Search Results for “metal hose” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Wed, 06 Nov 2024 11:41:22 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “metal hose” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 15.2.2018 Topical Issues of Creation of Space Rocket Thermostatic System Mating Points https://journal.yuzhnoye.com/content_2018_2-en/annot_15_2_2018-en/ Thu, 07 Sep 2023 12:09:41 +0000 https://journal.yuzhnoye.com/?page_id=30786
As a result, it was ascertained that the joints can be made of simpler and at the same time failure-free design in the form of combined triune rubber hose fitted with a metal fixation/release unit installed on a sealing flange in a special groove.
]]>

15. Topical Issues of Creation of Space Rocket Thermostatic System Mating Points

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; State Enterprise DINTEM Ukrainian Research Design-Technological Institute of Elastomer Materials and Products2

Page: Kosm. teh. Raket. vooruž. 2018 (2); 132-138

DOI: https://doi.org/10.33136/stma2018.02.132

Language: Russian

Annotation: The problem is defined of designing the space rocket low-pressure air thermostating systems joints. The basic requirements imposed to the joints from the side of space rocket and ground complex are determined and stated. For this purpose, the analysis of operating conditions and possible situations during rocket launches is made. Besides, the methodological principles based on problematic, systematic, and structuralfunctional approach were applied using the theoretical and empirical capabilities, attraction of general scientific and special investigation methods, as well as historical and logical methods. The list of topical issues is reflected for implementation in joint’s design. The ways are proposed to create the joints meeting the requirements imposed. As a result, it was ascertained that the joints can be made of simpler and at the same time failure-free design in the form of combined triune rubber hose fitted with a metal fixation/release unit installed on a sealing flange in a special groove. Of special note is the versatility of the proposed technical solution for use in any of the space launch systems known in the world’s practice. The article is concluded with following: the basic requirements have been formulated for ground complexes thermostating systems joints to ensure space rockets prelaunch processing and launch, in doing so, the topical problems were defined; the scientific principles were proposed to design the thermostating systems joints for comprehensive solution of the topical problems , including potential critical situations; the thermostating systems joints have been developed, manufactured and have successfully passed the ground development tests with simulation of the conditions maximally close to operating ones at static operating air pressures and in off-nominal situations.

Key words: planetary roving vehicle, self-propelled modular platform, generic module, interchangeability

Bibliography:
1. Bigun S. A., Khorolsky M. S et al. Types and Design Features of Thermostating System Mating Points of Launch Vehicle Payload Units and Launch Vehicle and Spacecraft Bays. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2013. Issue 1. 123 p.
2. Bigun S. A., Khorolsky M. S et al. Experimental Investigations of Cyclone-4 ILV Thermostating System Mating Points Test Results. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2016. Issue 2. 105 p.
Downloads: 42
Abstract views: 
632
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Dublin; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Portland; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Boardman24
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Canada Toronto; Monreale2
Ukraine Dnipro;2
Finland Helsinki1
Unknown1
Philippines Mandaluyong City1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
15.2.2018 Topical Issues of Creation of Space Rocket Thermostatic System Mating Points
15.2.2018 Topical Issues of Creation of Space Rocket Thermostatic System Mating Points
15.2.2018 Topical Issues of Creation of Space Rocket Thermostatic System Mating Points

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall https://journal.yuzhnoye.com/content_2018_2-en/annot_7_2_2018-en/ Thu, 07 Sep 2023 11:12:23 +0000 https://journal.yuzhnoye.com/?page_id=30754
2018 (2); 57-67 DOI: https://doi.org/10.33136/stma2018.02.057 Language: Russian Annotation: During experimental investigation of the dynamic characteristics of a pneumatic test bench for testing liquid rocket engine high-flowrate automatic units, the effect was detected of 20-35% sound speed increase in the gas flow moving along the channel with corrugated wall (metal hose) which is a part of test bench drain system. It is indicated that its causes may be two mutually complementary factors – a decrease of gas compressibility at eddy motion and oscillations of metal hose wall. Key words: rocket engine automatic units , pneumatic test bench , metal hose , corrugated shell , toroidal vortex , longitudinal-lateral oscillations Bibliography: 1. Flexible Metal Hoses. rocket engine automatic units , pneumatic test bench , metal hose , corrugated shell , toroidal vortex , longitudinal-lateral oscillations .
]]>

7. Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2018 (2); 57-67

DOI: https://doi.org/10.33136/stma2018.02.057

Language: Russian

Annotation: During experimental investigation of the dynamic characteristics of a pneumatic test bench for testing liquid rocket engine high-flowrate automatic units, the effect was detected of 20-35% sound speed increase in the gas flow moving along the channel with corrugated wall (metal hose) which is a part of test bench drain system. The article presents the results of experiments and the task of theoretical justification of the effect is solved. It is indicated that its causes may be two mutually complementary factors – a decrease of gas compressibility at eddy motion and oscillations of metal hose wall. The physical model is considered that describes variation of gas elasticity and density in the conditions of high flow vorticity. It is supposed that in the near-wall layer of the channel, toroidal vortexes (vortex rings) are formed, which move into turbulent core of the flow where their size decreases and the velocity of rotation around the ring axis of torus increases. The spiral shape of the corrugation ensures also axial rotation, which increases vortexes stability. The intensive rotation around the ring axis creates considerable centrifugal forces; as a result, the dependence of pressure on gas density and the sound speed increase. The mathematical model has been developed that describes coupled longitudinal-lateral oscillations of gas and channel’s corrugated shell. It is indicated that in the investigated system, two mutually influencing wave types are present – longitudinal, which mainly transfer gas pressure pulses along the channel and lateral ones, which transfer the shell radial deformation pulses. As a result of modeling, it has been ascertained that because of the lateral oscillations of the wall, the propagation rate of gas pressure longitudinal waves (having the same wave length as in the experiments at test bench) turns out to be higher than adiabatic sound speed.

Key words: rocket engine automatic units, pneumatic test bench, metal hose, corrugated shell, toroidal vortex, longitudinal-lateral oscillations

Bibliography:
1. Shevchenko S. A. Experimental Investigation of Dynamic Characteristics of Gas Pressure Regulator in Multiple Ignition LRE Starting System. Problems of Designing and Manufacturing Flying Vehicle Structures: Collection of scientific works. 2015. Issue 4 (84). P. 49-68.
2. Shevchenko S. A., Valivakhin S. A. Results of Mathematical Modeling of Transient Processes in Gas Pressure Regulator. NTU “KhPI” News. 2014. No. 39 (1082). P. 198-206.
3. Shevchenko S. A., Valivakhin S. A. Mathematical Model of Gas Pressure Regulator. NTU “KhPI” News. 2014. No. 38 (1061). P. 195-209.
4. Shevchenko S. A., Konokh V. I., Makoter A. P. Gas Dynamic Resistance and Sound Speed in Channel with Corrugated Wall. NTU “KhPI” News. 2016. No. 20 (1192). P. 94-101.
5. Flexible Metal Hoses. Catalogue. Ufimsky Aggregate Company “Hydraulics”, 2001.
6. Loytsyansky L.G. Liquid and Gas Mechanics. М., 1978. 736 p.
7. Prisnyakov V. F. et al. Determination of Gas Parameters at Vessel Emptying Taking into Account Compressibility and Manifold Resistance. Problems of High-Temperature Engineering: Collection of scientific works. 1981. P. 86-94.
8. Kirillin V. A., Sychyov V. V., Sheydlin A. E. Technical Thermodynamics. М., 2008. 486 p.
9. Grekhov L. V., Ivashchenko N. A., Markov V. A. Propellant Equipment and Control Systems of Diesels. М., 2004. 344 p.
10. Sychyov V. V., Vasserman A. A., Kozlov A. D. et al. Thermodynamic Properties of Air. М., 1978. 276 p.
11. Shariff K., Leonard A. Vortex rings. Annu. Rev. Fluid Mech. 1992. Vol. 24. P. 235-279. https://doi.org/10.1146/annurev.fl.24.010192.001315
12. Saffman F. Vortex Dynamics. М., 2000. 376 p.
13. Akhmetov D. G. Formation and Basic Parameters of Vortex Rings. Applied Mechanics and Theoretical Physics. 2001. Vol. 42, No 5. P. 70–83.
14. Shevchenko S. A., Grigor’yev A. L., Stepanov M. S. Refinement of Invariant Method for Calculation of Gas Dynamic Parameters in Rocket Engine Starting Pneumatic System Pipelines. NTU “KhPI” News. 2015. No. 6 (1115). P. 156-181.
Downloads: 38
Abstract views: 
1353
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Ashburn; Matawan; Plano; Columbus; Phoenix; Phoenix; Phoenix; Los Angeles; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn25
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro; Dnipro2
Unknown Brisbane1
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Uzbekistan Tashkent1
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall

Keywords cloud

]]>
13.1.2018 On Selection of Materials for Creation of Modern LV Thermostating System Mating Hoses https://journal.yuzhnoye.com/content_2018_1-en/annot_13_1_2018-en/ Tue, 05 Sep 2023 06:52:56 +0000 https://journal.yuzhnoye.com/?page_id=30469
On Selection of Materials for Creation of Modern LV Thermostating System Mating Hoses Authors: Bigun S. 2018 (1); 72-84 DOI: https://doi.org/10.33136/stma2018.01.072 Language: Russian Annotation: A series of materials is proposed for creation of space launch vehicle low-pressure air thermostating systems joints hoses. The topical issues are considered of materials designing with consideration for specific features of the hoses as special industrial rubber articles of launch vehicle launch sites. Investigation of Operability of Rubbers with Adhesion Additives in Rubber-Metal Valves.
]]>

13. On Selection of Materials for Creation of Modern LV Thermostating System Mating Hoses

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; State Enterprise DINTEM Ukrainian Research Design-Technological Institute of Elastomer Materials and Products2

Page: Kosm. teh. Raket. vooruž. 2018 (1); 72-84

DOI: https://doi.org/10.33136/stma2018.01.072

Language: Russian

Annotation: A series of materials is proposed for creation of space launch vehicle low-pressure air thermostating systems joints hoses. The topical issues are considered of materials designing with consideration for specific features of the hoses as special industrial rubber articles of launch vehicle launch sites.

Key words:

Bibliography:
1. Raw Stuff and Materials: Inf. Bull. М., 1999. No. 1. 44 p. https://doi.org/10.1007/978-1-4615-2802-9_3
2. Svitlichna R. F., Lotakov V. S., Chumicheva N. P. State and Prospects of Using Rubbers of New Generation in Rubber Industry of Ukraine: Scientific-Technical Report. К., 2001. No. 3. 13 p.
3. Nesterova L. A., Reznichenko S. V., Noskova L. F. et al. Experience of Using BNKS Paraffinate Nitrile Rubber in Formulations of Oil-Resistant Rubbers of Various Purpose at JSC “Uralsky Zavod RTI”. Med. Conf. on rubber: Collection of abstracts. М., 2000. No. 4. 121 p.
4. Investigation to Select Optimal Options of Replacing Raw Materials and Rubbers with Specifying Guaranteed Service and Storage Life of Rubber Products Being Components of Special Articles: Scientific–Technical Report DO-473-2002 UNUKTI DINTEM SE. 2002. 47 p.
5. Raw Stuff and Materials: Inf. Bull. М., 1999. No. 5. 55 p.
6. Raw Stuff and Materials: Inf. Bull. М., 2001. No. 3. 90 p.
7. Raw Stuff and Materials: Inf. Bull. М., 2001. No. 3. 96 p.
8. Raw Stuff and Materials: Inf. Bull. М., 2000. No. 3. 43 p.
9. Lotakov V. S., Yevchik V. S., Utlenko E. V. et al. Investigation of Operability of Rubbers with Adhesion Additives in Rubber-Metal Valves. Manufacture of Tires, Rubber Products and ATI. М., 1980. No. 4. P. 43-44.
10. Lotakov V. S., Yevchik V. S., Markova L. A. et al. Investigation of Alkali Impact on Adhesive Properties of Ethylene-Propylene Vulcanizing Agents. Caoutchouc and Rubber: Scientific–Technical Report. UNIKTI-DINTEM SE. 1981. No. 6. P. 18-19.
11. Svitlichna R. F., Bogutska E. O., Lotaakov V. S. et al. Technical Carbon of N Series. Prospects of Using in Rubber Mixtures of Caoutchoucs of New Generation: Scientific–Technical Report. К., 2006. No. 3. P. 17-20.
12. Yevchik V. S., Bogutskaya E. A., Khorolsky M. S. Investigations to Select Optimal Options of Replacing Raw Materials and Rubbers with Specifying Guaranteed Service and Storage Life of Rubber Products Being Components of 11K77 Article: Scientific–Technical Report DO-468-2000, UNIKTI-DINTEM SE. 2000. 55 p.
13. Nudelman Z. N., Lavrova L. N. Effective Vulcanization of Fluorine Rubbers. The III Ukr. International Scientific-Technical Conference of Rubber Industry Workers: Collection of abstracts. Dnepropetrovsk, 2000. 43 p.
14. Semyonov G. D., Yevchik V. S., Zaitseva T. P., Lotakov V. S. Prospects of Using New Vulcanizing Systems in Rubber Mixtures Based on Fluoroelastomers: Scientific–Technical Report. К., 2001. No. 3. 18 p.
15. Yevchik V. S., Zaitseva T. P., Khorolsky M. S. Investigations of Physical-Mechanical Characteristics of Rubbers Based on Caoutchoucs of New Generation: Scientific–Technical Report DO-387-89, DF VNIIEMI. Dnepropetrovsk, 2000. 61 p.
16. Belozerov N. V. Rubber Technology. М., 1979. 201 p.
17. Blokh G. A. Organic Rubber Vulcanization Accelerators. М.,1964. 156 p.
18. Big Reference Book of Rubber Industry Worker in 2 parts. Part 1. Rubbers and Ingredients / Under the general editorship of S. V. Reznichenko and Y. L. Morozov. М., 2012. 740 p.
19. Polyurethane Chemistry and Technology: Collection of conference papers. Manchester, 1967. 254 p.
20. Degteva T. G. et al. The Impact of Additives on Thermal Ageing of Rubbers and Model Gaskets Made of SKEP. Caoutchouc and Rubber. М., 1984. No. 8. P. 17-19.
21. Lepetov V. A. Rubber Products. L., 1976. 440 p.
22. Lepetov V. A., Yurtsev L. N. Calculations and Designing of Rubber Products and Production Accessories. М., 2009. 417 p.
23. New Prospective Hoses and Scarce and Commercially Inviable Rubbers, Ingredients and Materials: Recommendation No. 51-РМ-22/38/57/50-1050-83. М., 1983. 42 p.
24. Kornev A. E. et al. Technology of Elastomer Materials. М., 2009. 504 p.
25. Gerasimenko A. А. Protection of Machines from Biological Damages. M., 1984. 92 p.
26. Principles of Constructing Formulations and Using Rubbers for Rubber Products of Tropical Version: Recommendation No. 51-РМ-26-48-66. М., 1966. 56 p.
27. Assessment of Rubber Resistance to Damage by Thermites: Recommendation No. 51-РМ-4-622-75. М., 1975. 36 p.
28. Increasing Rubber Products Service Life in Conditions of Tropical Climate: Recommendation No. 51-РМ-4-697-76. М., 1976. 23 p.
29. Assessment of Rubber Resistance to Mould: Recommendation No. 51-РМ-4-407-73. М., 1976. 42 p.
Downloads: 43
Abstract views: 
896
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Columbus; Matawan; Baltimore; Plano; Miami; Ashburn; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Seattle; Seattle; Tappahannock; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Ashburn; Boardman26
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Canada Toronto; Toronto; Toronto; Monreale4
Finland Helsinki1
Unknown Hong Kong1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
13.1.2018 On Selection of Materials for Creation of Modern LV Thermostating System Mating Hoses
13.1.2018 On Selection of Materials for Creation of Modern LV Thermostating System Mating Hoses
13.1.2018 On Selection of Materials for Creation of Modern LV Thermostating System Mating Hoses
]]>
6.2.2019 Stabilization of gas reducers adjustment https://journal.yuzhnoye.com/content_2019_2-en/annot_6_2_2019-en/ Mon, 15 May 2023 15:45:44 +0000 https://journal.yuzhnoye.com/?page_id=27208
The error of output pressure regulation is evaluated using full differential of function, whose arguments (input pressure, flow rate, temperature) have scatter. The brief review of the designs of liquid and bimetal thermal compensators is presented, their advantages and disadvantages are described and the experience of reducers testing with regulating springs made of elinvar is analyzed.
]]>

6. Stabilization of gas reducers adjustment

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (2); 42-49

DOI: https://doi.org/10.33136/stma2019.02.042

Language: Russian

Annotation: The general information on gas pressure reducers, on their purpose in launch vehicles and spacecraft pneumohydraulic systems is set forth. The impact of different operating conditions on physical characteristics of these devices is considered. The main and auxiliary parametric characteristics of the reducer are presented and the physical process of gas pressure reduction in it is explained. The error of output pressure regulation is evaluated using full differential of function, whose arguments (input pressure, flow rate, temperature) have scatter. The reducer temperature curve is shown and the impact of structural temperature on the value of dynamic (with flow rate) and static (without flow rate) pressure in reducer output cavity is explained. The difference between the excess pressure reducer and absolute pressure reducer is shown. The brief review of the designs of liquid and bimetal thermal compensators is presented, their advantages and disadvantages are described and the experience of reducers testing with regulating springs made of elinvar is analyzed. Attention is focused on operating temperature and its impact on stability of reducer adjustment. The formulas that describe thermodynamic processes occurring in the reducer are presented. Special attention is given to the properties of regulating spring of the reducer because of change of elasticity modulus coefficient at different temperatures, the expected pressure scatter at reducer output is evaluated and the necessity of measures to reduce this error is explained. To compensate for temperature disturbance, the formula of gas pressure in closed volume of sensitive element is derived. The essence of original technique of pneumocorrection of initial pressure in sensitive element cavity that was proposed and introduced on Yuzhnoye SDO-developed reducers is set forth.

Key words: parametric characteristic, spring, elasticity modulus, thermal compensator, pneumocorrection

Bibliography:
1. Nazarova L. M., Utkin V. F., Titov S. M., Liseenko Y. I., Prisnyakov V. F., Gorbachev A. D. Klapany bortovykh system strategicheskykh raket i kosmicheskykh apparatov/ pod red. acad. M. K. Yangelya. M., 1969. 358 s.
2. Yermilov V. A., Nesterenko Y. V., Nikolaev V. G. Gazovye reduktory. L., 1981. 176 s.
3. Vygodskiy M. Y. Spravochnik po vyshey matematike. M., 1958. 783 s.
4. Golubev M. D. Gazovye regulyatory davleniya / pod red. prof. G. I. Voronina. M., 1964. 152 s.
5. Edelman A. I. Reduktory davleniya gaza. M., 1980. 167 s. https://doi.org/10.1097/00000542-198002000-00014
6. Khomyakov A. N., Trashutin A. I., Naidenova L. P. Analiz tipov (skhemnykh resheniy) reduktorov davleniya: techn. otchet №711-222/76 / KBU. Dnepropetrovsk, 1976. 50 s.

 

Downloads: 51
Abstract views: 
735
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Columbus; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Boydton; Boydton; Portland; San Mateo; San Mateo; Boydton; Boydton; Boydton; Boydton; Boydton; Boydton; Des Moines; Des Moines; Boardman; Ashburn; Ashburn30
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Canada Toronto; Toronto; Toronto; Toronto; Monreale5
Cambodia Phnom Penh1
Finland Helsinki1
India Chandigarh1
Germany Falkenstein1
Latvia Riga1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
6.2.2019 Stabilization of gas reducers adjustment
6.2.2019 Stabilization of gas reducers adjustment
6.2.2019 Stabilization of gas reducers adjustment

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
8.1.2023 Specificity of developing pyrobolts with low impact and vibration impulse responses https://journal.yuzhnoye.com/content_2023_1-en/annot_8_1_2023-en/ Fri, 12 May 2023 16:11:05 +0000 https://test8.yuzhnoye.com/?page_id=26992
The article proposes a new design concept of the interface that connects the pipeline of the ground thermal conditioning system to the orifice of the launch vehicle using the corrugated rubber hose composed of three basic parts, attached with the help of a metal lock/release assembly.
]]>

8. Specificity of developing pyrobolts with low impact and vibration impulse responses

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2023 (1); 70-76

DOI: https://doi.org/10.33136/stma2023.01.070

Language: Ukrainian

Annotation: One of the systems in the integrated launch vehicle responsible for prelaunch processing and launch is a ground thermal conditioning system, which supplies the low-pressure air into the launch vehicle’s “dry” compartments. Thermal conditioning system is mated with the launch vehicle, using the mating interfaces, proper functioning of which enhances reliability of the ground support equipment, the launch vehicle and the entire space launch system. The article describes key requirements to the interfaces of the thermal conditioning system and the drawbacks of the existing designs. The article proposes a new design concept of the interface that connects the pipeline of the ground thermal conditioning system to the orifice of the launch vehicle using the corrugated rubber hose composed of three basic parts, attached with the help of a metal lock/release assembly. The proposed solution provides reliable leaktightness, ease of operation, providing multiple connections to the launch vehicle, including at various angles, and automatic disconnection by rocket motion or manual removal in case of launch abort. Using rubber as a high-elasticity structural material to manufacture the hoses, enabled minimization of efforts required to disconnect the interface from the launch vehicle. In its high-elasticity state, rubber can absorb and dissipate mechanical energy within a wide range of temperatures, which prevents transmission of engine vibrations to the ground thermal conditioning system. The article presents key properties of rubber used as a structural material and its peculiarities to be considered during design of similar products. Unlike metal showing two types of deformation (elastic and plastic), rubber can exhibit three types of deformation (elastic, superelastic and plastic). In the process of interface design, we took into account two types of deformations (elastic and superelastic ones). Experimental studies of the interface showed its full compliance with technical specification.

Key words: orifice of the launch vehicle, corrugated rubber hose, lock/release assembly, superelastic deformation, leaktightness

Bibliography:
1. Pat. Ukrainy na korycnu model «Pirobolt» №138414. Shevtsov E.I., Voloshin V.V., Samoilenko I.D. Onofrienko V.I., Bezkorsiy D.M. MPK F42B 15/36, F42В 15/38, B64G 1/22 zayavnik ta patentovlasnik KB «Pivdenne». Byul. №22, 2019 r.
2. Galuzeviy standart «Pyrozamky. Metodika rozrakhunku» OST 92-9594-82, 24 ark.
3. Duplischeva O.M., Kononets P.I., Lisoviy A.M., Maschenko A.M., Mikhailov K.F., kand. tekhn. nauk Porubaimekh V.I., Sviridov V.M. Znizhennya vibroimpulsnykh navantazhen, scho vynykaut pid chas spratsyuvannya pyromechanismu. Kosmichna technika. Raketne ozbroennya: Zb. nauk.-techn. st. 2009. Vyp. 2. Dnipro: DP «KB «Pivdenne». 100 ark.
4. Bement L. J. and Schimmel M. L. A Manual for Pyrotechnic Design, Development and Qualification, NASA, NASA Technical Memorandum 110172, 1995.
5. Yanhua Li, Yuan Li, Xiaogan Li, Yuquan Wen, Huina Mu and Zhiliang Li. Identification of Pyrotechnic Shock Sources for Shear Type Explosive Bolt, Shock and Vibration Vol. 2017, Article ID 3846236, 9 p. https://doi.org/10.1155/2017/3846236
6. Yanhua Li, Jingcheng Wang, Shihui Xiong, Li Cheng, Yuquan Wen, and Zhiliang Li Numerical Study of Separation Characteristics of Piston-Type Explosive Bolt, Shock and Vibration, Vol. 2019, Article ID 2092796, 18 p. https://doi.org/10.1155/2019/2092796
Downloads: 11
Abstract views: 
880
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Phoenix; Columbus; Ashburn; Ashburn4
Canada Toronto; Toronto; Toronto3
Singapore Singapore; Singapore2
Germany Falkenstein1
Ukraine Kremenchuk1
8.1.2023 Specificity of developing pyrobolts with low impact and vibration impulse responses
8.1.2023 Specificity of developing pyrobolts with low impact and vibration impulse responses
8.1.2023 Specificity of developing pyrobolts with low impact and vibration impulse responses

Keywords cloud

]]>