effect on the interface elements and sensitive electronic devices installed nearby owing to explosive behavior of the pyromixture combustion, generating shock front with high pressure and velocities, impacts and collisions of the structural units. Cumulative effect of the above factors on the separated objects is called pyroshock. For separation systems with increased requirements to external actions and cleanliness, authors developed a shear explosive bolt or pyrobolt, divided into parts, cutting the body walls in segments, which are set in motion by action of the pressure of gases, released as a result of pyrocartridge activation. The basic sources of pyroshock for these shear explosive bolts with segments are: combustion of pyromixture, internal impacts of structural units against the bolt body; cutting of body wall in segments, release of preliminary deformed interface after activation. Structural solutions are presented to reduce the pyroshock per each of the components. Vibration impulsive loading during pyromixture combustion is reduced by optimization of explosive quantity, finding its minimum to provide the reliable activation of the device. To reduce the impact on the explosive bolt elements and shock front interface the rubber gasket is installed in the path of shock wave distribution, partially disseminating and absorbing its kinetic energy. Damper, made of easily deformable aluminum alloy, is also installed to decrease the internal impact of the rod against the explosive bolt body. Functional testing of the device, using the pendulum suspension and measuring separation speed and vibration impulsive loading, showed that body parts of the shear explosive bolt with segments are separated without significant impact loads and discharge of high-temperature gases and debris, providing reliable separation of compartments and units without damaging the sensitive equipment. Obtained values of the mechanical momentum, I = 0,4÷0,7 N•s and shock load spectrum – g-load 1950 g at the frequency range up to 5000 Hz, meet the up-to-date requirements to pyrotechnical devices.

Key words: explosive bolt, pyroshock, shock wave, pyrocartridge, high-temperature gases, damper

Bibliography:
1. Bigun S. A., Khorolskiy M. S. i dr. Tipy i konstruktivnye osobennosti uzlov stykovki system termostatirovania golovnyh blokov i otsekov raket-nositeley kosmicheskyh apparatov. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st. GP «KB «Yuzhnoye». Dnepropetrovsk, 2013. Vyp. 1. S. 65-68.

2. Bigun S. A., Khorolskiy M. S. Problemnye voprosy sozdania uzlov stykovki system termostatirovania raket kosmicheskogo naznachenia. Kosmicheskaya technika. Raketnoe vooruzhenie. Space technology Missile armaments: sb. nauch.-techn. st. GP «KB «Yuzhnoye». Dnepropetrovsk, 2013. Vyp. 2. S. 132-138.
3. Pat. Frantsii №2658479 (А2), 1991, MPK kl. В64G 1/40; В64G 1/64, В64G 5/00.
4. Pat. Frantsii №2685903 (А1), 1993, MPK kl В64G 5/00; F41F3/055; F02K9/44.
5. Pat. Rossiyskoi Federatsii №2473003-S1, 2011 r., MPK7F16L 37/20.
6. Yrtsev L. N., Bukhin B. L. Rezina kak konstruktsionniy material. Bolshoy spravochnik rezinschika. V dvuh chastyah. Ch. 1. Kauchuki i ingredienty. Pod red. S. V. Reznichenko, Yu. L. Morozova. M., 2012. 744 s.
7. GOST 263-75. Rezina. Metod opredelenia tverdosti po Shoru A (s izmeneniyami № 1, 2, 3, 4). M., 1989. 10 s.
8. Koshelev F. F., Kornev A. Ye., Bukanov A. M. Obschaya technologia reziny. Izd. 4-e, pererab. i dop. M., 1978. 528 s.
9. Skokov A. I., Kaplun S. V., Bogutskaya Ye. A., Khorolskiy M. S., Bigun S. A. Technologicheskie aspekty sozdaniya rukavov stykovki system termostatirovania raket-nositeley. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st. GP «KB «Yuzhnoye». Dnepropetrovsk, 2015. Vyp. 1. S. 42-45.
10. Bigun S. A., Yevchik V. S., Khorolskiy M. S. O vybore materialov dlya sozdaniya rukavov stykovki system termostatirovania sovremennyh RKN. Kosmicheskaya technika. Raketnoe vooruzhenie. Space technology Missile armaments: sb. nauch.-techn. st. GP «KB «Yuzhnoye». Dnepr, 2018. Vyp. 1. S. 72-84. https://doi.org/10.33136/stma2018.01.072
11. Pat. Ukrainy № 120445, 2019 r., В64G 5/00, В64G 1/40, F16L 37/08, F41F 3/055, F16L 33/00.
12. Pat. Ukrainy № 120469, 2019 r., В64G 5/00, В64G 1/40, F25B 29/00, F16L 33/00,F16L 37/12, F16L 25/00.
13. Khorolskiy M. S., Bigun S. O. Shodo kontseptsii stvorennya vuzliv stykuvannya system termostatuvannya raket kosmichnogo pryznachennya. Systemne proektuvannya i analiz characteristic aerokosmichnoi techniki: zb. nauk. pr. 2019. T. XXVII. S. 162-168.
14. Bigun S. A., Khorolskiy M. S. i dr. Eksperimentalnye issledovania rezultatov otrabotki uzlov stykovki system termostatirovania RKN «Tsiklon-4». Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st./ GP «KB «Yuzhnoye». Dnepropetrovsk, 2016. Vyp. 2. S. 43-51.

Downloads: 5
Abstract views: 
702
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
Germany Limburg an der Lahn; Falkenstein2
Unknown1
USA Seattle1
Singapore Singapore1
7.1.2023 Specificity of using rubbers as structural materials for making connector assemblies of temperature conditioning systems
7.1.2023 Specificity of using rubbers as structural materials for making connector assemblies of temperature conditioning systems
7.1.2023 Specificity of using rubbers as structural materials for making connector assemblies of temperature conditioning systems

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>