Search Results for “mathematical simulation” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Wed, 06 Nov 2024 11:42:12 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “mathematical simulation” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 4.1.2024 The dynamics of servo drives https://journal.yuzhnoye.com/content_2024_1-en/annot_4_1_2024-en/ Wed, 12 Jun 2024 16:08:46 +0000 https://journal.yuzhnoye.com/?page_id=34978
Calculation results with the application of the given mathematical model match well with the results of the full-scale testing of different specimens of servo drives, which makes it possible to use it for the development of new servomechanisms, as well as for the correct flight simulation when testing the aircraft control systems.
]]>

4. The dynamics of servo drives

Page: Kosm. teh. Raket. vooruž. 2024, (1); 29-39

DOI: https://doi.org/10.33136/stma2024.01.029

Language: Ukrainian

Annotation: The article gives the analysis results for the servo drives dynamics, obtained from the theoretical calculations and during the development testing of the high power electric drives. Theoretical research was conducted, using the complete mathematical model of the servo drive, which included the equations of the control signal shaping path, electric motor, reducer and load. The equations of the control signal shaping network include only the characteristics of the compensating element in the assumption that all other delays in the transformation path are minimized. The electric motor equations are assumed in the classical form, taking into account the influence of the following main parameters on the motor dynamics: inductance and stator winding resistance, torque and armature reaction coefficients and rotor moment of inertia. Interaction of the motor with the multimass system of the reducer and load is presented in the form of force interaction of two masses – a reduced mass of the rotor and mass of the load through the certain equivalent rigidity of the kinematic chain. To describe the effect of gap in the kinematic connection the special computational trick, which considerably simplifies its mathematical description, is used. Efficiency of the reducer is presented in the form of the internal friction, proportional to the transmitted force. Calculation results with the application of the given mathematical model match well with the results of the full-scale testing of different specimens of servo drives, which makes it possible to use it for the development of new servomechanisms, as well as for the correct flight simulation when testing the aircraft control systems. In particular, based on the frequency response calculations of the closed circuit with the application of the given mathematical model, it is possible to define optimal parameters of the correcting circuit. Reaction on the step action with the various values of circular amplification coefficient in the circuit gives complete information on the stability regions of the closed circuit and influence of various drive parameters on these regions. Based on the conducted theoretical and experimental studies, the basic conclusions and recommendations were obtained and presented, accounting and implementation of which will provide high dynamic characteristics of the newly designed servo drives.

Key words: electric drive, servo drive, reducer, stability, mathematical model.

Bibliography:
  1. Kozak L. Dynamika servomechanismov raketnoy techniki. Inzhenernye metody issledovaniya. Izd-vo LAP LAMBERT Academic Publiching, Germania. 2022.
  2. Kozak L. R., Shakhov M. I. Matematicheskie modely hydravlicheskikh servomekhanismov raketno-kosmicheskoy techniki. Kosmicheskaya technika. Raketnoe vooruzhenie. 2019. Vyp. 1.
Downloads: 13
Abstract views: 
696
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Raleigh; New York City; Buffalo; Ashburn; Seattle; Portland; Ashburn7
Germany Falkenstein; Falkenstein2
France1
Unknown1
China Shenzhen1
Ukraine Kremenchuk1
4.1.2024 The dynamics of servo drives
4.1.2024 The dynamics of servo drives
4.1.2024 The dynamics of servo drives

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
15.1.2020 Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements https://journal.yuzhnoye.com/content_2020_1-en/annot_15_1_2020-en/ Wed, 13 Sep 2023 11:07:28 +0000 https://journal.yuzhnoye.com/?page_id=31050
Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements Authors: Usov A. The results of the simulation using singular integral equations open the possibility to evaluate the influence of thirdparty fillers on the loss of functional properties of inhomogeneous systems. Key words: mathematical model , linear systems , singular integral equations , impulse response , defects , criteria for the destruction of stochastically defective bodies , Riemann problem , thermoelastic state Bibliography: 1. mathematical model , linear systems , singular integral equations , impulse response , defects , criteria for the destruction of stochastically defective bodies , Riemann problem , thermoelastic state .
]]>

15. Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements

Organization:

Institute of Mechanical Engineering of Odessa National Polytechnic University, Odessa, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 137-148

DOI: https://doi.org/10.33136/stma2020.01.137

Language: Ukrainian

Annotation: The strength of real solids depends essentially on the defect of the structure. In real materials, there is always a large number of various micro defects, the development of which under the influence of loading leads to the appearance of cracks and their growth in the form of local or complete destruction. In this paper, based on the method of singular integral equations, we present a unified approach to the solution of thermal elasticity problems for bodies weakened by inhomogeneities. The purpose of the work is to take into account the heterogeneities in the materials of the elements of the rocket structures on their functionally-gradient properties, including strength. The choice of the method of investigation of strength and destruction of structural elements depends on the size of the object under study. Micro-research is related to the heterogeneities that are formed in the surface layer at the stage of preparation, the technology of manufacturing structural elements. Defectiveness allows you to adequately consider the mechanism of destruction of objects as a process of development of cracks. In studying the limit state of real elements, weakened by defects and constructing on this basis the theory of their strength and destruction in addition to the deterministic one must consider the probabilistic – statistical approach. In the case of thermal action on structural elements in which there are uniformly scattered, non-interacting randomly distributed defects of the type of cracks, the laws of joint distribution of the length and angle of orientation of which are known, the limiting value of the heat flux for the balanced state of the crack having the length of the “weakest link” is determined. The influence of heterogeneities of technological origin (from the workpiece to the finished product) that occur in the surface layer in the technology of manufacturing structural elements on its destruction is taken into account by the developed model. The strength of real solids depends essentially on the defect of the structure. In real materials, there are always many various micro defects, the development of which under the influence of loading leads to the appearance of cracks and their growth in the form of local or complete destruction. In this paper, based on the method of singular integral equations, we present a unified approach to the solution of thermal elasticity problems for bodies weakened by inhomogeneities. The purpose of the work is to take into account the heterogeneities in the materials of the elements of the rocket structures on their functionally gradient properties, including strength. The choice of the method of investigation of strength and destruction of structural elements depends on the size of the object under study. Micro-research is related to the heterogeneities that are formed in the surface layer at the stage of preparation, the technology of manufacturing structural elements. Defectiveness allows you to adequately consider the mechanism of destruction of objects as a process of development of cracks. In studying the limit state of real elements, weakened by defects and constructing on this basis the theory of their strength and destruction besides the deterministic one must consider the probabilistic – statistical approach. With thermal action on structural elements in which there are uniformly scattered, non-interacting randomly distributed defects of the cracks, the laws of joint distribution of the length and angle of orientation of which are known, the limiting value of the heat flux for the balanced state of the crack having the length of the “weakest link” is determined. The influence of heterogeneities of technological origin (from the workpiece to the finished product) that occur in the surface layer in the technology of manufacturing structural elements on its destruction is taken into account by the developed model. The solution of the singular integral equation with the Cauchy kernel allows one to determine the intensity of stresses around the vertexes of defects of the cracks, and by comparing it with the criterion of fracture toughness for the material of a structural element, one can determine its state. If this criterion is violated, the weak link defect develops into a trunk crack. Also, a criterion correlation of the condition of the equilibrium defect condition with a length of 2l was got, depending on the magnitude of the contact temperature. When the weld is cooled, it develops “hot cracks” that lead to a lack of welding elements of the structures. The results of the simulation using singular integral equations open the possibility to evaluate the influence of thirdparty fillers on the loss of functional properties of inhomogeneous systems. The exact determination of the order and nature of the singularity near the vertices of the acute-angled imperfection in the inhomogeneous medium, presented in the analytical form, is necessary to plan and record the corresponding criterion relations to determine the functional properties of inhomogeneous systems.

Key words: mathematical model, linear systems, singular integral equations, impulse response, defects, criteria for the destruction of stochastically defective bodies, Riemann problem, thermoelastic state

Bibliography:
1. Gakhov F. D. Kraievye zadachi. M.: Nauka,1977. 640 s.
2. Gakhov F. D. Uravneniia tipa svertki. M.: Nauka, 1978.296 s.
3. Litvinchuk G. S. Kraievye zadachi i singuliarnye integralnye uravneniia so sdvigom. M.: Nauka, 1977. 448 s.
4. Muskhelishvili N. I. Singuliarnye integralnye uravneniia. M.: Nauka, 1968. 512 s.
5. Panasiuk V. V. Metod singuliarnykh integralnykh uravnenii v dvukhmernykh zadachakh difraktsii. K.: Nauk. dumka, 1984. 344 s.
6. Siegfried PROSSDORF Einige Klassen singularer Gleichungen.Akademie Verlag Berlin, 1974. 494 s. https://doi.org/10.1007/978-3-0348-5827-4
7. Oborskii G. А. Modelirovanie sistem : monografiia. Odessa: Astroprint, 2013. 664 s.
8. Usov A. V. Matematicheskoe modelirovanie protsessov kontrolia pokrytiia elementov konstruktsii na baze SIU. Problemy mashinostroeniia. 2010. Т.13. №1. s. 98−109.
9. Kunitsyn M. V., Tribocorrosion research of NI-Al2O3/TIO2 composite materials obtained by the method of electrochemical deposition. M.V. Kunitsyn, A.V Usov. Zb. nauk. prats, Suchasni tekhnolohii v mashinobuduvanni. Vyp. 12. Kharkiv: NTU KhPI, 2017. s. 61−70.
10. Savruk M. P. Chislennyi analiz v ploskikh zadachakh teorii tershchin. K.: Nauk. dumka, 1989. 248 s.
11. Usov A. V. Vvedenie v metody optimizatsii i teoriiu tekhnicheskikh sistem. Odessa: Astroprint, 2005. 496 s.
12. Popov G. Ya. Kontsentratsiia uprugikh napriazhenii vozle shtampov, razrezov, tonkikh vkliuchenii i podkreplenii. M.: Nauka, 1982. 344 s.
13. Cherepanov G. P. Mekhanika khrupkogo razrusheniia. M.: Nauka., 1974. 640 s.
14. Stashchuk N. G. Zadachi mekhaniki uprugikh tel s treshchinopodobnymi defectami. K.: Nauk. dumka, 1993. 358 s.
15. Ekobori T. Nauchnye osnovy prochnosti i razrusheniia materialov. Per. s yap. K.: Nauk. dumka, 1978. 352 s.
16. Morozov N. F. Matematicheskie voprosy teorii treshchin. M.: Nauka, 1984. 256 s.
17. Popov G. Ya. Izbrannye trudy. Т. 1, 2. Odessa: VMV, 2007. 896 s.
18. Grigirian G. D., Usov A. V., Chaplia М. Yu. Vliianie shlifovochnykh defektov na prochnost detalei nesushchei sistemy. Vsesoiuzn. konf. Nadezhnost i dolgovechnost mashin i priborov. 1984. s.101−106.
19. Rais Dzh. Matematicheskie metody v mekhanike razrusheniia. Razrushenie. V 2 t. М.: Mir, 1975.Т.2. S. 204−335.
20. Karpenko G. V. Fiziko-khimicheskaia mekhanika konstruktsionnykh materialov: V 2-kh t. K. : Nauk. dumka, 1985. Т. 1 228 s.
21. Kormilitsina Е. А., Salkovskii F. М., Usov A. V., Yakimov А. V. Prichiny poiavliniia defektov pri shlifovanii magnitotverdykh splavov. Tekhnologiia elektrotekhnicheskogo proizvodstva. М.: Energiia. № 4. 1982. s.1−5.
22. Usov A. V. Smeshannaia zadacha termouprugosti dlia kusochno-odnorodnykh tel s vkliucheniiami i treshchinami. IV Vsesoiuzn. konf. Smeshannye zadachi mechaniki deformiruemogo tela: Tez. dokl.-Odessa,1990. s.116.
23. Yakimov А. V., Slobodianyk P. T., Usov A. V. Teplofizika mekhanicheskoi obrabotki. K.: Nauk. dumka,1991. S. 270.
24. Vitvitskii P. M., Popina S. Yu. Prochnost i kriterii khrupkogo razrusheniia stokhaticheski defektnykh tel. K.: Nauk. dumka, 1980. 187 s.
Downloads: 42
Abstract views: 
1736
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore;; Plano; Miami; Columbus; Columbus; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Germany;; Falkenstein3
Ukraine Odessa; Dnipro2
Cambodia Phnom Penh1
Finland Helsinki1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
15.1.2020  Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements
15.1.2020  Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements
15.1.2020  Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements

Keywords cloud

]]>
21.2.2018 Ensuring Aiming Accuracy of Ship’s Telemetry Reception Antenna Installation for Small Vessels https://journal.yuzhnoye.com/content_2018_2-en/annot_21_2_2018-en/ Thu, 07 Sep 2023 12:30:29 +0000 https://journal.yuzhnoye.com/?page_id=30807
Several variants for operation of the rotary support drives of the antenna set were chosen for mathematical simulation; disturbing conditions of ship roll and ship drift were analyzed and chosen for ships with small displacement.
]]>

21. Ensuring Aiming Accuracy of Ship’s Telemetry Reception Antenna Installation for Small Vessels

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 178-183

DOI: https://doi.org/10.33136/stma2018.02.178

Language: Russian

Annotation: For monitoring rocket flight and determining accuracy of spacecraft injection into the planned orbit, it is necessary to ensure the reception of telemetry data from the launch vehicle. Telemetry data receiving stations may be located either on land or on shipboard. When the antenna system of such station is placed on shipboard, ship roll and ship drift have the most considerable impact on the antenna guidance accuracy. To ensure the guidance accuracy of the telemetry receiving antenna set, placed on shipboard, the control algorithm was designed. It was offered to use triaxial rotary support with axis of reflector inclination angle to meet the requirements specified. In the article, the connection between kinematic parameters of the antenna rotary support drives and parameters of the space launch vehicle motion were identified, rotation angles of the antenna drives along the three axes were determined, and the law of angular velocity variation along the azimuthal axis, including the maximum feasible angular velocity provided by the azimuthal axis drive, was chosen. Numerical simulation of antenna guidance algorithms that provide stable signal receiving under conditions of ship roll was carried out in the visual development environment of Embarcadero RAD Studio XE6. Several variants for operation of the rotary support drives of the antenna set were chosen for mathematical simulation; disturbing conditions of ship roll and ship drift were analyzed and chosen for ships with small displacement. The simulation validated the designed antenna control algorithm and showed that the requirements for the cinematic parameters of the antenna drives were reduced under conditions of ship roll when the axis of reflector inclination angle was introduced; and accelerometer unit or GPS receiver installed in the antenna structure additionally increased the accuracy of target designation of the antenna and improved its guidance accuracy

Key words: antenna, guidance algorithm, ship roll, ship drift, simulation

Bibliography:
1. Blagoveshchensky S. N., Kholodilin A. N. Guide on Ship’s Statics and Dynamics. Vol. 2. Ship’s Dynamics. L., 1976. 544 p.
2. Sakelari N. Navigation. М., 1936. P. 137.
3. Bezrukov Y. F. Wave Level Variation in the World Ocean. Simferopol, 2001. 50 p.
Downloads: 39
Abstract views: 
963
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Phoenix; Los Angeles; Monroe; Ashburn; Seattle; Seattle; Seattle; Ashburn; Boardman; Seattle; Tappahannock; Portland; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn24
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Unknown Melbourne;2
Finland Helsinki1
India Jaipur1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
21.2.2018 Ensuring Aiming Accuracy of Ship’s Telemetry Reception Antenna Installation for Small Vessels
21.2.2018 Ensuring Aiming Accuracy of Ship’s Telemetry Reception Antenna Installation for Small Vessels
21.2.2018 Ensuring Aiming Accuracy of Ship’s Telemetry Reception Antenna Installation for Small Vessels

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests https://journal.yuzhnoye.com/content_2018_2-en/annot_10_2_2018-en/ Thu, 07 Sep 2023 11:29:45 +0000 https://journal.yuzhnoye.com/?page_id=30766
Numerical Simulation of Three-dimensional Reacting Flow in a Model Supersonic Combustor. Lectures in Mathematical Models of Turbulence. Numerical Simulation of Three-dimensional Reacting Flow in a Model Supersonic Combustor. Numerical Simulation of Hot Gas Nozzle Flows. Numerical Simulation of Separated Cold Gas Nozzle Flows. Numerical Simulation of Side Loads in an Ideal Truncated Nozzle.
]]>

10. Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 83-93

DOI: https://doi.org/10.33136/stma2018.02.083

Language: Russian

Annotation: At Yuzhnoye State Design Office, the Cyclone-4 launch vehicle 3rd stage engine has been developed and is under testing. For adjustment of the engine and test bench systems, in the first firing tests the radiation-cooled nozzle extension was replaced with a steel water-cooled one. It was planned to start the engine with water-cooled nozzle extension without vacuumizing and without gad dynamic pipe, which conditioned operation with flow separation at the output edge of water-cooled nozzle extension. Therefore, the calculation of flow in the nozzle with water-cooled extension, flow separation place, and thermal load on watercooled nozzle extension during operation in ground conditions is an important task. Selection of turbulent flow model has a noticeable impact on prediction of flow characteristics. The gas dynamic analysis of the nozzle with water-cooled extension showed the importance of using the turbulent flow model k-ω SST for the flows with internal separation of boundary layer and with flow separation at nozzle section. The use the flow model k-ω SST for calculation of nozzle with flow separation or with internal transitional layer allows adequately describing the flow pattern, though, as the comparison with experimental data showed, this model predicts later flow separation from the wall than that obtained in the tests. The calculation allows obtaining a temperature profile of the wall and providing the recommendations for selection of pressure measurement place in the nozzle extension for the purpose of reducing sensors indication error. With consideration for the special nature of the nozzle extension wall temperature field, the cooling mode was selected. The tests of RD861K engine nozzle with water-cooled extension allow speaking about its successful use as a required element for testing engine start and operation in ground conditions without additional test bench equipment.

Key words: turbulent flow, flow separation, cooling, technological extension

Bibliography:
1. Massiet P., Rocheque E. Experimental Investigation of Exhaust Diffusors for Rocket Engines. Investigation of Liquid Rocket Engines. М., 1964. P. 96-109.
2. Mezhevov A. V., Skoromnov V. I., Kozlov A. V. et al. Introduction of Radiation Cooling Nozzle Head of Made of Carbon-Carbon Composite Material on DM-SL Upper Stage 11D58M Main Engine. News of Samara Aerospace University. No. 2 (10). 2006. P. 260-264.
3. Fluent. Software Package, Ver. 6.2.16, Fluent Inc., Lebanon, NH, 2004.
4. Wilcox D. C. Turbulence Modeling for CFD. DCW Industries, Inc. La Canada, California, 1998. 460 р.
5. Andersen D., Tannehill J., Platcher R. Computational Hydromechanics and Heat Exchange: in 2 volumes М., 1990. 384 p.
6. Rodriguez C. G., Culter, A. D. Numerical Analysis of the SCHOLAR Supersonic Combustor, NASA-CR-2003-212689. 2003. 36 р.
7. Rajasekaran A., Babu V. Numerical Simulation of Three-dimensional Reacting Flow in a Model Supersonic Combustor. Journal of Propulsion and Power. Vol. 22. No. 4. 2006. Р. 820-827. https://doi.org/10.2514/1.14952
8. Spalart P., Allmaras S. A one-equation turbulence model for aerodynamic flows: Technical Report. American Institute of Aero-nautics and Astronautics. AIAA-92-0439. 1992. Р. 5-21. https://doi.org/10.2514/6.1992-439
9. Launder B. E., Spalding D. B. Lectures in Mathematical Models of Turbulence. London, 1972. Р. 157-162.
10. Rajasekaran A., Babu V. Numerical Simulation of Three-dimensional Reacting Flow in a Model Supersonic Combustor. Journal of Propulsion and Power. Vol. 22. No. 4. 2006. Р. 820-827. https://doi.org/10.2514/1.14952
11. Ten-See Wang. Multidimensional Unstructured Grid Liquid Rocket-Engine Nozzle Performance and Heat Transfer Analysis. Journal of Propulsion and Power. Vol. 22. No. 1. 2006. 21 р. https://doi.org/10.2514/1.14699
12. Hyun Ko, Woong-Sup Yoon. Performance Analysis of Secondary Gas Injection into a Conical Rocket Nozzle. Journal of Propulsion and Power. Vol. 18, No. 3. 2002. Р. 585-591. https://doi.org/10.2514/2.5972
13. Wilson E. A., Adler D., Bar-Yoseph P. Thrust-Vectoring Nozzle Performance Mode-ling. Journal of Propulsion and Power. Vol. 19, No. 1. 2003. Р. 39-47. https://doi.org/10.2514/2.6100
14. Gross A., Weiland C. Numerical Simulation of Hot Gas Nozzle Flows. Journal of Propulsion and Power. Vol. 20, No. 5. 2004. Р. 879-891. https://doi.org/10.2514/1.5001
15. Gross A., Weiland C. Numerical Simulation of Separated Cold Gas Nozzle Flows. Journal of Propulsion and Power. Vol. 20, No. 3. 2004. Р. 509-519. https://doi.org/10.2514/1.2714
16. Deck S., Guillen P. Numerical Simulation of Side Loads in an Ideal Truncated Nozzle. Journal of Propulsion and Power. Vol. 18, No. 2. 2002. Р. 261-269. https://doi.org/10.2514/2.5965
17. Östlund J., Damgaard T., Frey M. Side-Load Phenomena in Highly Overexpanded Rocket Nozzle. Journal of Propulsion and Power. Vol. 20, No. 4. 2004. Р. 695-704. https://doi.org/10.2514/1.3059
18. Goldberg U. C. Separated Flow Treatment with a New Turbulence Model. AIAA Journal. Vol. 24, No. 10. 1986. Р. 1711-1713. https://doi.org/10.2514/3.9509
19. Golovin V.S., Kolchugin B.A., Labuntsov D.A. Experimental Investigation of Heat Exchange and Critical Heat Loads at Water Boiling in Free Motion Conditions. 1963. Vol. 6, No 2. p. 3-7.
20. Mikheyev М. А., Mikheyeva I. M. Heat-Transfer Principles. 2nd edition stereotyped. М., 1977. 343 p.
21. Kutateladze S. S., Leontyev A. I. Heat-Mass Exchange and Friction in Turbulent Boundary Layer. М., 1972. 341 p.
Downloads: 41
Abstract views: 
1301
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Matawan; Baltimore; North Bergen; Plano; Columbus; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Columbus; Columbus; Ashburn; Seattle; Tappahannock; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Unknown Hong Kong;2
Belgium Brussels1
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests
10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests
10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
9.1.2017 Mathematical Simulation of Gas-Jet Control System Distributor for Launch Vehicles https://journal.yuzhnoye.com/content_2017_1/annot_9_1_2017-en/ Tue, 27 Jun 2023 12:09:02 +0000 https://journal.yuzhnoye.com/?page_id=29434
Mathematical Simulation of Gas-Jet Control System Distributor for Launch Vehicles Authors: Oliinyk V. (2017) "Mathematical Simulation of Gas-Jet Control System Distributor for Launch Vehicles" Космическая техника. "Mathematical Simulation of Gas-Jet Control System Distributor for Launch Vehicles" Космическая техника. quot;Mathematical Simulation of Gas-Jet Control System Distributor for Launch Vehicles", Космическая техника. Mathematical Simulation of Gas-Jet Control System Distributor for Launch Vehicles Автори: Oliinyk V. Mathematical Simulation of Gas-Jet Control System Distributor for Launch Vehicles Автори: Oliinyk V. Mathematical Simulation of Gas-Jet Control System Distributor for Launch Vehicles Автори: Oliinyk V. Mathematical Simulation of Gas-Jet Control System Distributor for Launch Vehicles Автори: Oliinyk V.
]]>

9. Mathematical Simulation of Gas-Jet Control System Distributor for Launch Vehicles

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (1); 59-66

Language: Russian

Annotation: The differential equations of the gas-jet control system two-stage hot gas distributor are considered.

Key words:

Bibliography:
1. Belyayev N. M., Uvarov E. I. Calculation and Designing of Spacecraft Reaction Control Systems. М., 1974. 200 p.
2. Volkov E. B., Golovkov L. T., Syritsin Т. А. Liquid Rocket Engines. М., 1970. 592 p.
3. Abramovich G. N. Applied Gas Dynamics. М., 1976. 888 p.
4. Mamontov M. A. Some Cases of Gas Flowing in Pipes, Heads and Flow Vessels. М., 1951. 469 p.
5. Gerz E. V., Kreinin G. V. Dynamics of Pneumatic Actuators of Automatic Machines. М., 1964. 233 p.
6. Flying Vehicle Control System Pneumatic Actuators / V. A. Chashhin, О. Т. Kamladze, А. B. Kondrat’yev et al. М., 1987. 248 p.
7. Simakov N. N. Experimental Confirmation of Early Critical Region on Single Sphere. Journal of Technical Physics. Vol. 80, Issue 7. 2010.
8. Deich М. Е. Technical Gas Dynamics. М.-L., 1961. 412 p.
9. Sitnikov B. T., Matveyev I. B. Calculation and Investigation of Safety and Relief Valves. М., 1972. 127 p.
10. Danilov Y. A., Kirillovsky Y. L., Kolpakov Y. G. Equipment of Massive Hydraulic Actuators: Operating Processes and Characteristics. М., 1990. 272 p.
Downloads: 36
Abstract views: 
662
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore;; Boydton; Dublin; Columbus; Ashburn; Ashburn; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Boardman21
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Unknown Hong Kong;2
Ukraine Dnipro; Dnipro2
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
9.1.2017 Mathematical Simulation of Gas-Jet Control System Distributor for Launch Vehicles
9.1.2017 Mathematical Simulation of Gas-Jet Control System Distributor for Launch Vehicles
9.1.2017 Mathematical Simulation of Gas-Jet Control System Distributor for Launch Vehicles
]]>
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays https://journal.yuzhnoye.com/content_2019_1-en/annot_4_1_2019-en/ Thu, 25 May 2023 12:09:18 +0000 https://journal.yuzhnoye.com/?page_id=27709
The description of the mathematical simulation and experimental studies of the stress-strain state of the interstage bay made of carbon fiber sandwich structure is presented and short description of the structure condition after the tests is provided.
]]>

4. Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Zaporizhzhia National University, Zaporizhzhia, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2019, (1); 21-27

DOI: https://doi.org/10.33136/stma2019.01.021

Language: Russian

Annotation: This paper presents the overview and features of the stress-strain state analysis of the multilayer shell structures widely used in the design of the missile compartments. As a result of analysis of the current situation with the stress-strain state studies of the complex configuration shell structures and mathematical support of the load-bearing capacity calculation of the aerospace structures, the following actual research trends can be singled out: 1) improvement of the methods of analytical estimation of the thin-walled structures’ strength and resistance; 2) improvement of the numerical methods of composite materials mechanical properties analysis; 3) development or application of the existing software packages and ADE-systems, automatizing stress-strain state analysis with visualization of the processes under study. One of the most important steps of the third research trend is development of the initial data input media (setting the model parameters) and presentation of analysis results with account of the user interface visualization. The description of the mathematical simulation and experimental studies of the stress-strain state of the interstage bay made of carbon fiber sandwich structure is presented and short description of the structure condition after the tests is provided. Based on the analysis it can be concluded that development of the geometric simulation methods, taking into account the manufacturing deviations, is an independent problem from the point of view of practical applications in the aerospace technology.

Key words: sandwich structure, interstage bay, finite-element model, manufacturing deviations, test loads

Bibliography:

1. Vorovich I. I., Shlenev M. A. Plastiny I obolochki // Itogi nauki. Mechanika: Sbornik obzorov. M.: Nauka, 1963. P. 91–176.
2. Grigolyuk E. I., Kogan F. A. Sovremennoe sostoyanie teorii mnogosloynykh obolochek/ Prikladnaya mechanika. 972. T. 8, № 6. P. 3–17.
3. Grigolyuk E. I., Kulikov G.M. Razvitie obschego napravlenia v teorii mnogo – р max=630…651 kg/cm2/ Kosmicheskay technika. Raketnoe vooruzhenie. Space Technology. Missile Armaments. 2019. Vyp. 1 (117) 27 sloinykh obolochek/ Mechanika compositnykh materialov. 1972. T. 8, № 6. P. 3–17.
4. Grigorenko Ya. M., Vasilenko A. T., Pankratova N. D. K otsenke dopuscheniy teorii trekhsloinykh obolochek s zapolnitelem // Prikladnaya mechanika. 1984. T. 20, № 5. P. 19–25.
5. Dudchenko A. A., Lurie S. A., Obraztsov I. F. Anizotropnye mnogosloynye plastiny I obolochki / Itogi nauki I techniki. Mechanika deformiruemogo tverdogo tela. T. 15. M.: VINITI, 1983. P. 3–68.
6. Kurshin L. M. Obzor rabot po raschetu trekhsloynykh plastin I obolochek / Raschet prostranstvennykh konstruktsiy. Vyp. 1. M.: Gosstroyizdat, 1962. P. 163–192.
7. Noor A. K., Burton W. S., Bert C. W. Computational Models for Sandwich Panels and Shells / Applied Mechanics Reviews. 1996. Vol. 49, No 3. P. 155–199.
8. Piskunov V. G., Rasskazov A. O. Razvitie teorii cloistykh plastin I obolochek // Prikladnaya mechanika. 2002. T. 38, № 2. P. 22–56.
9. Grigorenko Ya. M., Budak V. D., Grigorenko O. Ya. Rozvyazannya zadach teorii bolonok na osnovi disrento –continualnykh metodiv: Navch. posib. Mykolaiv: Ilion, 2010. 294 p.
10. Carrera Е., Brischetto S. A Survey With Numerical Assessment of Classical and Refined Theories for the Analysis of Sandwich Plates // Applied Mechanics Reviews. 2009. Vol. 62, No 1. P. 1–17.
11. Grigolyuk E. I. Uravnenia trekhsloinykh obolochek s legkim zapolnitelem // Izv. AN SSSR. Otdelenie tekhnicheskikh nauk. 1957. № 1. P. 77–84.
12. Ambartsumyan S. A. Teoria anizotropnykh plastin: Prochnost’, ustoichivost’ i kolebania. M.: Nauka, 1987. 360 p.
13. Carrera Е. Historical review of Zig-Zag theories for multilayered plates and shells / Applied Mechanics Reviews. 2003. Vol. 56, No 3. P. 287–308.
14. Teichman F. K., Wang C.-T. Finite deflections of Curved Sandwich Cylinders. Sherman M. Fairchild Publ. Fund. Inst. Aero. Sci. Paper FF-4. Institute of the Astronautical Sciences, 1951. P. 14.
15. Teichman F. K., Wang C.-T., Gerard G. Buckling of Sandwich Cylinders under Axial Compression / Journal of the Aeronautical Sciences. 1951. Vol. 18, No 6. P. 398–406.
16. Vinson J. R. Sandwich Structures / Applied Mechanics Reviews. 2001. Vol. 54, No 4. P. 201–214.
17. Lin J., Fei Y., Zhihua W., Longmao Z. A numerical simulation of metallic cylindrical sandwich shells subjected to air blast loading / Latin American Journal of Solids and Structures. 2013. Vol. 10. P. 631–645.
18. Wu J., Pan L. Nonlinear theory of multilayer sandwich shells and its application (I) – general theory // Applied Mathematics and Mechanics. 1997. Vol. 18, No 1. P. 19–27.
19. Xu J., Wang C., Liu R. Nonlinear stability of truncated shallow conical sandwich shell with variable thickness / Applied Mathematics and Mechanics. 2000. Vol. 21, No 9. P. 977–986.
20. Komissarova G. L., Klyuchnikova V. G., Nikitenko V. N. K otsenke predelov primenimosti priblizhennykh teoriy sloistykh plastin// Prikladnaya mechanika. 1979. T. 15, № 6. P. 131–134.
21. Khalili S. M. R., Kheirikhah M. M., Malekzadeh Fard K. Buckling analysis of composite sandwich plates with flexible core using improved high-order theory / Mechanics of Advanced Materials and Structures. 2015. Vol. 22, No 4. P. 233–247.
22. Kien T. N., Tai H. T., Thuc P. V. A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates / Steel and Composite Structures. 2015. Vol. 18, No 1. P. 91–120.
23. Gorshkov A. G., Starovoitov E. I., Yarovaya A. V. Mechanika sloistykh vyazkouprugoplasticheskikh elementov konstruktsiy. М.: Fizmatlit, 2005. 576 p.
24. Chumachenko Ye. N., Polyakova T. V., Aksenov A. S. i dr. Matematicheskoe modelirovanie v nelineinoy mechanike: Obzor programmnykh complexov dlya resheniya zadach modelirovania slozhnykh system, Pr-2155. M.: Institut kosmicheskykh issledovaniy RAN, 2009. 44 p.
25. Opyt i novye tekhnologii inzhenernogo analiza v interesakh kosmosa: press-reliz / I. Novikov / GNKTs im. M. V. Khrunicheva. Rezhim dostupa: www.khrunichev.ru/ main.php?id=18mid=2132.

Downloads: 41
Abstract views: 
1021
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; North Bergen; Plano; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Ashburn19
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Unknown Brisbane;;3
Germany Frankfurt am Main; Frankfurt am Main; Falkenstein3
Canada; Monreale2
Netherlands Amsterdam; Amsterdam2
Finland Helsinki1
Romania Voluntari1
Ukraine Dnipro1
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
13.1.2019 Prediction of Solid Propellant Burnout Time in Launch Vehicle Propulsion System in Flight https://journal.yuzhnoye.com/content_2019_1-en/annot_13_1_2019-en/ Wed, 24 May 2023 16:00:19 +0000 https://journal.yuzhnoye.com/?page_id=27718
Operability of the suggested procedure has been verified using the mathematical simulation of the launch vehicle flight for two operating modes of the propulsion system different from the nominal ones. Key words: guidance system , correlation analysis , procedure , mathematical simulation Bibliography: 1. guidance system , correlation analysis , procedure , mathematical simulation .
]]>

13. Prediction of Solid Propellant Burnout Time in Launch Vehicle Propulsion System in Flight

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 87-94

DOI: https://doi.org/10.33136/stma2019.01.088

Language: Russian

Annotation: This article considers the problem of determination of propulsion system solid fuel burn-out time in the extraatmospheric flight segment taking the apparent acceleration and apparent speed measured by the inertial navigation system. Correlation analysis of the realized and nominal dependencies of the apparent acceleration and apparent speed of the launch vehicle on relative operating time of the propulsion system is suggested to be used to forecast the fuel burn-out time. In order to improve the accuracy of the forecast, and to decrease the amplitude and vibration rate of its results several channels simultaneously are suggested to be used for calculations with subsequent majority voting and digital filtration. As a result of the study, the procedure to forecast the time of solid fuel burn-out in the launch vehicle propulsion system in flight has been developed. Operability of the suggested procedure has been verified using the mathematical simulation of the launch vehicle flight for two operating modes of the propulsion system different from the nominal ones. Based on the statistical processing of the deviations of the predicted time of solid fuel burn-out versus the realized one it was determined that the forecast based on the results of apparent acceleration measurement has the greatest accuracy with the minimal number of operations. Suggested procedure is easily realized as the multistage adaptive algorithm and can be used in the guidance system of the solid-propellant launch vehicle in the extra-atmospheric flight segment for the numerical forecast of the reachable terminal parameters of flight, definition of command vector and development of the relevant thrust vector control commands.

Key words: guidance system, correlation analysis, procedure, mathematical simulation

Bibliography:

1. Osnovy teorii avtomaticheskogo upravleniya raketnymi dvigatelnymi ustanovkami / A. I. Babkin, S. I. Belov, N.B. Rutovskiy i dr. – M.: Mashinostroenie, 1986. – 456 s.
2. Proektirovanie system upravleniya obiektov raketno-kosmicheskoy techniki. T. 1. Proektirovanie system upravlenia raket-nositeley: Uchebnik/Yu. S. Alekseev, Yu. Ye. Balabey, T. A. Baryshnikova i dr.; Pod obshey red. Yu. S. Alekseeva, Yu. M. Zlatkina, V. S. Krivtsova, A. S. Kulika, V. I. Chumachenko. – Kh.: NAU «KhAI», NPP «Khartron-Arkos», 2012. – 578 s.
3. Sikharulidze Yu. G. Ballistika letatelnykh apparatov. – M.: Nauka, 1982. – 352 s.
4. Lysenko L. N. Navedenie I navigatsia ballisticheskykh raket: Ucheb. posobie. – M.: Izd-vo MGTU im. N. E. Baumana, 2007. – 672 s.
5. Systemy upravleniya letatelnymi apparatami (ballisticheskimi raketami I ikh golovnymi chastyami): Uchebnik dlya VUZov/ G. N. Razorenov, E. A. Bakhramov, Yu. F. Titov; Pod red. G. N. Razorenova. – M.: Mashinostroenie, 2003. – 584 s.
6. Siouris G. M. Missile guidance and control systems. – New York: Springer-Verlag New York, Inc., 2004. – 666 p. https://doi.org/10.1115/1.1849174
7. Zarchan P. Tactical and Strategic missile guidance. – American Institute of Aeronautics and Astronautics, Inc., 2012. – 989 p. https://doi.org/10.2514/4.868948
8. Balakrishnan S. N. Advances in missile guidance, control, and estimation / S. N. Balakrishnan, A. Tsourdos, B.A. White. – New York: CRC Press, Taylor & Francis Group. 2013. – 682 p.
9. Shneydor N. A. Missile guidance and pursuit: kinematics, dynamics and control. – Horwood Publishing Chichester, 1998. – 259 p. https://doi.org/10.1533/9781782420590
10. Yanushevsky R. Modern missile guidance. – CRC Press, Taylor & Francis Group, 2008. – 226 p. https://doi.org/10.1201/9781420062281

Downloads: 42
Abstract views: 
701
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; North Bergen; Plano; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Ashburn23
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Great Britain London; London2
Finland Helsinki1
Ethiopia Addis Ababa1
Mongolia1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
13.1.2019 Prediction of Solid Propellant Burnout Time in Launch Vehicle Propulsion System in Flight
13.1.2019 Prediction of Solid Propellant Burnout Time in Launch Vehicle Propulsion System in Flight
13.1.2019 Prediction of Solid Propellant Burnout Time in Launch Vehicle Propulsion System in Flight

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
9.1.2023 Methodology for selecting design parameters of solid-propellant sustainer engines. Mathematical support and software https://journal.yuzhnoye.com/content_2023_1-en/annot_9_1_2023-en/ Fri, 12 May 2023 16:11:14 +0000 https://test8.yuzhnoye.com/?page_id=26993
In this theory, such task is viewed as a mathematical problem, and mathematical simulation is the basic method of research.
]]>

9. Methodology for selecting design parameters of solid-propellant sustainer engines. Mathematical support and software

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2023 (1); 77-87

DOI: https://doi.org/10.33136/stma2023.01.077

Language: Ukrainian

Annotation: Substantiation of the research tools has been performed as a part of methodology development for the air and missile defense system. The problem under consideration is very complex due to the multifactorial nature of the research object, its qualitative variety and manifold structure, incomplete definition of the problem statement. Furthermore, the ability of modern technologies to produce different arms systems, which are capable of carrying out same class tasks, considerably increases the risk of making not the best decisions. Based on this, as well as taking into account the sharp increase in the cost of weaponry, the considered problem is classified as an optimization one that should be solved through the theory of operations research. In this theory, such task is viewed as a mathematical problem, and mathematical simulation is the basic method of research. The main types of mathematical models, their areas of application have been considered as a part of the analysis. The classification of mathematical models has been indicated according to the scale of reproduced operations, purpose, and goal orientation. Quantitative and qualitative correlation of forces has been accepted as the efficiency criterion, which determines a goal orientation of the model. The problems related to this have been shown. In particular, searching for the compromise between simplicity of the mathematical model and its adequacy to the research object is among these problems. Two of the basic approaches to principles of the military operation model construction and its assessment have been considered. The first is implemented through modeling of the combat operations. The second approach is based on the assumption that different armament types can be compared based on their contribution to the outcome of the operation, and on the possibility to assign «a weighting coefficient» named as a combat potential to each of these types. The modern level of problem solving related to this method has been shown. The reasonability of its application in the considered task, including the definition of forces correlation of the opposing parties, has been substantiated. The basic regulations of the construction concept of the required mathematical model and tools for its research have been formulated based on the analysis results: the assigned problem should be solved by analytical methods through the theory of operations research; the analytical model is the most acceptable conception of the analyzed level of the military operation; the synthesis of the model should be based on the idea of a combat potential. At the same time, it should be taken into account that the known approach to the definition of forces correlation, which uses the combat potential method, has a number of essential limitations, including the methodological ones. Therefore, within the bounds of further research, this approach requires the development both in terms of improving the reliability of the single assessment and in terms of giving the system qualities to the synthesized mathematical model.

Key words: multifunctional system, mathematical model, military unit, combat potential, correlation of forces, defensive sufficiency

Bibliography:

1. Pavlyuk Yu. S. Ballisticheskoe proektirovanie raket: ucheb.-metod, posobie dlya vuzov. UDK623.451.8. Izd-vo ChGTU, Chelyabinsk, 1996. 92 s.
2. Nikolaev Yu. M., Solomonov Yu. S. Inzhenernoe proektirovanie upravlyaemykh ballisticheskikh raket s RDTT. M., 1979. 240 s.
3. Enotov V. G., Kirichenko A. S., Pustovgarova Ye. V. Osobennosti rascheta i vybora raskhodnoy diagrammy dvukhrezhimnykh marshevykh RDTT: ucheb.-metod. posobie. Pod red. akadem. A. V. Degtyreva. Dnepr, 2019. 68 s.
4. Enotov V. G., Kushnir B. I., Pustovgarova Ye. V. Metodika-programma proektnoy otsenki characteristic marshevykh dvigateley na tverdom toplive s korpusami iz vysokoprochnykh metallicheskikh materialov, statsionarnymi soplami i postanovka ee na avtomatizirovanniy raschet: ucheb.-metod. posobie. Vtoroe izd., pererabot. i dop. Pod red. A. S. Kirichenko. Dnep, 2019. 91 s.
5. Enotov V. G., Kirichenko A. S., Kushnir B. I., Pustovgarova Ye. V. Metodika proektnoy otsenki characteristic marshevykh dvigatelnykh ustanovok na tverdom toplive s povorotnymi upravlyayuschimi soplami, plastikovymi tselnomotannymi korpusamy i postanovka ee na avtomatizirovanniy raschet: ucheb.-metod. posobie. Vtoroe izd., pererabot. i dop. Pod red. akadem. A. V. Degtyareva. Dnepr. 2019. 149 s.
6. Alemasov V. Ye., Dregalin A. F., Tishin A. P. Teoriya raketnykh dvigateley. M., 1980. 55 s.
7. Raschetnye materialy dlya podgotovki i vydachi iskhodnykh dannykh na razrabotku uzlov marshevykh dvigatelnykh ustanovok na tverdom toplive. Raschet ID metodom avtomatizirovannogo proektirovaniya operativno-takticheskikh raket: inzhenern. zapiska 553-376 IZ. GP «KB «Yuzhnoye». Dnepropetrovsk, 2017. 30 s.
8. Metodika avtomatizirovannogo proektirovaniya operativno-takticheskikh raket: nauch.-tekhn. Otchet 03-453/32 NTO. GP «KB «Yuzhnoye». Dnepropetrovsk, 2010. 127 s.

Downloads: 7
Abstract views: 
1315
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Ashburn; Columbus2
China Pekin1
Unknown1
Singapore Singapore1
Germany Falkenstein1
Ukraine Kremenchuk1
9.1.2023 Methodology for selecting design parameters of solid-propellant sustainer engines. Mathematical support and software
9.1.2023 Methodology for selecting design parameters of solid-propellant sustainer engines. Mathematical support and software
9.1.2023 Methodology for selecting design parameters of solid-propellant sustainer engines. Mathematical support and software

Keywords cloud

]]>
6.1.2023 Numerical modeling of translational and rotational vibrations of a solid-propellant rocket motor on a test stand during firing tests https://journal.yuzhnoye.com/content_2023_1-en/annot_6_1_2023-en/ Fri, 12 May 2023 16:10:51 +0000 https://test8.yuzhnoye.com/?page_id=26990
Mathematical model of the vibrating system is developed. Method of numerical simulation of plane vibrations within the limits of the developed model is suggested. It is shown that registered simulation results recreate thrust measurement results in pattern and values obtained by the force sensor during the firing bench tests, and owing to this, it was concluded that oscillating process parameters, assumed in the model, meet the actual ones.
]]>

6. Numerical modeling of translational and rotational vibrations of a solid-propellant rocket motor on a test stand during firing tests

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2023 (1); 56-62

DOI: https://doi.org/10.33136/stma2023.01.056

Language: Ukrainian

Annotation: This article dwells on results of firing bench testing of the solid-propellant rocket engine (SPRE), fastened to the thrust-measuring assembly stand. It is shown that when engine enters the steady-state mode of operation, plane (forward and rotation) vibrations of the SPRE can take place in the assembly stand due to the sudden pattern of thrust generation and displacement of the center of mass of the vibrating system from the engine axis. These vibrations distort measured values of engine thrust and pattern of its change versus time. The purpose of this work is to simulate the oscillating processes of the engine atop the assembly stand to single out in the distorted values of the measured thrust the components related to the processes in the engine and components, which are introduced into the thrust measurement by the oscillating processes in the system “assembly stand – engine”. Model of vibrating system is suggested, which consists of two rigidly connected bodies, containing elastic links, enabling forward and rotary motion and limited by the rigidity of the links. Mathematical model of the vibrating system is developed. Internal forces and moments acting in oscillatory system are defined. Method of numerical simulation of plane vibrations within the limits of the developed model is suggested. Plane vibrating motion and elastic force curve (curve based on force sensor readings) were simulated in thrust-measuring system for different cases of thrust curve and values of vibrating system parameters. Resonance condition was simulated and mutual influence of elastic parametrical link between forward and rotary vibrations was established. Impact of thrust-measuring system rigidity on peak values of force sensor readings was found out. Elastic force vibrations in thrust-measuring system with vibrating system parameters were simulated including variant of thrust change versus time, implemented during firing bench tests of one of the SPRE. It is shown that registered simulation results recreate thrust measurement results in pattern and values obtained by the force sensor during the firing bench tests, and owing to this, it was concluded that oscillating process parameters, assumed in the model, meet the actual ones. It is concluded that simulation provides objective interpretation of the thrust curve, reliable and comprehensive analysis of engine run during firing bench tests, more detailed and exact design of the assembly stand.

Key words: vibrating system, plane vibrations, forward vibrations, rotary vibrations, resonance, thrust measurement

Bibliography:

1. Beskrovniy I. B., Kirichenko A. S., Balitskiy I. P. i dr. Opyt predpriyatia po proektirovaniyu i ekspluatatsii stapeley dlya ispytaniy RDTT. Kosmicheskays technika. Raketnoye vooruzhennie: Sb. nauch.-techn. st. 2008. Vyp. 1. Dnepropetrovsk: GP «KB «Yuzhnoye». S. 119–127.
2. Lysenko M. T., Rogulin V. V., Beskrovniy I. B., Kalnysh R. V. Modelyuvannya kolyvann RDTP u stapeli, scho vynykaut pid chas VSV. Kosmicheskays technika. Raketnoye vooruzhennie: Sb. nauch.-techn. st. 2019. Vyp. 1. Dnepropetrovsk: GP «KB «Yuzhnoye».
3. Beskrovniy I. B., Lysenko M. T., Gergel V. G. Kolyvalnni processy u stapeli v moment vyhodu RDTP na ustalenniy rezhim roboty. Kosmicheskay technika. Raketnoye vooruzhennie: Sb. nauch.-techn. st. 2019. Vyp. 1. Dnepropetrovsk: GP «KB «Yuzhnoye».

Downloads: 5
Abstract views: 
794
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Seattle; Ashburn2
China1
Singapore Singapore1
Germany Falkenstein1
6.1.2023 Numerical modeling of translational and rotational vibrations of a solid-propellant rocket motor on a test stand during firing tests
6.1.2023 Numerical modeling of translational and rotational vibrations of a solid-propellant rocket motor on a test stand during firing tests
6.1.2023 Numerical modeling of translational and rotational vibrations of a solid-propellant rocket motor on a test stand during firing tests

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
4.1.2023 On control of spacecraft orientation to the ground data acquisition station https://journal.yuzhnoye.com/content_2023_1-en/annot_4_1_2023-en/ Fri, 12 May 2023 16:10:38 +0000 https://test8.yuzhnoye.com/?page_id=26988
Mathematical model of the spacecraft dynamics relative to center of mass is given, using the suggested reaction wheels control law. Simulation initial con-ditions correspond to the attitude control mode of the spacecraft relative to the orbital coordinate system with the specified accuracy. Simulation results verify the applicability of the suggested reaction wheel control law. Key words: electrical axis of the antenna , mathematical model , coordinate system , transformation matrix , vector Bibliography: 1. electrical axis of the antenna , mathematical model , coordinate system , transformation matrix , vector .
]]>

4. On control of spacecraft orientation to the ground data acquisition station

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2023 (1); 41-47

DOI: https://doi.org/10.33136/stma2023.01.041

Language: English

Annotation: The article dwells on the spacecraft attitude control to point the onboard antenna to the ground data acquisition station during the communication session. Antenna is fixed relative to the spacecraft body. Pur-pose of the antenna is to receive the flight task aboard the spacecraft and to downlink the telemetry infor-mation. When orbiting, the spacecraft position relative to the ground data acquisition station changes contin-uously. It is due to the diurnal rotation of the Earth, spacecraft orbital motion and angular motion of the spacecraft relative to the center of mass under the impact of the disturbing and control moments. To tilt the spacecraft uses reaction wheels, installed in axes of coordinate system coupled with spacecraft center of mass. Electromagnets are used to unload the reaction wheels. The reaction wheels control law is suggested, which tilts the spacecraft to point the antenna to the ground data acquisition station. Mathematical model of the spacecraft dynamics relative to center of mass is given, using the suggested reaction wheels control law. The following external disturbing moments, acting on the spacecraft in flight, are taken into consideration: gravitational, magnetic, aerodynamic moments and solar radiation moment of forces. Dipole model of the magnetic field of the Earth is used to calculate the magnetic moments. Software was developed and space-craft dynamics was simulated on the personal computer with the specified initial data. Simulation initial con-ditions correspond to the attitude control mode of the spacecraft relative to the orbital coordinate system with the specified accuracy. Simulation results verify the applicability of the suggested reaction wheel control law.

Key words: electrical axis of the antenna, mathematical model, coordinate system, transformation matrix, vector

Bibliography:

1. Ivanova G.A., Ostapchuk S.V. Matematich-eskaya model magnitno-gravitatsionnoy sys-temy orientatsii dlya eksperimentalnogo mi-crosputnika. Kosmicheskaya technika. Raketnoye vooruzhennie: Nauch.-techn. sb. 2009. S. 192 -202.
2. Branets V.N., Shmyglevskiy I.P. Primenenie quoternionov v zadachah orientatsii tverdogo tela. M.: Nauka, 1973. 320 s.
3. Problemy orientatsii iskusstvennyh sputnikov Zemli. M.: Nauka, 1966. 350 s.

Downloads: 3
Abstract views: 
403
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Seattle; Portland2
Germany Falkenstein1
4.1.2023 On control of spacecraft orientation to the ground data acquisition station
4.1.2023 On control of spacecraft orientation to the ground data acquisition station
4.1.2023 On control of spacecraft orientation to the ground data acquisition station

Keywords cloud

]]>