Search Results for “mechanical condition” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Wed, 03 Apr 2024 09:34:53 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “mechanical condition” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 18.1.2020 Development of autonomous power engineering systems with hydrogen energy storage https://journal.yuzhnoye.com/content_2020_1-en/annot_18_1_2020-en/ Wed, 13 Sep 2023 11:57:42 +0000 https://journal.yuzhnoye.com/?page_id=31056
Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine 1 ; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine 2 Page: Kosm. The current level of hydrogen technologies that are implemented in electrochemical plants developed at the Institute of Mechanical Engineering named after A. Study of the Influence of Operating Conditions on High Pressure Electrolyzer Efficiency. Journal of Mechanical Engineering. Journal of Mechanical Engineering. Journal of Mechanical Engineering.
]]>

18. Development of autonomous power engineering systems with hydrogen energy storage

Organization:

Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 160-169

DOI: https://doi.org/10.33136/stma2020.01.160

Language: Russian

Annotation: The article analyzes the energy potential of alternative sources of Ukraine. The projects using hydrogen technologies aimed at attracting solar energy to the infrastructure of energy technological complexes, in particular water desalination systems and for refueling automobile vehicles located in areas with high solar radiation potential, are considered. During the operation of water desalination plants using a solar power station as an energy source, contingencies are very likely to arise due to either a power outage (due to cloudy weather) or an emergency failure of individual elements of the system. In this case, it is required to ensure its removal from service without loss of technological capabilities (operability). For this purpose, it is necessary to provide for the inclusion in the technological scheme of the energy technological complex of an additional element that ensures operation of the unit for a given time, determined by the regulations for its operation. As such an element, a buffer system based on a hydrogen energy storage device is proposed. The current level of hydrogen technologies that are implemented in electrochemical plants developed at the Institute of Mechanical Engineering named after A. N. Podgorny of the National Academy of Sciences of Ukraine allows producing and accumulating the hydrogen under high pressure, which eliminates the use of compressor technology.

Key words: alternative energy sources, hydrogen, solar energy, hydrogen generator

Bibliography:
1. Syvolapov V. Potentsial vidnovliuvanykh dzherel enerhii v Ukraini. Agroexpert. 2016. № 12 (101). S. 74–77.
2. Züttel A., Remhof A., Borgschulte A., Friedrichs O. Hydrogen: the future energy carrier. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010. № 368(1923). Р. 3329–3342. https://doi.org/10.1098/rsta.2010.0113
3. Vozobnovliaemaia energetika. URL: https://nv.ua/tags/vozobnovljaemaja-enerhetika.htmt (access date: 27.01.2020).
4. Sherif S. A., Barbir F., Veziroglu T. N. Wind energy and the hydrogen economy-review of the technology. Solar energy. 2005. № 78(5). P. 647–660. https://doi.org/10.1016/j.solener.2005.01.002
5. Schlapbach L. Technology: Hydrogen-fuelled vehicles. Nature. 2009. № 460(7257). P. 809. https://doi.org/10.1038/460809a
6. Shevchenko A. A., Zipunnikov M. М., Kotenko А. L., Vorobiova I. O., Semykin V. M. Study of the Influence of Operating Conditions on High Pressure Electrolyzer Efficiency. Journal of Mechanical Engineering. 2019. Vol. 22, № 4. P. 53–60. https://doi.org/10.15407/pmach2019.04.053
7. Clarke R. E., Giddey S., Ciacchi F. T., Badwal S. P. S., Paul B., Andrews J. Direct coupling of an electrolyser to a solar PV system for generating hydrogen. International Journal of Hydrogen Energy. 2009. № 34(6). P. 2531–2542. https://doi.org/10.1016/j.ijhydene.2009.01.053
8. Kunusch C., Puleston P. F., Mayosky M. A., Riera J. Sliding mode strategy for PEM fuel cells stacks breathing control using a super-twisting algorithm. IEEE Transactions on Control Systems Technology. 2009. № 17(1). P. 167–174. https://doi.org/10.1109/TCST.2008.922504
9. Mazloomi K., Gomes C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sustain. Energy Rev. 2012. № 16. P. 3024–3033. https://doi.org/10.1016/j.rser.2012.02.028
10. Sharma S., Ghoshal S. K. Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev. 2015. № 43. P. 1151–1158. https://doi.org/10.1016/j.rser.2014.11.093
11. Prystrii dlia oderzhannia vodniu vysokoho tysku: pat. 103681 Ukraina: MPK6 S 25V 1/12 / V. V. Solovey, A. A. Shevchenko, A. L. Kotenko, O. О. Makarov (Ukrajina). № 2011 15332; zajavl. 26.12.2011; opubl. 10.07.2013, Biul. № 21. 4 s.
12. Shevchenko А. А. Ispolzovanie ELAELov v avtonomnykh energoustanovkakh, kharakterizuyushchikhsia neravnomernostju energopostupleniia. Aviatsionno-kosmicheskaia tekhnika i technologiia: sb. nauch. tr. 1999. Vyp. 13. S. 111–116.
13. Solovey V. V., Zhirov А. S., Shevchenko А. А. Vliianie rezhimnykh faktorov na effektivnost elektrolizera vysokogo davleniia. Sovershenstvovaniie turboustanovok metodami matematicheskogo i fizicheskogo modelirovaniia: sb. nauch. tr. 2003. S. 250–254.
14. Solovey V., Kozak L., Shevchenko A., Zipunnikov M., Campbell R., Seamon F. Hydrogen technology of energy storage making use of windpower potential. Problemy Mashinostroyeniya. Journal of Mechanical Engineering. 2017. Vol. 20, № 1. P. 62–68. https://doi.org/10.17721/fujcV6I2P73-79
15. Solovey V. V., Kotenko А. L., Vorobiova I. О., Shevchenko A. А., Zipunnikov M. М. Osnovnye printsipy raboty i algoritm upravleniya bezmembrannym elektrolizerom vysokogo davleniia. Problemy mashinostroyeniia. 2018. T. 21, №. 4. S. 57–63. https://doi.org/10.15407/pmach2018.04.057
16. Solovey V., Khiem N. T., Zipunnikov M. M., Shevchenko A. A. Improvement of the Membraneless Electrolysis Technology for Hydrogen and Oxygen Generation. French-Ukrainian Journal of Chemistry. 2018. Vol. 6, № 2. P. 73–79. https://doi.org/10.17721/fujcV6I2P73-79
17. Solovey V., Zipunnikov N., Shevchenko A., Vorobjova I., Kotenko A. Energy Effective Membrane-less Technology for High Pressure Hydrogen Electro-chemical Generation. French-Ukrainian Journal of Chemistry. 2018. Vol. 6, № 1. P.151–156. https://doi.org/10.17721/fujcV6I1P151-156
18. Solovey V. V., Zipunnikov М. М., Shevchenko А. А., Vorobiova І. О., Semykin V. M. Bezmembrannyi henerator vodniu vysokoho tysku. Fundamentalni aspekty vidnovliuvano-vodnevoi enerhetyky i palyvno-komirchanykh technologij / za zahal. red. Yu. М. Solonina. Kyiv, 2018. S. 99–107.
19. Matsevytyi Yu. M., Chorna N. A., Shevchenko A. A. Development of a Perspective Metal Hydride Energy Accumulation System Based on Fuel Cells for Wind Energetics. Journal of Mechanical Engineering. 2019. Vol. 22, № 4. P. 48–52. https://doi.org/10.15407/pmach2019.04.048
20. Phillips R., Edwards A., Rome B., Jones D. R., Dunnill C. W. Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design. Int. J. Hydrogen Energy. 2017. № 42. P. 23986–23994. https://doi.org/10.1016/j.ijhydene.2017.07.184
Downloads: 18
Abstract views: 
754
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Plano; Monroe; Ashburn; Seattle; Ashburn; Boardman; Seattle; Portland; San Mateo; Boardman11
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro1
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage
18.1.2020  Development of autonomous power engineering systems with hydrogen energy storage

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
15.1.2020 Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements https://journal.yuzhnoye.com/content_2020_1-en/annot_15_1_2020-en/ Wed, 13 Sep 2023 11:07:28 +0000 https://journal.yuzhnoye.com/?page_id=31050
Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements Authors: Usov A. Organization: Institute of Mechanical Engineering of Odessa National Polytechnic University, Odessa, Ukraine Page: Kosm. Also, a criterion correlation of the condition of the equilibrium defect condition with a length of 2l was got, depending on the magnitude of the contact temperature. (2020) "Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements" Космическая техника.
]]>

15. Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements

Organization:

Institute of Mechanical Engineering of Odessa National Polytechnic University, Odessa, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 137-148

DOI: https://doi.org/10.33136/stma2020.01.137

Language: Ukrainian

Annotation: The strength of real solids depends essentially on the defect of the structure. In real materials, there is always a large number of various micro defects, the development of which under the influence of loading leads to the appearance of cracks and their growth in the form of local or complete destruction. In this paper, based on the method of singular integral equations, we present a unified approach to the solution of thermal elasticity problems for bodies weakened by inhomogeneities. The purpose of the work is to take into account the heterogeneities in the materials of the elements of the rocket structures on their functionally-gradient properties, including strength. The choice of the method of investigation of strength and destruction of structural elements depends on the size of the object under study. Micro-research is related to the heterogeneities that are formed in the surface layer at the stage of preparation, the technology of manufacturing structural elements. Defectiveness allows you to adequately consider the mechanism of destruction of objects as a process of development of cracks. In studying the limit state of real elements, weakened by defects and constructing on this basis the theory of their strength and destruction in addition to the deterministic one must consider the probabilistic – statistical approach. In the case of thermal action on structural elements in which there are uniformly scattered, non-interacting randomly distributed defects of the type of cracks, the laws of joint distribution of the length and angle of orientation of which are known, the limiting value of the heat flux for the balanced state of the crack having the length of the “weakest link” is determined. The influence of heterogeneities of technological origin (from the workpiece to the finished product) that occur in the surface layer in the technology of manufacturing structural elements on its destruction is taken into account by the developed model. The strength of real solids depends essentially on the defect of the structure. In real materials, there are always many various micro defects, the development of which under the influence of loading leads to the appearance of cracks and their growth in the form of local or complete destruction. In this paper, based on the method of singular integral equations, we present a unified approach to the solution of thermal elasticity problems for bodies weakened by inhomogeneities. The purpose of the work is to take into account the heterogeneities in the materials of the elements of the rocket structures on their functionally gradient properties, including strength. The choice of the method of investigation of strength and destruction of structural elements depends on the size of the object under study. Micro-research is related to the heterogeneities that are formed in the surface layer at the stage of preparation, the technology of manufacturing structural elements. Defectiveness allows you to adequately consider the mechanism of destruction of objects as a process of development of cracks. In studying the limit state of real elements, weakened by defects and constructing on this basis the theory of their strength and destruction besides the deterministic one must consider the probabilistic – statistical approach. With thermal action on structural elements in which there are uniformly scattered, non-interacting randomly distributed defects of the cracks, the laws of joint distribution of the length and angle of orientation of which are known, the limiting value of the heat flux for the balanced state of the crack having the length of the “weakest link” is determined. The influence of heterogeneities of technological origin (from the workpiece to the finished product) that occur in the surface layer in the technology of manufacturing structural elements on its destruction is taken into account by the developed model. The solution of the singular integral equation with the Cauchy kernel allows one to determine the intensity of stresses around the vertexes of defects of the cracks, and by comparing it with the criterion of fracture toughness for the material of a structural element, one can determine its state. If this criterion is violated, the weak link defect develops into a trunk crack. Also, a criterion correlation of the condition of the equilibrium defect condition with a length of 2l was got, depending on the magnitude of the contact temperature. When the weld is cooled, it develops “hot cracks” that lead to a lack of welding elements of the structures. The results of the simulation using singular integral equations open the possibility to evaluate the influence of thirdparty fillers on the loss of functional properties of inhomogeneous systems. The exact determination of the order and nature of the singularity near the vertices of the acute-angled imperfection in the inhomogeneous medium, presented in the analytical form, is necessary to plan and record the corresponding criterion relations to determine the functional properties of inhomogeneous systems.

Key words: mathematical model, linear systems, singular integral equations, impulse response, defects, criteria for the destruction of stochastically defective bodies, Riemann problem, thermoelastic state

Bibliography:
1. Gakhov F. D. Kraievye zadachi. M.: Nauka,1977. 640 s.
2. Gakhov F. D. Uravneniia tipa svertki. M.: Nauka, 1978.296 s.
3. Litvinchuk G. S. Kraievye zadachi i singuliarnye integralnye uravneniia so sdvigom. M.: Nauka, 1977. 448 s.
4. Muskhelishvili N. I. Singuliarnye integralnye uravneniia. M.: Nauka, 1968. 512 s.
5. Panasiuk V. V. Metod singuliarnykh integralnykh uravnenii v dvukhmernykh zadachakh difraktsii. K.: Nauk. dumka, 1984. 344 s.
6. Siegfried PROSSDORF Einige Klassen singularer Gleichungen.Akademie Verlag Berlin, 1974. 494 s. https://doi.org/10.1007/978-3-0348-5827-4
7. Oborskii G. А. Modelirovanie sistem : monografiia. Odessa: Astroprint, 2013. 664 s.
8. Usov A. V. Matematicheskoe modelirovanie protsessov kontrolia pokrytiia elementov konstruktsii na baze SIU. Problemy mashinostroeniia. 2010. Т.13. №1. s. 98−109.
9. Kunitsyn M. V., Tribocorrosion research of NI-Al2O3/TIO2 composite materials obtained by the method of electrochemical deposition. M.V. Kunitsyn, A.V Usov. Zb. nauk. prats, Suchasni tekhnolohii v mashinobuduvanni. Vyp. 12. Kharkiv: NTU KhPI, 2017. s. 61−70.
10. Savruk M. P. Chislennyi analiz v ploskikh zadachakh teorii tershchin. K.: Nauk. dumka, 1989. 248 s.
11. Usov A. V. Vvedenie v metody optimizatsii i teoriiu tekhnicheskikh sistem. Odessa: Astroprint, 2005. 496 s.
12. Popov G. Ya. Kontsentratsiia uprugikh napriazhenii vozle shtampov, razrezov, tonkikh vkliuchenii i podkreplenii. M.: Nauka, 1982. 344 s.
13. Cherepanov G. P. Mekhanika khrupkogo razrusheniia. M.: Nauka., 1974. 640 s.
14. Stashchuk N. G. Zadachi mekhaniki uprugikh tel s treshchinopodobnymi defectami. K.: Nauk. dumka, 1993. 358 s.
15. Ekobori T. Nauchnye osnovy prochnosti i razrusheniia materialov. Per. s yap. K.: Nauk. dumka, 1978. 352 s.
16. Morozov N. F. Matematicheskie voprosy teorii treshchin. M.: Nauka, 1984. 256 s.
17. Popov G. Ya. Izbrannye trudy. Т. 1, 2. Odessa: VMV, 2007. 896 s.
18. Grigirian G. D., Usov A. V., Chaplia М. Yu. Vliianie shlifovochnykh defektov na prochnost detalei nesushchei sistemy. Vsesoiuzn. konf. Nadezhnost i dolgovechnost mashin i priborov. 1984. s.101−106.
19. Rais Dzh. Matematicheskie metody v mekhanike razrusheniia. Razrushenie. V 2 t. М.: Mir, 1975.Т.2. S. 204−335.
20. Karpenko G. V. Fiziko-khimicheskaia mekhanika konstruktsionnykh materialov: V 2-kh t. K. : Nauk. dumka, 1985. Т. 1 228 s.
21. Kormilitsina Е. А., Salkovskii F. М., Usov A. V., Yakimov А. V. Prichiny poiavliniia defektov pri shlifovanii magnitotverdykh splavov. Tekhnologiia elektrotekhnicheskogo proizvodstva. М.: Energiia. № 4. 1982. s.1−5.
22. Usov A. V. Smeshannaia zadacha termouprugosti dlia kusochno-odnorodnykh tel s vkliucheniiami i treshchinami. IV Vsesoiuzn. konf. Smeshannye zadachi mechaniki deformiruemogo tela: Tez. dokl.-Odessa,1990. s.116.
23. Yakimov А. V., Slobodianyk P. T., Usov A. V. Teplofizika mekhanicheskoi obrabotki. K.: Nauk. dumka,1991. S. 270.
24. Vitvitskii P. M., Popina S. Yu. Prochnost i kriterii khrupkogo razrusheniia stokhaticheski defektnykh tel. K.: Nauk. dumka, 1980. 187 s.
Downloads: 17
Abstract views: 
898
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Columbus; Monroe; Ashburn; Seattle; Portland; San Mateo; Ashburn10
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Odessa; Dnipro2
15.1.2020  Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements
15.1.2020  Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements
15.1.2020  Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements

Keywords cloud

]]>
13.1.2020 Mathematical models of hydraulic servomechanisms of space technology https://journal.yuzhnoye.com/content_2020_1-en/annot_13_1_2020-en/ Wed, 13 Sep 2023 10:58:26 +0000 https://journal.yuzhnoye.com/?page_id=31045
To calculate the rocket stability regions and to evaluate own stability of servo actuators, a linearized mathematical model of hydraulic servo actuator is used that takes into account the most important parameters having impact on stability of the servo actuator itself and on that of the rocket: hardness of working fluid, stiffness of elastic suspension of the actuator and control element, slope of mechanical characteristic of the actuator in the area of small control signals, which, as full mathematical model analysis showed, is conditioned only by dimensions of initial axial clearances of slide’s throats.
]]>

13. Mathematical models of hydraulic servomechanisms of space technologynt

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 121-132

DOI: https://doi.org/10.33136/stma2020.01.121

Language: Russian

Annotation: Being a final executive element of rocket control systems, a hydraulic actuator is at the same time the main source of various non-linear dependencies in rocket dynamic design whose availability dramatically com plicates theoretical analysis of their dynamics and control systems synthesis. The required accuracy and complexity of mathematical models of hydraulic servo mechanisms are different for different design phases of guided rockets. The paper deals with the simplest models of hydraulic servo actuators intended to calculate rocket controllability and to define requirements to response and power characteristics of the actuators. To calculate the rocket stability regions and to evaluate own stability of servo actuators, a linearized mathematical model of hydraulic servo actuator is used that takes into account the most important parameters having impact on stability of the servo actuator itself and on that of the rocket: hardness of working fluid, stiffness of elastic suspension of the actuator and control element, slope of mechanical characteristic of the actuator in the area of small control signals, which, as full mathematical model analysis showed, is conditioned only by dimensions of initial axial clearances of slide’s throats. The full mathematical model constructed based on accurate calculations of the balance of fluid flow rate through the slide’s throats allows, as early as at designing phase, determining the values of most important static and dynamic characteristics of a future hydraulic actuator, selecting optimal characteristics of slides based on specified degree of stability and response of servo actuator and conducting final modeling of rocket flight on the integrated control system test benches without using real actuators and loading stands. It is correct and universal for all phases of rockets and their control systems designing and testing. Using this mathematical model, the powerful actuators of a line of intercontinental ballistic missiles with swinging reentry vehicle and the main engines actuators of Zenit launch vehicle first stage were developed. The results of their testing separately and in rockets practically fully comply with the data of theoretical calculations.

Key words: mathematical model, hydraulic actuator, servo actuator, stability, damping, slide

Bibliography:
1. Dinamika gidroprivoda / pod red. V. N. Prokofieva. М., 1972. 292 s.
2. Gamynin N. S. Gidravlicheskii privod system upravleniia. М., 1972. 376 s.
3. Chuprakov Yu. I. Gidroprivod i sredstva gidroavtomatiki. М., 1979. 232 s.
4. Kozak L. R. Geometriia zolotnika i dinamicheskie kharakteristiki gidroprivoda // Visnyk Dnipropetrovskoho universytetu. Vyp. 13, Tom 1. 2009.
Downloads: 12
Abstract views: 
363
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Monroe; Ashburn; Ashburn; Seattle; San Mateo; Ashburn9
Singapore Singapore; Singapore2
Ukraine Dnipro1
13.1.2020  Mathematical models of hydraulic servomechanisms of space technology
13.1.2020  Mathematical models of hydraulic servomechanisms of space technology
13.1.2020  Mathematical models of hydraulic servomechanisms of space technology

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep https://journal.yuzhnoye.com/content_2020_1-en/annot_5_1_2020-en/ Wed, 13 Sep 2023 06:15:53 +0000 https://journal.yuzhnoye.com/?page_id=31026
2020, (1); 44-56 DOI: https://doi.org/10.33136/stma2020.01.044 Language: Russian Annotation: The shell structures widely used in space rocket hardware feature, along with decided advantage in the form of optimal combination of mass and strength, inhomogeneities of different nature: structural (different thicknesses, availability of reinforcements, cuts-holes et al.) and technological (presence of defects arising in manufacturing process or during storage, transportation and unforseen thermomechanical effects). Taking into consideration plasticity and creeping of material, to determine stress and strain state, the approach is effective where the calculation is divided into phases; in each phase the parameters are entered that characterize the deformations of plasticity and creeping: additional loads in the equations of equilibrium or in boundary conditions, additional deformations or variable parameters of elasticity (elasticity modulus and Poisson ratio).
]]>

5. Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2020, (1); 44-56

DOI: https://doi.org/10.33136/stma2020.01.044

Language: Russian

Annotation: The shell structures widely used in space rocket hardware feature, along with decided advantage in the form of optimal combination of mass and strength, inhomogeneities of different nature: structural (different thicknesses, availability of reinforcements, cuts-holes et al.) and technological (presence of defects arising in manufacturing process or during storage, transportation and unforseen thermomechanical effects). The above factors are concentrators of stress and strain state and can lead to early destruction of structural elements. Their different parts are deformed according to their program and are characterized by different levels of stress and strain state. Taking into consideration plasticity and creeping of material, to determine stress and strain state, the approach is effective where the calculation is divided into phases; in each phase the parameters are entered that characterize the deformations of plasticity and creeping: additional loads in the equations of equilibrium or in boundary conditions, additional deformations or variable parameters of elasticity (elasticity modulus and Poisson ratio). Then the schemes of successive approximations are constructed: in each phase, the problem of elasticity theory is solved with entering of the above parameters. The problems of determining the lifetime of space launch vehicles and launching facilities should be noted separately, as it is connected with damages that arise at alternating-sign thermomechanical loads of high intensity. The main approach in lifetime determination is one that is based on the theory of low-cycle and high-cycle fatigue. Plasticity and creeping of material are the fundamental factors in lifetime substantiation. The article deals with various aspects of solving the problem of strength and stability of space rocket objects with consideration for the impact of plasticity and creeping deformations.

Key words: shell structures, stress and strain state, structural and technological inhomogeneity, thermomechanical loads, low-cycle and high-cycle fatigue, lifetime

Bibliography:
1. Iliushin A. A. Trudy v 4-kh t. М., 2004. T. 2. Plastichnost. 408 s.
2. Ishlinskii А. Yu., Ivlev D. D. Matematicheskaya teoriia plastichnosti. М., 2001. 700 s.
3. Hutchinson J. W. Plastic buckling. Advances in Appl. Mech. 1974. V. 14. P. 67 – 144. https://doi.org/10.1016/S0065-2156(08)70031-0
4. Hudramovich V. S. Ustoichivost uprugo-plasticheskikh obolochek / otv. red. P. I. Nikitin. Kiev, 1987. 216 s.
5. Parton V. Z., Morozov Е. М. Mekhanika uprugoplastichnogo razrusheniia. М., 1985. 504 s.
6. Tomsen E., Yang Ch., Kobaiashi Sh. Mekhanika plasticheskikh deformatsii pri obrabotke metalla. М., 1968. 504 s.
7. Mossakovsky V. I., Hudramovich V. S., Makeev E. M. Kontaktnye vzaimodeistviia elementov obolochechnykh konstruktsii / otv. red. V. L. Rvachev. Kiev, 1988. 288 s.
8. Hudramovych V. S. Contact mechanics of shell structures under local loading. Int. Appl. Mech. 2009. V. 45, No 7. P. 708 – 729. https://doi.org/10.1007/s10778-009-0224-5
9. Iliushin A. A. Trudy v 4-kh t. М., 2009. Т. 4. Modelirovanie dinamicheskikh protsessov v tverdykh telakh i inzhenernye prilozheniia. 526 s.
10. Hudramovich V. S. Plasticheskoe vypuchivanie tsilindricheskoi obolochki konechnoi dliny pri impulsnom lokalnom nagruzhenii. Teoriia obolochek i plastin: tr. 8-i Vsesoiuzn. konf. Po teorii obolochek i plastin (Rostov-na-Donu, 1971 g.). М., 1973. S. 125 – 130.
11. Nelineinye modeli i zadachi mekhaniki deformiruemogo tverdogo tela. Sb. nauch. tr., posv. 70-letiiu so dnia rozhd. Yu. N. Rabotnova / otv. red. K. V. Frolov. М., 1984. 210 s.
12. Binkevich Е. V., Troshin V. G. Ob odnom sposobe linearizatsii uravnenii teorii obolochek srednego izgiba. Prochnost i dolgovechnost elementov konstruktsii: sb. nauch. tr. / otv. red. V. S. Hudramovich. Kiev, 1983. S. 53 – 58.
13. Rabotnov Yu. N. Problemy mekhaniki deformiruemogo tverdogo tela. Izbrannye Trudy / otv. red. K. V. Frolov. М., 1991. 196 s.
14. Hudramovich V. S. Teoriia polzuchesti i ee prilozheniia k raschetu elementov tonkostennykh konstruktsii. Kiev, 2005. 224 s.
15. Hudramovych V. S., Hart E. L., Ryabokon’ S. A. Plastic deformation of nonhomogeneous plates. J. Math. Eng. 2013. V. 78, Iss. 1. P. 181 – 197. https://doi.org/10.1007/s10665-010-9409-5
16. Hart E. L., Hudramovych V. S. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Maintenance 2012. Proceedings of 2th Int. Conf. (Zenica, Bosnia and Herzegovina, 2012). Zenica, 2012. P. 157 – 164.
17. Hudramovich V. S., Hart E. L. Konechnoelementnyi analiz protsessa rasseiannogo razrusheniia ploskodeformiruemykh uprugoplasticheskikh sred s lokalnymi kontsentratsiami napriazhenii. Uprugost i neuprugost: materialy Mezhdunar. simp. Po problemam mekhaniki deform. tel, posv. 105-letiiu so dnia rozhd А. А. Iliushina (Moskva, yanv. 2016 g.). М., 2016. S. 158 – 161.
18. Lazarev Т. V., Sirenko V. N., Degtyarev М. А. i dr. Vysokoproizvoditelnaia vychislitelnaia sistema dlia raschetnykh zadach GP KB “Yuzhnoye”. Raketnaia tekhnika. Novyie vozmozhnosti: nauch.-tekhn. sb. / pod red. A. V. Degtyareva. Dnipro, 2019. S. 407 – 419.
19. Sirenko V. N. O vozmozhnosti provedeniia virtualnyks ispytanii pri razrabotke raketno-kosmicheskoi tekhniki s tseliu opredeleniia nesushchikh svoistv. Aktualni problemy mekhaniky sytsilnoho seredovyshcha i mitsnosti konstruktsii: tezy dop. II Mizhnar. nauk.-tekhn. konf. pam’iati akad. NANU V. І. Mossakovskoho (do storichchia vid dnia narodzhennia). (Dnipro, 2019 r.). Dnipro, 2019. S. 43 – 44.
20. Degtyarev А. V. Shestdesiat let v raketostroyenii i kosmonavtike. Dniepropetrovsk, 2014. 540 s.
21. Mak-Ivili А. Dzh. Analiz avariinykh razrushenii. М., 2010. 416 s.
22. Song Z. Test and launch control technology for launch vehicles. Singapore, 2018. 256 p. https://doi.org/10.1007/978-981-10-8712-7
23. Hudramovich V. S., Sirenko V. N., Klimenko D. V., Daniev Ju. F., Hart E. L. Development of the normative framework methodology for justifying the launcher structures resource of launch vehicles. Strength of Materials. 2019. Vol. 51, No 3. P. 333 – 340. https://doi.org/10.1007/s11223-019-00079-4
24. Grigiliuk E. I., Shalashilin V. V. Problemy nelineinogo deformirovaniia. Metod prodolzheniia po parametru v nelineinykh zadachakh mekhaniki deformiruemogo tverdogo tela. М., 1988. 232 s.
25. Hudramovych V. S. Features of nonlinear deformation of shell systems with geometrical imperfections. Int. Appl. Mech. 2006. Vol. 42, Nо 7. Р. 3 – 37. https://doi.org/10.1007/s10778-006-0204-y
26. Hudramovich V. S. Kriticheskoe sostoianie neuprugikh obolochek pri slozhnom nagruzhenii. Ustoichivost v MDTT: materialy Vsesoiuzn. simp. (Kalinin, 1981 g.) / pod red. V. G. Zubchaninova. Kalinin, 1981. S. 61 – 87.
27. Hudramovich V. S. Ustoichivost i nesushchaia sposobnost plasticheskikh obolochek. Prochnost i dolgovechnost konstruktsii: sb. nauch. tr. / otv. red. V. S. Budnik. Kiev, 1980. S. 15 – 32.
28. Hudramovich V. S., Pereverzev E. S. Nesushchaia sposobnost i dolgovechnost elementov konstruktsii / otv. red. V. I. Mossakovsky. Kiev, 1981. 284 s.
29. Hudramovich V. S., Konovalenkov V. S. Deformirovanie i predelnoie sostoianie neuprugikh obolochek s uchetom istorii nagruzheniia. Izv. AN SSSR. Mekhanika tverdogo tela. 1987. №3. S. 157 – 163.
30. Нudramovich V. S. Plastic and creep instability of shells with initial imperfections. Solid mechanics and its applications / Ed. G. M. L. Gladwell V. 64. Dordrecht, Boston, London, 1997. P. 277–289. https://doi.org/10.1007/0-306-46937-5_23
31. Нudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: proceedings Int. Conf. (Helsinki, Finland, 1999) / Ed. P. Makelainen. Amsterdam, Lousanne, New York, Tokyo, 1999. P. 257–263. https://doi.org/10.1016/B978-008043014-0/50133-5
32. Kushnir R. M., Nikolyshyn М. М., Osadchuk V. А. Pruzhnyi ta pruzhnmoplastychnyi hranychnyi stan obolonok z defectamy. Lviv, 2003. 320 s.
33. Hudramovich V. S. Predelnyi analiz – effektivnyi sposob otsenki konstruktsionnoi prochnosti obolochechnykh system. III Mizhnar. konf. «Mekhanika ruinuvannia i mitsnist konstruktsii» (Lviv, 2003) / pid red. V. V. Panasiuka. Lviv, 2003. S.583–588.
34. Herasimov V. P., Hudramovich V. S., Larionov I. F. i dr. Plasticheskoe razrushenie sostavnykh obolochechnykh konstruktsii pri osevom szhatii. Probl. prochnosti. 1979. №11. S. 58 – 61.
35. Hudramovich V. S. Herasimov V. P., Demenkov A. F. Predelnyi analiz elementov konstruktsii / otv. red. V. S. Budnik. Kiev, 1990. 136 s.
36. Druker D. Makroskopicheskie osnovy teorii khrupkogo razrusheniia. Razrushenie. М., 1973. Т. 1. S. 505 – 569.
37. Galkin V. F., Hudramovich V. S., Mossakovsky V. I., Spiridonov I. N. O vliianii predela tekuchesti na ustoichivost tsilindricheskikh obolochek pri osevom szhatii. Izv. AN SSSR. Mekhanika tverdogo tela. 1973. №3. С 180 – 182.
38. Hudramovich V. S., Dziuba A. P., Selivanov Yu. М. Metody golograficheskoi interferometrii v mechanike neodnorodnykh tonkostennykh konstruktsii. Dnipro, 2017. 288 s.
39. Hudramovich V. S., Skalskii V. R., Selivanov Yu. М. Holohrafichne te akustyko-emisiine diahnostuvannia neodnoridnykh konstruktsii i materialiv / vidpovid. red. Z. Т. Nazarchuk. Lviv, 2017. 488 s.
40. Pisarenko G. S., Strizhalo V. А. Eksperimentalnye metody v mekhanike deformiruemogo tverdogo tela. Kiev, 2018. 242 s.
41. Guz’ A. N., Dyshel M. Sh., Kuliev G. G., Milovanova O. B. Razrushenie i lokalnaia poteria ustoichivosti tonkostennykh tel s vyrezami. Prikl. mekhanika. 1981. Т. 17, №8. S. 3 – 24. https://doi.org/10.1007/BF00884086
42. Hudramovich V. S., Diskovskii I. A., Makeev E. M. Tonkostennye element zerkalnykh antenn. Kiev, 1986. 152 s.
43. Hudramovich V. S., Hart E. L., Klimenko D. V., Ryabokon’ S. A. Mutual influence of openings on strength of shell-type structures under plastic deformation. Strength of Materials. 2013. V. 45, Iss. 1. P. 1 – 9. https://doi.org/10.1007/s11223-013-9426-5
44. Hudramovich V. S., Klimenko D. V., Hart E. L. Vliianie vyrezov na prochnost tsilindricheskikh otsekov raket-nositelei pri neuprugom deformirovanii materiala. Kosmichna nauka i tekhnolohiia. 2017. Т. 23, № 6. S. 12 – 20.
45. Hart E. L., Hudramovich V. S. Proektsiino-iteratsiini skhemy realizatsii variatsiino-sitkovykh metodiv u zadachakh pruzhno-plastychnoho deformuvannia neodnoridnykh tonkostinnykh konstruktsii. Matematychni metody I fizyko-mechanichni polia. 2019. Т. 51, № 3. S. 24 – 39.
46. Nikitin P. I., Hudramovich V. S., Larionov I. F. Ustoichivost obolochek v usloviiakh polzuchesti. Polzuchest v konstruktsiakh: tez. dokl. Vsesoiuzn. Simpoziuma (Dniepropetrovsk, 1982 g.). Dniepropetrovsk, 1982. S. 3 – 5.
47. Hudramovich V. S. Ob issledovaniiakh v oblasti teorii polzuchesti v Institute tekhnicheskoi mekhaniki NANU i GKAU. Tekhn. mekhanika. 2016. №4. S. 85 – 89.
48. Hoff N. J., Jahsman W. E., Nachbar W. A. A study of creep collapse of a long circular shells under uniform external pressure. J. Aerospace Sci. 1959. Vol. 26, No 10. P. 663 – 669. https://doi.org/10.2514/8.8243
49. Barmin I. V. Tekhnologicheskiie obiekty nazemnoi infrastruktury raketno-kosmicheskoi tekhniki. V 2-kh kn. M., 2005. Kn. 1. 412 s. М., 2005. Kn. 2. 376 s.
50. Makhutov N. А., Matvienko D. G., Romanov А. N. Problemy prochnosti, tekhnogennoi bezopasnosti i konstruktsionnogo materialovedenia. М., 2018. 720 s.
51. Gokhfeld D. А., Sadakov О. S. Plastichnost i polzuchest elementov konstruktsii pri povtornykg nagruzheniiakh. М., 1984. 256 s.
52. Troshchenko V. Т., Sosnovskii L. А. Soprotivlenie ustalosti metallov i splavov: spravochnik v 2-kh t. Kiev, 1987. Т. 1. 510 s. Kiev, 1987. Т. 2. 825 s.
53. Manson S. S. and Halford G. R. Fatigue and durability of structural materials. ASM International Material Park. Ohio, USA, 2006. 456 p.
Downloads: 19
Abstract views: 
1094
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; North Bergen; Plano; Dublin; Monroe; Ashburn; Ashburn; Portland; San Mateo; Boardman; Ashburn12
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Odessa; Dnipro2
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Keywords cloud

]]>
23.2.2018 On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body https://journal.yuzhnoye.com/content_2018_2-en/annot_23_2_2018-en/ Thu, 07 Sep 2023 12:35:25 +0000 https://journal.yuzhnoye.com/?page_id=30813
In the phenomenological approach under study, allowing for reflection properties of the space, earlier unknown interdependent information-physical link of the body and its mechanical particles with space under the accelerated motion was determined in the state of rest of the gravitation field as well as in the state of weightlessness. As a result metric lines of the configuration space under conditions of beam acceleration become polarized lines, generating vector information inertia field. Interaction of mechanical particles with the information inertia field in the configuration space generates physical inertia field of force, providing the real inertia under accelerated motion of the beam. According to the set forth unconventional approach the nature of the earth gravity is conditioned by the polarization of the radial metric lines of the circumterrestrial space. On the Impact of Initial Imperfections on Rod Stability Loss in Conditions of Axial Compression.
]]>

23. On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 190-206

DOI: https://doi.org/10.33136/stma2018.02.190

Language: Russian

Annotation: Presented is the theoretical justification of the phenomenon of the inertia initiation under accelerated motion of the body, and gravity origin in the circumterrestrial space. There is no description of the physical nature of the inertia and gravity in the scientific publications. In the phenomenological approach under study, allowing for reflection properties of the space, earlier unknown interdependent information-physical link of the body and its mechanical particles with space under the accelerated motion was determined in the state of rest of the gravitation field as well as in the state of weightlessness. Alongside with the environment, eigenspace, i.e. configuration space of the body and corresponding metric lines of the space are considered. Idea of metric lines agrees with the concept of F. Wilczek, the American physicist, Nobel-Prize laureate, on the existence of the unobservable metric field in the real space. Solution of the problem rests on the example of the cantilever beam and mathematical model of the information reflection process, which for the first time takes into consideration previously unknown property of space reflection. Under the accelerated motion of the body reflection gains the acceleration vector dt d а     . In this case reflection manifests itself in the initiation of the beam of polarization vector under study   ~ in every point of the configuration space and is expressed as     ~ а . Value of the polarization vector equals the value of acceleration vector with negative sign. As a result metric lines of the configuration space under conditions of beam acceleration become polarized lines, generating vector information inertia field. Interaction of mechanical particles with the information inertia field in the configuration space generates physical inertia field of force, providing the real inertia under accelerated motion of the beam. (Relatively slow motion of bodies is studied as compared to the speed of light). According to the set forth unconventional approach the nature of the earth gravity is conditioned by the polarization of the radial metric lines of the circumterrestrial space. And polarization vector is directed to the center of the Earth and equals acceleration vector of the free fall with the same sign. Interaction of the body with specific mass with the vector information field of the Earth generates the physical force field of gravity. Article deals with the fundamental issues of theoretical physics and other fields of natural science. Materials of the conducted research are regarded as a potential scientific discovery.

Key words: configuration space, modified method of sections, information and vacuum environment, metric lines, property of space reflection, polarization, scalar information field, vector information field

Bibliography:
1. Vilchek F. Fine Physics. Mass, Ester and Unification of World Forces. Collection of publications, 2018. 336 p.
2. Sivukhin D. V. General Course of Physics. Vol. 1. М., 1989. 576 p.
3. Logunov А. А. Lectures on Relativity Theory and Gravitation. Modern Analysis of Problem. М., 1987. 272 p.
4. Feinman R., Layton R., Sands M. Feinman Lectures in Physics. Vol. 1. Modern Natural Science. The Laws of Mechanics. Vol. 2. Space. Time. Motion / Translation from English. М., 1976. 439 p.
5. Mulyar Y. M. On Stability of Compressed Rod. Technical mechanics. Dnepropetrovsk, 2000. No. 2. P. 51-57.
6. Mulyar Y. M., Perlik V. I. On Mathematical Model Representation of Information Field in Loaded Deformed System. Information and Telecommunication Technologies. М., 2012. No. 15. P. 61-74.
7. Vernadsky V. I. Reflections of Natural Scientist. Space and Time in Inanimate and Animate Nature. М., 1975. 173 p.
8. Ursul A. D. Reflection and Information. М., 1973. 231 p.
9. Vladimirov Y. S. Metaphysics. М., 2002. 550 p.
10. Author’s Certificate 181066 USSR. Energy Absorber / А. М. Buyanovsky, Y. М. Mulyar. Discoveries. Inventions. 1993. No. 15. P. 101.
11. Cacku M. Physics of Impossible / Translation from English. М., 2016. 456 p.
12. Proceedings of the International Scientific Conference “Problems of Ideality in Science”. М., 2001. 352 p.
13. Mulyar Y. M., Fyodorov V. M., Tryasuchev L. M. On the Impact of Initial Imperfections on Rod Stability Loss in Conditions of Axial Compression. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2017. Issue 1 (113). P. 48-58.
14. Dyomin A.I. Paradigm of Dualism. Space – Time, information – energy. М., 2007. 320 p.
15. Lisin A.I. Paradigm of Dualism. Ide: Reality of ideality. Part 1. М., 1999. 382 p.
Downloads: 17
Abstract views: 
680
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Monroe; Ashburn; Seattle; Ashburn; Seattle; Seattle; Portland; San Mateo11
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Dnipro1
23.2.2018 On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body
23.2.2018 On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body
23.2.2018 On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body

Keywords cloud

]]>
13.1.2018 On Selection of Materials for Creation of Modern LV Thermostating System Mating Hoses https://journal.yuzhnoye.com/content_2018_1-en/annot_13_1_2018-en/ Tue, 05 Sep 2023 06:52:56 +0000 https://journal.yuzhnoye.com/?page_id=30469
Investigations of Physical-Mechanical Characteristics of Rubbers Based on Caoutchoucs of New Generation: Scientific–Technical Report DO-387-89, DF VNIIEMI. Increasing Rubber Products Service Life in Conditions of Tropical Climate: Recommendation No.
]]>

13. On Selection of Materials for Creation of Modern LV Thermostating System Mating Hoses

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; State Enterprise “Ukrainian Research Design-Technological Institute of Elastomer Materials and Products”, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2018 (1); 72-84

DOI: https://doi.org/10.33136/stma2018.01.072

Language: Russian

Annotation: A series of materials is proposed for creation of space launch vehicle low-pressure air thermostating systems joints hoses. The topical issues are considered of materials designing with consideration for specific features of the hoses as special industrial rubber articles of launch vehicle launch sites.

Key words:

Bibliography:
1. Raw Stuff and Materials: Inf. Bull. М., 1999. No. 1. 44 p. https://doi.org/10.1007/978-1-4615-2802-9_3
2. Svitlichna R. F., Lotakov V. S., Chumicheva N. P. State and Prospects of Using Rubbers of New Generation in Rubber Industry of Ukraine: Scientific-Technical Report. К., 2001. No. 3. 13 p.
3. Nesterova L. A., Reznichenko S. V., Noskova L. F. et al. Experience of Using BNKS Paraffinate Nitrile Rubber in Formulations of Oil-Resistant Rubbers of Various Purpose at JSC “Uralsky Zavod RTI”. Med. Conf. on rubber: Collection of abstracts. М., 2000. No. 4. 121 p.
4. Investigation to Select Optimal Options of Replacing Raw Materials and Rubbers with Specifying Guaranteed Service and Storage Life of Rubber Products Being Components of Special Articles: Scientific–Technical Report DO-473-2002 UNUKTI DINTEM SE. 2002. 47 p.
5. Raw Stuff and Materials: Inf. Bull. М., 1999. No. 5. 55 p.
6. Raw Stuff and Materials: Inf. Bull. М., 2001. No. 3. 90 p.
7. Raw Stuff and Materials: Inf. Bull. М., 2001. No. 3. 96 p.
8. Raw Stuff and Materials: Inf. Bull. М., 2000. No. 3. 43 p.
9. Lotakov V. S., Yevchik V. S., Utlenko E. V. et al. Investigation of Operability of Rubbers with Adhesion Additives in Rubber-Metal Valves. Manufacture of Tires, Rubber Products and ATI. М., 1980. No. 4. P. 43-44.
10. Lotakov V. S., Yevchik V. S., Markova L. A. et al. Investigation of Alkali Impact on Adhesive Properties of Ethylene-Propylene Vulcanizing Agents. Caoutchouc and Rubber: Scientific–Technical Report. UNIKTI-DINTEM SE. 1981. No. 6. P. 18-19.
11. Svitlichna R. F., Bogutska E. O., Lotaakov V. S. et al. Technical Carbon of N Series. Prospects of Using in Rubber Mixtures of Caoutchoucs of New Generation: Scientific–Technical Report. К., 2006. No. 3. P. 17-20.
12. Yevchik V. S., Bogutskaya E. A., Khorolsky M. S. Investigations to Select Optimal Options of Replacing Raw Materials and Rubbers with Specifying Guaranteed Service and Storage Life of Rubber Products Being Components of 11K77 Article: Scientific–Technical Report DO-468-2000, UNIKTI-DINTEM SE. 2000. 55 p.
13. Nudelman Z. N., Lavrova L. N. Effective Vulcanization of Fluorine Rubbers. The III Ukr. International Scientific-Technical Conference of Rubber Industry Workers: Collection of abstracts. Dnepropetrovsk, 2000. 43 p.
14. Semyonov G. D., Yevchik V. S., Zaitseva T. P., Lotakov V. S. Prospects of Using New Vulcanizing Systems in Rubber Mixtures Based on Fluoroelastomers: Scientific–Technical Report. К., 2001. No. 3. 18 p.
15. Yevchik V. S., Zaitseva T. P., Khorolsky M. S. Investigations of Physical-Mechanical Characteristics of Rubbers Based on Caoutchoucs of New Generation: Scientific–Technical Report DO-387-89, DF VNIIEMI. Dnepropetrovsk, 2000. 61 p.
16. Belozerov N. V. Rubber Technology. М., 1979. 201 p.
17. Blokh G. A. Organic Rubber Vulcanization Accelerators. М.,1964. 156 p.
18. Big Reference Book of Rubber Industry Worker in 2 parts. Part 1. Rubbers and Ingredients / Under the general editorship of S. V. Reznichenko and Y. L. Morozov. М., 2012. 740 p.
19. Polyurethane Chemistry and Technology: Collection of conference papers. Manchester, 1967. 254 p.
20. Degteva T. G. et al. The Impact of Additives on Thermal Ageing of Rubbers and Model Gaskets Made of SKEP. Caoutchouc and Rubber. М., 1984. No. 8. P. 17-19.
21. Lepetov V. A. Rubber Products. L., 1976. 440 p.
22. Lepetov V. A., Yurtsev L. N. Calculations and Designing of Rubber Products and Production Accessories. М., 2009. 417 p.
23. New Prospective Hoses and Scarce and Commercially Inviable Rubbers, Ingredients and Materials: Recommendation No. 51-РМ-22/38/57/50-1050-83. М., 1983. 42 p.
24. Kornev A. E. et al. Technology of Elastomer Materials. М., 2009. 504 p.
25. Gerasimenko A. А. Protection of Machines from Biological Damages. M., 1984. 92 p.
26. Principles of Constructing Formulations and Using Rubbers for Rubber Products of Tropical Version: Recommendation No. 51-РМ-26-48-66. М., 1966. 56 p.
27. Assessment of Rubber Resistance to Damage by Thermites: Recommendation No. 51-РМ-4-622-75. М., 1975. 36 p.
28. Increasing Rubber Products Service Life in Conditions of Tropical Climate: Recommendation No. 51-РМ-4-697-76. М., 1976. 23 p.
29. Assessment of Rubber Resistance to Mould: Recommendation No. 51-РМ-4-407-73. М., 1976. 42 p.
Downloads: 16
Abstract views: 
364
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Monroe; Ashburn; Seattle; Seattle; Seattle; San Mateo; Ashburn; Boardman11
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro1
13.1.2018 On Selection of Materials for Creation of Modern LV Thermostating System Mating Hoses
13.1.2018 On Selection of Materials for Creation of Modern LV Thermostating System Mating Hoses
13.1.2018 On Selection of Materials for Creation of Modern LV Thermostating System Mating Hoses
]]>
8.1.2019 Virtual Tests of Cassette Reentry Vehicle Dash Elements Attachment System during Ground Operation https://journal.yuzhnoye.com/content_2019_1-en/annot_8_1_2019-en/ Thu, 25 May 2023 12:09:45 +0000 https://journal.yuzhnoye.com/?page_id=27713
Based on the offered method the complex mechanical system, which attaches the cluster projectiles in the conditions of the temperature exposure and heat cycling, underwent the virtual tests. Computational models, criteria and test procedures necessary for the analysis of the mechanical condition and prediction of the performance of the actual airframe of the warhead were developed. Test results were used to conduct the static analysis of the mechanical condition, strength and conditions for performance of the actual structure of the attachment under the impact of the operating levels of temperature exposure and heat cycling. Key words: computer modelling , computational models , ground operations , mechanical condition , performance Bibliography: 1. computer modelling , computational models , ground operations , mechanical condition , performance .
]]>

8. Virtual Tests of Cassette Reentry Vehicle Dash Elements Attachment System during Ground Operation

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine2; National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2019, (1); 54-63

DOI: https://doi.org/10.33136/stma2019.01.054

Language: Russian

Annotation: This paper describes the effective approach for the technology of the rocket airframe development testing, based on the method of numerical modelling, which enables the virtual experimental runs prior to the beginning of the development testing to check the performance of the standard airframes and predict issues of concern. The method is realized based on the computer models developed in the ANSYS Workbench environment. Based on the offered method the complex mechanical system, which attaches the cluster projectiles in the conditions of the temperature exposure and heat cycling, underwent the virtual tests. Computational models, criteria and test procedures necessary for the analysis of the mechanical condition and prediction of the performance of the actual airframe of the warhead were developed. Moreover, computational models consider all the design and technological features of the airframe: layout of the projectiles attachments, initial stress-strain state of the system after the tightening of the threaded connections, friction between the components of the system and their mutual displacement, temperature dependence of the physical and mechanical characteristics and ultimate stress of materials. For the specified loading conditions during the ground operations with the warhead, the most dangerous computational cases are determined which have been implemented during the virtual tests. Test results were used to conduct the static analysis of the mechanical condition, strength and conditions for performance of the actual structure of the attachment under the impact of the operating levels of temperature exposure and heat cycling. Results of the virtual tests confirm the performance of the projectiles attachment system and are introduced into production in the phase of engineering development.

Key words: computer modelling, computational models, ground operations, mechanical condition, performance

Bibliography:

1. Birger I. A., Iosilevich G. B. Rezbovye i flantsevye soedineniya. M.: Mashinostroenie, 1990. 368 p.
2. Kukhling Ch. Spravochnik po phisike. M.: Mir, 1985. 520 p.
3. Nikolskiy B. P., Rabinovich V. A. Spravochnil chimika. T. 6. L.: Chimiya, 1967. 1009 p.
4. Stali I splavy. Marochnik: Sprav. izd. / pod red. V. G. Sorokina, M. A. Gervasieva. M.: Intermet Engineering, 2001. 608 p.
5. Numerical simulation of missile warhead operation / G. Martynenko, M. Chernobryvko, K. Avramov, V. Martynenko, A. Tonkonozhenko, V. Kozharin, D. Klymenko / Advances in Engineering Software. 2018. Vol. 123. P. 93-103. https://doi.org/10.1016/j.advengsoft.2018.07.001

Downloads: 20
Abstract views: 
442
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore10
USA Baltimore; Plano; Monroe; Columbus; Ashburn; Seattle; Seattle; San Mateo; Boardman9
Ukraine Dnipro1
8.1.2019 Virtual Tests of Cassette Reentry Vehicle Dash Elements Attachment System during Ground Operation
8.1.2019 Virtual Tests of Cassette Reentry Vehicle Dash Elements Attachment System during Ground Operation
8.1.2019 Virtual Tests of Cassette Reentry Vehicle Dash Elements Attachment System during Ground Operation

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays https://journal.yuzhnoye.com/content_2019_1-en/annot_4_1_2019-en/ Thu, 25 May 2023 12:09:18 +0000 https://journal.yuzhnoye.com/?page_id=27709
...capacity calculation of the aerospace structures, the following actual research trends can be singled out: 1) improvement of the methods of analytical estimation of the thin-walled structures’ strength and resistance; 2) improvement of the numerical methods of composite materials mechanical properties analysis; 3) development or application of the existing software packages and ADE-systems, automatizing stress-strain state analysis with visualization of the processes under study. The description of the mathematical simulation and experimental studies of the stress-strain state of the interstage bay made of carbon fiber sandwich structure is presented and short description of the structure condition after the tests is provided.
]]>

4. Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Zaporizhzhia National University, Zaporizhzhia, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2019, (1); 21-27

DOI: https://doi.org/10.33136/stma2019.01.021

Language: Russian

Annotation: This paper presents the overview and features of the stress-strain state analysis of the multilayer shell structures widely used in the design of the missile compartments. As a result of analysis of the current situation with the stress-strain state studies of the complex configuration shell structures and mathematical support of the load-bearing capacity calculation of the aerospace structures, the following actual research trends can be singled out: 1) improvement of the methods of analytical estimation of the thin-walled structures’ strength and resistance; 2) improvement of the numerical methods of composite materials mechanical properties analysis; 3) development or application of the existing software packages and ADE-systems, automatizing stress-strain state analysis with visualization of the processes under study. One of the most important steps of the third research trend is development of the initial data input media (setting the model parameters) and presentation of analysis results with account of the user interface visualization. The description of the mathematical simulation and experimental studies of the stress-strain state of the interstage bay made of carbon fiber sandwich structure is presented and short description of the structure condition after the tests is provided. Based on the analysis it can be concluded that development of the geometric simulation methods, taking into account the manufacturing deviations, is an independent problem from the point of view of practical applications in the aerospace technology.

Key words: sandwich structure, interstage bay, finite-element model, manufacturing deviations, test loads

Bibliography:

1. Vorovich I. I., Shlenev M. A. Plastiny I obolochki // Itogi nauki. Mechanika: Sbornik obzorov. M.: Nauka, 1963. P. 91–176.
2. Grigolyuk E. I., Kogan F. A. Sovremennoe sostoyanie teorii mnogosloynykh obolochek/ Prikladnaya mechanika. 972. T. 8, № 6. P. 3–17.
3. Grigolyuk E. I., Kulikov G.M. Razvitie obschego napravlenia v teorii mnogo – р max=630…651 kg/cm2/ Kosmicheskay technika. Raketnoe vooruzhenie. Space Technology. Missile Armaments. 2019. Vyp. 1 (117) 27 sloinykh obolochek/ Mechanika compositnykh materialov. 1972. T. 8, № 6. P. 3–17.
4. Grigorenko Ya. M., Vasilenko A. T., Pankratova N. D. K otsenke dopuscheniy teorii trekhsloinykh obolochek s zapolnitelem // Prikladnaya mechanika. 1984. T. 20, № 5. P. 19–25.
5. Dudchenko A. A., Lurie S. A., Obraztsov I. F. Anizotropnye mnogosloynye plastiny I obolochki / Itogi nauki I techniki. Mechanika deformiruemogo tverdogo tela. T. 15. M.: VINITI, 1983. P. 3–68.
6. Kurshin L. M. Obzor rabot po raschetu trekhsloynykh plastin I obolochek / Raschet prostranstvennykh konstruktsiy. Vyp. 1. M.: Gosstroyizdat, 1962. P. 163–192.
7. Noor A. K., Burton W. S., Bert C. W. Computational Models for Sandwich Panels and Shells / Applied Mechanics Reviews. 1996. Vol. 49, No 3. P. 155–199.
8. Piskunov V. G., Rasskazov A. O. Razvitie teorii cloistykh plastin I obolochek // Prikladnaya mechanika. 2002. T. 38, № 2. P. 22–56.
9. Grigorenko Ya. M., Budak V. D., Grigorenko O. Ya. Rozvyazannya zadach teorii bolonok na osnovi disrento –continualnykh metodiv: Navch. posib. Mykolaiv: Ilion, 2010. 294 p.
10. Carrera Е., Brischetto S. A Survey With Numerical Assessment of Classical and Refined Theories for the Analysis of Sandwich Plates // Applied Mechanics Reviews. 2009. Vol. 62, No 1. P. 1–17.
11. Grigolyuk E. I. Uravnenia trekhsloinykh obolochek s legkim zapolnitelem // Izv. AN SSSR. Otdelenie tekhnicheskikh nauk. 1957. № 1. P. 77–84.
12. Ambartsumyan S. A. Teoria anizotropnykh plastin: Prochnost’, ustoichivost’ i kolebania. M.: Nauka, 1987. 360 p.
13. Carrera Е. Historical review of Zig-Zag theories for multilayered plates and shells / Applied Mechanics Reviews. 2003. Vol. 56, No 3. P. 287–308.
14. Teichman F. K., Wang C.-T. Finite deflections of Curved Sandwich Cylinders. Sherman M. Fairchild Publ. Fund. Inst. Aero. Sci. Paper FF-4. Institute of the Astronautical Sciences, 1951. P. 14.
15. Teichman F. K., Wang C.-T., Gerard G. Buckling of Sandwich Cylinders under Axial Compression / Journal of the Aeronautical Sciences. 1951. Vol. 18, No 6. P. 398–406.
16. Vinson J. R. Sandwich Structures / Applied Mechanics Reviews. 2001. Vol. 54, No 4. P. 201–214.
17. Lin J., Fei Y., Zhihua W., Longmao Z. A numerical simulation of metallic cylindrical sandwich shells subjected to air blast loading / Latin American Journal of Solids and Structures. 2013. Vol. 10. P. 631–645.
18. Wu J., Pan L. Nonlinear theory of multilayer sandwich shells and its application (I) – general theory // Applied Mathematics and Mechanics. 1997. Vol. 18, No 1. P. 19–27.
19. Xu J., Wang C., Liu R. Nonlinear stability of truncated shallow conical sandwich shell with variable thickness / Applied Mathematics and Mechanics. 2000. Vol. 21, No 9. P. 977–986.
20. Komissarova G. L., Klyuchnikova V. G., Nikitenko V. N. K otsenke predelov primenimosti priblizhennykh teoriy sloistykh plastin// Prikladnaya mechanika. 1979. T. 15, № 6. P. 131–134.
21. Khalili S. M. R., Kheirikhah M. M., Malekzadeh Fard K. Buckling analysis of composite sandwich plates with flexible core using improved high-order theory / Mechanics of Advanced Materials and Structures. 2015. Vol. 22, No 4. P. 233–247.
22. Kien T. N., Tai H. T., Thuc P. V. A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates / Steel and Composite Structures. 2015. Vol. 18, No 1. P. 91–120.
23. Gorshkov A. G., Starovoitov E. I., Yarovaya A. V. Mechanika sloistykh vyazkouprugoplasticheskikh elementov konstruktsiy. М.: Fizmatlit, 2005. 576 p.
24. Chumachenko Ye. N., Polyakova T. V., Aksenov A. S. i dr. Matematicheskoe modelirovanie v nelineinoy mechanike: Obzor programmnykh complexov dlya resheniya zadach modelirovania slozhnykh system, Pr-2155. M.: Institut kosmicheskykh issledovaniy RAN, 2009. 44 p.
25. Opyt i novye tekhnologii inzhenernogo analiza v interesakh kosmosa: press-reliz / I. Novikov / GNKTs im. M. V. Khrunicheva. Rezhim dostupa: www.khrunichev.ru/ main.php?id=18mid=2132.

Downloads: 20
Abstract views: 
422
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA North Bergen; Plano; Monroe; Ashburn; Seattle; Ashburn; Seattle; Seattle; Portland; San Mateo; Ashburn11
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Ukraine Dnipro1
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
25.1.2019 Technological Peculiarities of Manufacturing Products of Irregular Profile by Method of Selective Laser Melting of 316L Powder Metal Material https://journal.yuzhnoye.com/content_2019_1-en/annot_25_1_2019-en/ Wed, 24 May 2023 16:01:06 +0000 https://journal.yuzhnoye.com/?page_id=27730
2019, (1); 171-181 DOI: https://doi.org/10.33136/stma2019.01.171 Language: Russian Annotation: This article considers the practical data on parts (specimens) manufacturing from powder metal material 316L using the innovative method of selective laser melting; the comparative study of the structure and physical and mechanical properties of 316L material, the combined influence of heat treatment and specimen orientation relative to the arrangement plate on the physical and mechanical properties and structure of specimens made of 316L alloy. Experimental study of the specimens heat treatment conditions after selective laser melting enabled the definition of the optimal condition for the 316L alloy and have shown that heat treatment of the manufactured specimens under the heating at 1230 °С with the subsequent tempering at the temperature of 510 °С gives the homogeneous structure to the material of specimens made of alloy 316L, its dendritic structure, inherent in the specimen material in its initial condition, disappears after selective laser melting.
]]>

25. Technological Peculiarities of Manufacturing Products of Irregular Profile by Method of Selective Laser Melting of 316L Powder Metal Material

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 171-181

DOI: https://doi.org/10.33136/stma2019.01.171

Language: Russian

Annotation: This article considers the practical data on parts (specimens) manufacturing from powder metal material 316L using the innovative method of selective laser melting; the comparative study of the structure and physical and mechanical properties of 316L material, the combined influence of heat treatment and specimen orientation relative to the arrangement plate on the physical and mechanical properties and structure of specimens made of 316L alloy. Results are presented of the following: comparative study of the physical and mechanical properties and structure of specimens, manufactured using the selective laser melting technologies with horizontal and vertical placement relative to the arrangement plate; dependence of the ultimate strength and unit elongation on the annealing temperature. The possibility and suitability of the selective laser melting technology to manufacture parts and space-rocket hardware are evaluated. Experimental study of the specimens heat treatment conditions after selective laser melting enabled the definition of the optimal condition for the 316L alloy and have shown that heat treatment of the manufactured specimens under the heating at 1230 °С with the subsequent tempering at the temperature of 510 °С gives the homogeneous structure to the material of specimens made of alloy 316L, its dendritic structure, inherent in the specimen material in its initial condition, disappears after selective laser melting. Results of the mechanical tests of the obtained specimens have shown that the technology of selective laser melting provides development of products made of powder metal material 316L with optimal complex of physical and mechanical properties. It is shown that transition to the selective laser melting technology will enable production of the aerospace products, in particular geometrically-complex parts made of powder metal material 316L, in one technological cycle, excluding cutting, punching, refinement, cropping, welding, manufacturing of special tools or stamps

Key words: specimens, heat treatment, alloy, physical and mechanical properties, technological cycle

Bibliography:
1. Dovbysh V. M., Zabednev P. V., Zelenko M. A. Additivnye technologii I izdeliya iz metalla// Bibliotechka liteischika. №8–9. 2014. P. 33-38.
2. Kempen K., Thijs L., Van Humbeeck J., Kruth J.-P. Mechanical properties of AlSi10Mg produced by SLM / Physics Procedia. №39. 2012. Р. 439–446. https://doi.org/10.1016/j.phpro.2012.10.059
3. Olakanmi E. O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: Effect of processing conditions and powder properties / Journal of Materials Processing Technology. №213. 2013. Р. 1387–1405. https://doi.org/10.1016/j.jmatprotec.2013.03.009
4. Eleftherios Louvis, Fox Peter, Sutcliffe Christopher J. Selective laser melting of aluminium components // Journal of Materials Processing Technology. – №211. 2011. Р. 275–284. https://doi.org/10.1016/j.jmatprotec.2010.09.019
5. Aboulkhair Nesma T., Everitt Nicola M., Ashcroft Ian, Tuck Chris. Reducing porosity in AlSi10Mg parts processed by selective laser melting // Additive Manufacturing Journal. №1–4. 2014. Р. 77 – 86. https://doi.org/10.1016/j.addma.2014.08.001
Downloads: 17
Abstract views: 
460
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Plano; Dublin; Monroe; Ashburn; Portland; San Mateo; Ashburn8
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Lithuania Šiauliai1
Ukraine Dnipro1
25.1.2019 Technological Peculiarities of Manufacturing Products of Irregular Profile by Method of Selective Laser Melting of 316L Powder Metal Material
25.1.2019 Technological Peculiarities of Manufacturing Products of Irregular Profile by Method of Selective Laser Melting of 316L Powder Metal Material
25.1.2019 Technological Peculiarities of Manufacturing Products of Irregular Profile by Method of Selective Laser Melting of 316L Powder Metal Material

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
8.1.2023 Specificity of developing pyrobolts with low impact and vibration impulse responses https://journal.yuzhnoye.com/content_2023_1-en/annot_8_1_2023-en/ Fri, 12 May 2023 16:11:05 +0000 https://test8.yuzhnoye.com/?page_id=26992
In its high-elasticity state, rubber can absorb and dissipate mechanical energy within a wide range of temperatures, which prevents transmission of engine vibrations to the ground thermal conditioning system.
]]>

8. Specificity of developing pyrobolts with low impact and vibration impulse responses

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2023 (1); 70-76

DOI: https://doi.org/10.33136/stma2023.01.070

Language: Ukrainian

Annotation: One of the systems in the integrated launch vehicle responsible for prelaunch processing and launch is a ground thermal conditioning system, which supplies the low-pressure air into the launch vehicle’s “dry” compartments. Thermal conditioning system is mated with the launch vehicle, using the mating interfaces, proper functioning of which enhances reliability of the ground support equipment, the launch vehicle and the entire space launch system. The article describes key requirements to the interfaces of the thermal conditioning system and the drawbacks of the existing designs. The article proposes a new design concept of the interface that connects the pipeline of the ground thermal conditioning system to the orifice of the launch vehicle using the corrugated rubber hose composed of three basic parts, attached with the help of a metal lock/release assembly. The proposed solution provides reliable leaktightness, ease of operation, providing multiple connections to the launch vehicle, including at various angles, and automatic disconnection by rocket motion or manual removal in case of launch abort. Using rubber as a high-elasticity structural material to manufacture the hoses, enabled minimization of efforts required to disconnect the interface from the launch vehicle. In its high-elasticity state, rubber can absorb and dissipate mechanical energy within a wide range of temperatures, which prevents transmission of engine vibrations to the ground thermal conditioning system. The article presents key properties of rubber used as a structural material and its peculiarities to be considered during design of similar products. Unlike metal showing two types of deformation (elastic and plastic), rubber can exhibit three types of deformation (elastic, superelastic and plastic). In the process of interface design, we took into account two types of deformations (elastic and superelastic ones). Experimental studies of the interface showed its full compliance with technical specification.

Key words: orifice of the launch vehicle, corrugated rubber hose, lock/release assembly, superelastic deformation, leaktightness

Bibliography:
1. Pat. Ukrainy na korycnu model «Pirobolt» №138414. Shevtsov E.I., Voloshin V.V., Samoilenko I.D. Onofrienko V.I., Bezkorsiy D.M. MPK F42B 15/36, F42В 15/38, B64G 1/22 zayavnik ta patentovlasnik KB «Pivdenne». Byul. №22, 2019 r.
2. Galuzeviy standart «Pyrozamky. Metodika rozrakhunku» OST 92-9594-82, 24 ark.
3. Duplischeva O.M., Kononets P.I., Lisoviy A.M., Maschenko A.M., Mikhailov K.F., kand. tekhn. nauk Porubaimekh V.I., Sviridov V.M. Znizhennya vibroimpulsnykh navantazhen, scho vynykaut pid chas spratsyuvannya pyromechanismu. Kosmichna technika. Raketne ozbroennya: Zb. nauk.-techn. st. 2009. Vyp. 2. Dnipro: DP «KB «Pivdenne». 100 ark.
4. Bement L. J. and Schimmel M. L. A Manual for Pyrotechnic Design, Development and Qualification, NASA, NASA Technical Memorandum 110172, 1995.
5. Yanhua Li, Yuan Li, Xiaogan Li, Yuquan Wen, Huina Mu and Zhiliang Li. Identification of Pyrotechnic Shock Sources for Shear Type Explosive Bolt, Shock and Vibration Vol. 2017, Article ID 3846236, 9 p. https://doi.org/10.1155/2017/3846236
6. Yanhua Li, Jingcheng Wang, Shihui Xiong, Li Cheng, Yuquan Wen, and Zhiliang Li Numerical Study of Separation Characteristics of Piston-Type Explosive Bolt, Shock and Vibration, Vol. 2019, Article ID 2092796, 18 p. https://doi.org/10.1155/2019/2092796
Downloads: 20
Abstract views: 
379
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Plano; Monroe; Ashburn; Ashburn; Mountain View; Seattle; Seattle; Portland; San Mateo; San Mateo; Boardman; Ashburn13
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro1
8.1.2023 Specificity of developing pyrobolts with low impact and vibration impulse responses
8.1.2023 Specificity of developing pyrobolts with low impact and vibration impulse responses
8.1.2023 Specificity of developing pyrobolts with low impact and vibration impulse responses

Keywords cloud

]]>