Search Results for “measurement channel” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 12:35:49 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “measurement channel” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 22.2.2018 Uncertainty Calculation Procedure during Measuring Instrumentation Calibration https://journal.yuzhnoye.com/content_2018_2-en/annot_22_2_2018-en/ Thu, 07 Sep 2023 12:34:07 +0000 https://journal.yuzhnoye.com/?page_id=30810
for alternating voltage measurement channel of a measuring and computing complex of MIC type; –
]]>

22. Uncertainty Calculation Procedure during Measuring Instrumentation Calibration

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 184-189

DOI: https://doi.org/10.33136/stma2018.02.184

Language: Russian

Annotation: The effective documents in the field of metrological support require evaluating measurement uncertainty during measuring instrumentation calibration. In Ukraine, there is no regulated procedure of uncertainty calculation during measuring instrumentation calibration, which causes the necessity of developing such procedure. This article proposes the measurement uncertainty calculation procedure during measuring instrumentation calibration, according to which the following calculations shall be made: a) of standard uncertainty of A type for corrected observation results obtained during calibration; b) of standard uncertainties of B type caused by error or uncertainty of working standard applied, calculation discreteness or calibrated measuring instrument division value, variation of calibrated measuring instrument indications; c) of total standard measurement uncertainty; d) of augmented measurement uncertainty. As an example, the results of calculation of augmented measurement uncertainty during calibration are presented: – for 795M107B vibrometer in complete set with AC102-1A accelerometer; – for alternating voltage measurement channel of a measuring and computing complex of MIC type; – for a manometer of MT type. The obtained results of measurement uncertainty calculation are presented in the form of tables of measurement uncertainty budget, which shall be entered in the measuring instrument calibration certificate together with the observation results obtained during calibration. The proposed uncertainty calculation procedure is applicable for the given types of measuring instruments whose calibration is performed by method of direct measurement of known measurement values represented or controlled by working standards.

Key words: augmented measurement uncertainty, multiple measurements, measurement uncertainty budget, vibrometer, manometer of MT type, computing complex of MIC type

Bibliography:
1. The Law of Ukraine “On Metrology and Metrological Activity”. Supreme Rada News (SRN). 2014. No. 30. P. 1008.
2. General Requirements to Competence of Testing and Calibration Laboratories (ISO/IEC17025:2005, IDT): DSTU ISO/IEC17025:2006. К., 2007. 26 p.
3. Guide to the Expression of Uncertainty in Measurement. Geneva: ISO, 1993. 101 p.
4. Evaluation of the Uncertainty of Measurement in Calibration: ЕА–4/02 М:2013. European Association for Accreditation, 2013. 75 p.
5. Bondar’ M. A et al. Methodology of Measurement Uncertainty Evaluation during Measuring Instrumentation Certification. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2017. Issue 1. P. 3-7.
Downloads: 20
Abstract views: 
772
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Plano; Columbus; Monroe; Ashburn; Ashburn; Boardman; Seattle; Portland; San Mateo; Boardman; Ashburn12
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro1
22.2.2018 Uncertainty Calculation Procedure during Measuring Instrumentation Calibration
22.2.2018 Uncertainty Calculation Procedure during Measuring Instrumentation Calibration
22.2.2018 Uncertainty Calculation Procedure during Measuring Instrumentation Calibration

Keywords cloud

]]>
1.1.2017 Methodology for Measurement Uncertainty Evaluation during Metrological Certification of Measuring Instruments https://journal.yuzhnoye.com/content_2017_1/annot_1_1_2017-en/ Wed, 19 Jul 2023 06:34:56 +0000 https://journal.yuzhnoye.com/?page_id=29354
The example is presented of the evaluation of measurement uncertainties of pressure measurement channel.
]]>

1. Methodology for Measurement Uncertainty Evaluation during Metrological Certification of Measuring Instruments

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (1); 3-7

Language: Russian

Annotation: The analysis is presented of measurement uncertainties components by A and B types during metrological certification of measuring instrumentation. The example is presented of the evaluation of measurement uncertainties of pressure measurement channel. Introduction of the methodology under consideration will ensure compliance of the metrological characteristics determined with the regulations of international normative documents.

Key words:

Bibliography:
Downloads: 25
Abstract views: 
243
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Los Angeles; Monroe; Seattle; Ashburn; Seattle; Portland; San Mateo; Boardman; Ashburn; Boardman11
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore11
Ukraine Dnipro; Dnipro2
Finland Helsinki1
1.1.2017 Methodology for Measurement Uncertainty Evaluation during Metrological Certification of Measuring Instruments
1.1.2017 Methodology for Measurement Uncertainty Evaluation during Metrological Certification of Measuring Instruments
1.1.2017 Methodology for Measurement Uncertainty Evaluation during Metrological Certification of Measuring Instruments
]]>
13.1.2019 Prediction of Solid Propellant Burnout Time in Launch Vehicle Propulsion System in Flight https://journal.yuzhnoye.com/content_2019_1-en/annot_13_1_2019-en/ Wed, 24 May 2023 16:00:19 +0000 https://journal.yuzhnoye.com/?page_id=27718
In order to improve the accuracy of the forecast, and to decrease the amplitude and vibration rate of its results several channels simultaneously are suggested to be used for calculations with subsequent majority voting and digital filtration. Based on the statistical processing of the deviations of the predicted time of solid fuel burn-out versus the realized one it was determined that the forecast based on the results of apparent acceleration measurement has the greatest accuracy with the minimal number of operations.
]]>

13. Prediction of Solid Propellant Burnout Time in Launch Vehicle Propulsion System in Flight

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 87-94

DOI: https://doi.org/10.33136/stma2019.01.088

Language: Russian

Annotation: This article considers the problem of determination of propulsion system solid fuel burn-out time in the extraatmospheric flight segment taking the apparent acceleration and apparent speed measured by the inertial navigation system. Correlation analysis of the realized and nominal dependencies of the apparent acceleration and apparent speed of the launch vehicle on relative operating time of the propulsion system is suggested to be used to forecast the fuel burn-out time. In order to improve the accuracy of the forecast, and to decrease the amplitude and vibration rate of its results several channels simultaneously are suggested to be used for calculations with subsequent majority voting and digital filtration. As a result of the study, the procedure to forecast the time of solid fuel burn-out in the launch vehicle propulsion system in flight has been developed. Operability of the suggested procedure has been verified using the mathematical simulation of the launch vehicle flight for two operating modes of the propulsion system different from the nominal ones. Based on the statistical processing of the deviations of the predicted time of solid fuel burn-out versus the realized one it was determined that the forecast based on the results of apparent acceleration measurement has the greatest accuracy with the minimal number of operations. Suggested procedure is easily realized as the multistage adaptive algorithm and can be used in the guidance system of the solid-propellant launch vehicle in the extra-atmospheric flight segment for the numerical forecast of the reachable terminal parameters of flight, definition of command vector and development of the relevant thrust vector control commands.

Key words: guidance system, correlation analysis, procedure, mathematical simulation

Bibliography:

1. Osnovy teorii avtomaticheskogo upravleniya raketnymi dvigatelnymi ustanovkami / A. I. Babkin, S. I. Belov, N.B. Rutovskiy i dr. – M.: Mashinostroenie, 1986. – 456 s.
2. Proektirovanie system upravleniya obiektov raketno-kosmicheskoy techniki. T. 1. Proektirovanie system upravlenia raket-nositeley: Uchebnik/Yu. S. Alekseev, Yu. Ye. Balabey, T. A. Baryshnikova i dr.; Pod obshey red. Yu. S. Alekseeva, Yu. M. Zlatkina, V. S. Krivtsova, A. S. Kulika, V. I. Chumachenko. – Kh.: NAU «KhAI», NPP «Khartron-Arkos», 2012. – 578 s.
3. Sikharulidze Yu. G. Ballistika letatelnykh apparatov. – M.: Nauka, 1982. – 352 s.
4. Lysenko L. N. Navedenie I navigatsia ballisticheskykh raket: Ucheb. posobie. – M.: Izd-vo MGTU im. N. E. Baumana, 2007. – 672 s.
5. Systemy upravleniya letatelnymi apparatami (ballisticheskimi raketami I ikh golovnymi chastyami): Uchebnik dlya VUZov/ G. N. Razorenov, E. A. Bakhramov, Yu. F. Titov; Pod red. G. N. Razorenova. – M.: Mashinostroenie, 2003. – 584 s.
6. Siouris G. M. Missile guidance and control systems. – New York: Springer-Verlag New York, Inc., 2004. – 666 p. https://doi.org/10.1115/1.1849174
7. Zarchan P. Tactical and Strategic missile guidance. – American Institute of Aeronautics and Astronautics, Inc., 2012. – 989 p. https://doi.org/10.2514/4.868948
8. Balakrishnan S. N. Advances in missile guidance, control, and estimation / S. N. Balakrishnan, A. Tsourdos, B.A. White. – New York: CRC Press, Taylor & Francis Group. 2013. – 682 p.
9. Shneydor N. A. Missile guidance and pursuit: kinematics, dynamics and control. – Horwood Publishing Chichester, 1998. – 259 p. https://doi.org/10.1533/9781782420590
10. Yanushevsky R. Modern missile guidance. – CRC Press, Taylor & Francis Group, 2008. – 226 p. https://doi.org/10.1201/9781420062281

Downloads: 20
Abstract views: 
334
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; North Bergen; Plano; Columbus; Monroe; Ashburn; Ashburn; Seattle; Portland; San Mateo; Ashburn11
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Ukraine Dnipro1
13.1.2019 Prediction of Solid Propellant Burnout Time in Launch Vehicle Propulsion System in Flight
13.1.2019 Prediction of Solid Propellant Burnout Time in Launch Vehicle Propulsion System in Flight
13.1.2019 Prediction of Solid Propellant Burnout Time in Launch Vehicle Propulsion System in Flight

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
14.2.2019 Selection of the validation algorithm for the solid rocket motor trust measurement procedure https://journal.yuzhnoye.com/content_2019_2-en/annot_14_2_2019-en/ Mon, 15 May 2023 15:46:10 +0000 https://journal.yuzhnoye.com/?page_id=27216
The composition of measurement channel, the experimental works performed at each validation algorithm are described, the calculation formulas to evaluate the limits of absolute measurement error and the obtained numerical values of the latter are presented. The comparative analysis of the results of validation procedure of solid rocket motor thrust measurement procedure obtained during metrological investigations of thrust measurement channel by end-to-end and link-by-link validation methods shows that to ensure the required measurement accuracy, the algorithms of end-to-end method is preferable, at which the lower values of reduced error can be obtained as compared with the algorithm of link-by-link validation. Key words: measurement channel , reduced error , calibration characteristic , electric signal. measurement channel , reduced error , calibration characteristic , electric signal.
]]>

14. Selection of the validation algorithm for the solid rocket motor trust measurement procedure

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (2); 103-108

DOI: https://doi.org/10.33136/stma2019.02.103

Language: Russian

Annotation: The solid rocket motors thrust is measured according to the developed measurement procedure; fulfilment of its requirements guarantees obtaining the results with required accuracy parameters. Compliance of this procedure with the measurement accuracy requirements is confirmed by way of its validation that can be performed according to different algorithms. The proposed article deals with two validation algorithms of measurement procedure for solid rocket motor thrust up to 30 tf – end-to-end and link-by-link validation methods. The composition of measurement channel, the experimental works performed at each validation algorithm are described, the calculation formulas to evaluate the limits of absolute measurement error and the obtained numerical values of the latter are presented. The comparative analysis of the results of validation procedure of solid rocket motor thrust measurement procedure obtained during metrological investigations of thrust measurement channel by end-to-end and link-by-link validation methods shows that to ensure the required measurement accuracy, the algorithms of end-to-end method is preferable, at which the lower values of reduced error can be obtained as compared with the algorithm of link-by-link validation.

Key words: measurement channel, reduced error, calibration characteristic, electric signal.

Bibliography:
1. Kotsyuba A. M., Zgurya V. I. Otsinyuvannya prydantosti (validatsiya) metodik vyprobuvannya ta calibruvannya: detalizatsia vymog. Metrologia ta prylady. 2013. № 6. S. 22–24.
2. Kotsyuba A. M., Domnytska V. K., Kotsyuba L. G. Validatsia metodik calibruvannya. Standartizatsia, certifikatsia, yakist’. 2016. № 1. S. 41–45.
3. Kotsyuba A. M. Validatsia metodik calibruvannya mir fizichnykh velichin. Systemy obrobky informatsii. 2015. № 2 (127). S. 35–39.
Downloads: 19
Abstract views: 
341
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Dublin; Monroe; Ashburn; Ashburn; Seattle; Portland; San Mateo; Boardman; Boardman12
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro1
14.2.2019 Selection of the validation algorithm for the solid rocket motor trust measurement procedure
14.2.2019 Selection of the validation algorithm for the solid rocket motor trust measurement procedure
14.2.2019 Selection of the validation algorithm for the solid rocket motor trust measurement procedure

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>