Search Results for “metric lines” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 05 Nov 2024 20:23:10 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “metric lines” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight https://journal.yuzhnoye.com/content_2024_1-en/annot_5_1_2024-en/ Thu, 13 Jun 2024 06:00:42 +0000 https://journal.yuzhnoye.com/?page_id=34981
Protsedura otsenky poletnoy bezopasnosti raket-nositeley, ispolzuyuschaya geometricheskoe predstavlenie zony porazheniya obiekta v vide mnogougolnika. Procedure for evaluation of flight safety of launch vehicles, which uses geometric representation of object lesion zone in the form of a polygon. [Guidelines on elimination of large spillages of oxidizer NTO and fuel UDMH.
]]>

5. Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight

Page: Kosm. teh. Raket. vooruž. 2024, (1); 40-50

DOI: https://doi.org/10.33136/stma2024.01.040

Language: English

Annotation: Despite stringent environmental requirements, modern launch vehicles/integrated launch vehicles (LV/ILV) burn toxic propellants such as NTO and UDMH. Typically, such propellants are used in the LV/ILV upper stages, where a small amount of propellant is contained; however, some LV/ILV still use such fuel in all sustainer propulsion stages. For launch vehicles containing toxic rocket propellants, flight accidents may result in the failed launch vehicle falling to the Earth’s surface, forming large zones of chemical damage to people (the zones may exceed blast and fire zones). This is typical for accidents occurring in the first stage flight segment, when an intact launch vehicle or its components (usually individual stages) with rocket propellants will reach the Earth’s surface. An explosion and fire following such an impact will most likely lead to a massive release of toxicant and contamination of the surface air. An accident during the flight segment of the LV/ILV first stage with toxic rocket propellants, equipped with a flight termination system that implements emergency engine shutdown in case of detection of an emergency situation, has been considered. To assess the risk of toxic damage to a person located at a certain point, it is necessary to mathematically describe the zone within which a potential impact of the failed LV/ILV will entail toxic damage to the person (the so-called zone of dangerous impact of the failed LV/ILV). The complexity of this lies in the need to take into account the characteristics of the atmosphere, primarily the wind. Using the zone of toxic damage to people during the fall of the failed launch vehicle, which is proposed to be represented by a combination of two figures: a semicircle and a half-ellipse, the corresponding zone of dangerous impact of the failed LV/ILV is constructed. Taking into account the difficulties of writing the analytical expressions for these figures during the transition to the launch coordinate system and further integration when identifying the risk, in practical calculations we propose to approximate the zone of dangerous impact of the failed LV/ILV using a polygon. This allows using a known procedure to identify risks. A generalization of the developed model for identifying the risk of toxic damage to people involves taking into account various types of critical failures that can lead to the fall of the failed LV/ILV, and blocking emergency engine shutdown during the initial flight phase. A zone dangerous for people was constructed using the proposed model for the case of the failure of the Dnepr launch vehicle, where the risks of toxic damage exceed the permissible level (10–6). The resulting danger zone significantly exceeds the danger zone caused by the damaging effect of the blast wave. Directions for further improvement of the model are shown, related to taking into account the real distribution of the toxicant in the atmosphere and a person’s exposure to a certain toxic dose.

Key words: launch vehicle, critical failure, flight accident, zone of toxic damage to people, zone of dangerous impact of the failed launch vehicle, risk of toxic damage to people.

Bibliography:
  1. Hladkiy E. H. Protsedura otsenky poletnoy bezopasnosti raket-nositeley, ispolzuyuschaya geometricheskoe predstavlenie zony porazheniya obiekta v vide mnogougolnika. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2015. Vyp. 3. S. 50 – 56. [Hladkyi E. Procedure for evaluation of flight safety of launch vehicles, which uses geometric representation of object lesion zone in the form of a polygon. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2015. Issue 3. Р. 50 – 56. (in Russian)].
  2. Hladkiy E. H., Perlik V. I. Vybor interval vremeni blokirovki avariynogo vyklucheniya dvigatelya na nachalnom uchastke poleta pervoy stupeni. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-tech. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2011. Vyp. 2. s. 266 – 280. [Hladkyi E., Perlik V. Selection of time interval for blocking of emergency engine cut off in the initial flight leg of first stage. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2011. Issue 2. Р. 266 – 280. (in Russian)].
  3. Hladkiy E. H., Perlik V. I. Matematicheskie modeli otsenki riska dlya nazemnykh obiektov pri puskakh raket-nositeley. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2010. Vyp. 2. S. 3 – 19. [Hladkyi E., Perlik V. Mathematic models for evaluation of risk for ground objects during launches of launch-vehicles. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2010. Issue 2. P. 3 – 19. (in Russian)].
  4. NPAOP 0.00-1.66-13. Pravila bezpeki pid chas povodzhennya z vybukhovymy materialamy promyslovogo pryznachennya. Nabrav chynnosti 13.08.2013. 184 s [Safety rules for handling explosive substances for industrial purposes. Consummated 13.08.2013. 184 p.
    (in Ukranian)].
  5. AFSCPMAN 91-710 RangeSafetyUserRequirements. Vol. 1. 2016 [Internet resource]. Link : http://static.e-publishing.af.mil/production/1/afspc/publicating/
    afspcman91-710v1/afspcman91-710. V. 1. pdf.
  6. 14 CFR. Chapter III. Commercial space transportation, Federal aviation administration, Department of transportation, Subchapter C – Licensing, part 417 – Launch Safety, 2023 [Internet resource]. Link: http://law.cornell.edu/cfr/text/14/part-417.
  7. 14 CFR. Chapter III. Commercial space transportation, Federal aviation administration, Department of transportation, Subchapter C – Licensing, part 420 License to Operate a Launch Site. 2022 [Internet resource]. Link: http://law.cornell.edu/cfr/text/14/part-420.
  8. ISO 14620-1:2018 Space systems – Safety requirements. Part 1: System safety.
  9. 9 GOST 12.1.005-88. Systema standartov bezopasnosti truda. Obschie sanitarno-gigienicheskie trebovaniya k vozdukhu rabochei zony. [GOST 12.1.005-88. Labor safety standards system. General sanitary and hygienic requirements to air of working zone].
  10. 10 Rukovodyaschiy material po likvidatsii avarijnykh bolshykh prolivov okislitelya АТ (АК) i goruchego NDMG. L.:GIPKh, 1981, 172 s. [Guidelines on elimination of large spillages of oxidizer NTO and fuel UDMH. L.:GIPH, 1981, 172 p. (in Russian)].
  11. 11 Kolichestvennaya otsenka riska chimicheskykh avariy. Kolodkin V. M., Murin A. V., Petrov A. K., Gorskiy V. G. Pod red. Kolodkina V. M. Izhevsk: Izdatelskiy dom «Udmurtskiy universitet», 2001. 228 s. [Quantitative risk assessment of accident at chemical plant. Kolodkin V., Murin A., Petrov A., Gorskiy V. Edited by Kolodkin V. Izhevsk: Udmurtsk’s University. Publish house, 2001. 228 p. (in Russian)].
Downloads: 32
Abstract views: 
872
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Buffalo; Buffalo; Las Vegas; Chicago; Chicago; Saint Louis; Saint Louis; New York City; Buffalo; Buffalo; Buffalo; Buffalo; Los Angeles; Chicago; Dallas; New Haven; New Haven; Buffalo; Phoenix; Chicago; San Francisco; Los Angeles; San Francisco; Portland24
Germany Falkenstein; Falkenstein2
France1
Unknown1
China Shenzhen1
Romania1
Singapore Singapore1
Ukraine Kremenchuk1
5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight
5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight
5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight

Keywords cloud

]]>
23.2.2018 On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body https://journal.yuzhnoye.com/content_2018_2-en/annot_23_2_2018-en/ Thu, 07 Sep 2023 12:35:25 +0000 https://journal.yuzhnoye.com/?page_id=30813
configuration space of the body and corresponding metric lines of the space are considered. Idea of metric lines agrees with the concept of F. As a result metric lines of the configuration space under conditions of beam acceleration become polarized lines, generating vector information inertia field. According to the set forth unconventional approach the nature of the earth gravity is conditioned by the polarization of the radial metric lines of the circumterrestrial space. Key words: configuration space , modified method of sections , information and vacuum environment , metric lines , property of space reflection , polarization , scalar information field , vector information field Bibliography: 1. configuration space , modified method of sections , information and vacuum environment , metric lines , property of space reflection , polarization , scalar information field , vector information field .
]]>

23. On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 190-206

DOI: https://doi.org/10.33136/stma2018.02.190

Language: Russian

Annotation: Presented is the theoretical justification of the phenomenon of the inertia initiation under accelerated motion of the body, and gravity origin in the circumterrestrial space. There is no description of the physical nature of the inertia and gravity in the scientific publications. In the phenomenological approach under study, allowing for reflection properties of the space, earlier unknown interdependent information-physical link of the body and its mechanical particles with space under the accelerated motion was determined in the state of rest of the gravitation field as well as in the state of weightlessness. Alongside with the environment, eigenspace, i.e. configuration space of the body and corresponding metric lines of the space are considered. Idea of metric lines agrees with the concept of F. Wilczek, the American physicist, Nobel-Prize laureate, on the existence of the unobservable metric field in the real space. Solution of the problem rests on the example of the cantilever beam and mathematical model of the information reflection process, which for the first time takes into consideration previously unknown property of space reflection. Under the accelerated motion of the body reflection gains the acceleration vector dt d а     . In this case reflection manifests itself in the initiation of the beam of polarization vector under study   ~ in every point of the configuration space and is expressed as     ~ а . Value of the polarization vector equals the value of acceleration vector with negative sign. As a result metric lines of the configuration space under conditions of beam acceleration become polarized lines, generating vector information inertia field. Interaction of mechanical particles with the information inertia field in the configuration space generates physical inertia field of force, providing the real inertia under accelerated motion of the beam. (Relatively slow motion of bodies is studied as compared to the speed of light). According to the set forth unconventional approach the nature of the earth gravity is conditioned by the polarization of the radial metric lines of the circumterrestrial space. And polarization vector is directed to the center of the Earth and equals acceleration vector of the free fall with the same sign. Interaction of the body with specific mass with the vector information field of the Earth generates the physical force field of gravity. Article deals with the fundamental issues of theoretical physics and other fields of natural science. Materials of the conducted research are regarded as a potential scientific discovery.

Key words: configuration space, modified method of sections, information and vacuum environment, metric lines, property of space reflection, polarization, scalar information field, vector information field

Bibliography:
1. Vilchek F. Fine Physics. Mass, Ester and Unification of World Forces. Collection of publications, 2018. 336 p.
2. Sivukhin D. V. General Course of Physics. Vol. 1. М., 1989. 576 p.
3. Logunov А. А. Lectures on Relativity Theory and Gravitation. Modern Analysis of Problem. М., 1987. 272 p.
4. Feinman R., Layton R., Sands M. Feinman Lectures in Physics. Vol. 1. Modern Natural Science. The Laws of Mechanics. Vol. 2. Space. Time. Motion / Translation from English. М., 1976. 439 p.
5. Mulyar Y. M. On Stability of Compressed Rod. Technical mechanics. Dnepropetrovsk, 2000. No. 2. P. 51-57.
6. Mulyar Y. M., Perlik V. I. On Mathematical Model Representation of Information Field in Loaded Deformed System. Information and Telecommunication Technologies. М., 2012. No. 15. P. 61-74.
7. Vernadsky V. I. Reflections of Natural Scientist. Space and Time in Inanimate and Animate Nature. М., 1975. 173 p.
8. Ursul A. D. Reflection and Information. М., 1973. 231 p.
9. Vladimirov Y. S. Metaphysics. М., 2002. 550 p.
10. Author’s Certificate 181066 USSR. Energy Absorber / А. М. Buyanovsky, Y. М. Mulyar. Discoveries. Inventions. 1993. No. 15. P. 101.
11. Cacku M. Physics of Impossible / Translation from English. М., 2016. 456 p.
12. Proceedings of the International Scientific Conference “Problems of Ideality in Science”. М., 2001. 352 p.
13. Mulyar Y. M., Fyodorov V. M., Tryasuchev L. M. On the Impact of Initial Imperfections on Rod Stability Loss in Conditions of Axial Compression. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2017. Issue 1 (113). P. 48-58.
14. Dyomin A.I. Paradigm of Dualism. Space – Time, information – energy. М., 2007. 320 p.
15. Lisin A.I. Paradigm of Dualism. Ide: Reality of ideality. Part 1. М., 1999. 382 p.
Downloads: 38
Abstract views: 
1282
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Miami; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Columbus; Columbus; Ashburn; Seattle; Seattle; Portland; San Mateo; Des Moines; Boardman; Ashburn; Seattle22
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Unknown;2
India1
Finland Helsinki1
France1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
23.2.2018 On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body
23.2.2018 On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body
23.2.2018 On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body

Keywords cloud

]]>
22.2.2017 Advanced Aluminum Alloys for Launch Vehicle Pipeline Parts Manufacture https://journal.yuzhnoye.com/content_2017_2/annot_22_2_2017-en/ Wed, 09 Aug 2023 12:36:11 +0000 https://journal.yuzhnoye.com/?page_id=29944
The conclusions have been drawn about the principal feasibility of manufacturing the pipelines of given materials and replacing the steels with the high-strength aluminum alloys for majority of the parts. Sealing of Pipelines Flange Connections in Conditions of Fasteners Tightening Torgue Reducing / O. Preliminary Determination of Geometrical Dimensions of Bellows Made of Aluminum Alloys / О.
]]>

22. Advanced Aluminum Alloys for Launch Vehicle Pipeline Parts Manufacture

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Oles Honchar Dnipro National University, Dnipro, Ukraine2.

Page: Kosm. teh. Raket. vooruž. 2017 (2); 127-130

Language: Russian

Annotation: The comparison has been made of mechanical characteristics based on yield strength values of prospective aluminum alloys and steels with the stresses arising in pipeline parts. The conclusions have been drawn about the principal feasibility of manufacturing the pipelines of given materials and replacing the steels with the high-strength aluminum alloys for majority of the parts.

Key words:

Bibliography:
1. Davydov S. A. Analysis of Overall Dimensions of Launch Vehicle Pipeline Parts from Viewpoint of their Manufacturing by Method of Indirect Extrusion on Vertical Presses / S. A. Davydov, О. V. Bondarenko, Y. V. Tishchenko. System Designing and Analysis of Aerospace Hardware Characteristics: Collection of scientific works / Science Editor A. S. Davydov, Doctor of Engineering Science. Dnipropetrovsk, 2015. P. 23-28.
2. Alekseyev Y. S. Space Rocket Flying Vehicles Manufacturing Technology: Tutorial / Y. S. Alekseyev, E. O. Dzhur, О. V. Kulik, L. D. Kuchma, E. Y. Nikolenko, V. V. Khutorny / Under the editorship of E. O. Dzhur, Doctor of Engineering Science. Dnipropetrovsk, 2007. 480 p.
3. Birger I. A., Iosilevich B. G. Threaded and Flange Connections. М., 1990. 368 p.
4. Timoshenko S. P. Platelets and Shells / Translation from English V. I. Kontovt. М., L., 1948. 460 p.
5. GOST 19749-84. Fixed Detachable Connections of Pnemohydraulic Systems. Closed Regulating Valves. Types and Technical Requirements. М., 1984. 21 p. (USSR State Standards).
6. Bondarenko О. Sealing of Pipelines Flange Connections in Conditions of Fasteners Tightening Torgue Reducing / O. Bondarenko, A. Dziub. Applied Mechanics and Materials. Vol. 630 (2014). Switzerland: Trans tech Publications, 2014. P. 283-287.
7. Bondarenko O. V. Preliminary Determination of Geometrical Dimensions of Bellows Made of Aluminum Alloys / О. V. Bondarenko, Y. K. Demchenko. System Designing and Analysis of Aerospace Hardware Characteristics: Collection of scientific works / Science Editor A. S. Davydov, Doctor of Engineering Science. Dnipropetrovsk, 2016. P. 3-8.
Downloads: 36
Abstract views: 
642
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Miami; Columbus; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Ashburn; Boardman; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Boardman22
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro; Dnipro2
China Shanghai1
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
22.2.2017 Advanced Aluminum Alloys for Launch Vehicle Pipeline Parts Manufacture
22.2.2017 Advanced Aluminum Alloys for Launch Vehicle Pipeline Parts Manufacture
22.2.2017 Advanced Aluminum Alloys for Launch Vehicle Pipeline Parts Manufacture
]]>
5.2.2019 Features of the development testing of the propellants deposition inside the tanks of launch vehicles https://journal.yuzhnoye.com/content_2019_2-en/annot_5_2_2019-en/ Mon, 15 May 2023 15:45:40 +0000 https://journal.yuzhnoye.com/?page_id=27207
The propellant is moved to the supply lines by way of creating longitudinal acceleration which is done using inertial continuity ensuring means (thrusters). The theoretical calculations of hydrodynamic processes are connected with considerable mathematical difficulties caused by complexity of solving hydrodynamic problems of determination of liquid flowing with free surface taking into account surface tension of the liquid and many other geometrical, kinematic, and dynamic factors.
]]>

5. Features of the development testing of the propellants deposition inside the tanks of launch vehicles

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (2); 35-41

DOI: https://doi.org/10.33136/stma2019.02.035

Language: Russian

Annotation: When accomplishing the task of spacecraft orbital injection, the necessity arises of main engine multiple ignitions and consequently, long pauses between the ignitions are possible. As the propellant during pauses between ignitions is in the conditions of practically full absence of gravitation and can freely move over entire tank volume taking practically any spatial position, to ensure main engine guaranteed ignition the necessity arises to move the propellant into pre-start position. The propellant is moved to the supply lines by way of creating longitudinal acceleration which is done using inertial continuity ensuring means (thrusters). The time of full liquid displacement from one position into another is the most important parameter having an impact on propellant amount in the tanks and accordingly, on power characteristics of a stage. The theoretical calculations of hydrodynamic processes are connected with considerable mathematical difficulties caused by complexity of solving hydrodynamic problems of determination of liquid flowing with free surface taking into account surface tension of the liquid and many other geometrical, kinematic, and dynamic factors. Therefore, the most reliable data from solving these problems are currently obtained only on model hydrodynamic stands where it is possible to model liquid behavior in tanks in the conditions of variable gravitation. The paper presents the authors-developed procedure of calculating the full time required for propellant components deposition during rocket’s apogee stage flight and the procedure of selecting the modeling parameters (scale, time, and acсeleration) to ensure development testing in the conditions of limited test stand base. The use of the proposed procedure allows (in initial phase of launch vehicle development) determining the full time required to perform deposition with sufficient accuracy and thus optimizing the propellant mass required for operation of inertial continuity ensuring system, which in its turn, will allow increasing the payload mass to be injected.

Key words: propellant deposition, zero-gravity stand, hydrodynamic similarity, damping and separation

Bibliography:
1. Masica W. J., Petrash D. A. Motion of liquid-vapor interface in response to imposed acceleration. Lewis Research Center. NASA TN D-3005. 1965. 24 р.
2. Masica W. J., Petrash D. A., Otto E. W. Hydrostatic stability of liquid-vapor interface in the gravitational field. Lewis Research Center. NASA TN D-2267. 1964. 18 р.
3. Glyuk D. F., Jill D. P. Hydromechanika podachi topliva v dvigatelnoy systeme kosmicheskogo korablya v sostoyanii nevesomosti. Konstruirovanie i technologiya machinostroeniya. 1965. T. 87. S. 1–10.
4. Birdge G. V., Blackmon J. B. et al. Analiticheskiy podkhod k proektirovaniyusystem povtornoy zapravke na orbite. Sbornik perevodov. GONTI-4. 1970. S. 56–111.
5. Woss D. E., Hattis P. D. Problema upravleniya istecheniem v processe zapravki bakov Space Shuttle zhidkimi komponentami na okolozemnoy orbite. Astronavtika i raketodynamika. 1986. № 7. S. 8–19.
6. Sedykh I. V., Smolenskiy D. E. Eksperimentalnoe podtverzhdenie rabotosposobnosti capillyrnogo zabornogo ustroistva pri otdelenii kosmicheskogo apparata. Mekhanika gyroskopicheskikh system. 2017. № 33. S. 105–114.
7. Sedykh I. V., Smolenskiy D. E., Nazarenko D. S. Eksperimentalnoe podtverzhdenie rabotosposobnosti capillyrnogo zabornogo ustroistva (setchatogo razdelitelya) pri programmnom razvorote. Visn. Dnipr. un-tu. Ser.: Raketno-kosmichna tekhnika. 2018. Vyp. 21. T. 26. S. 112–119.
8. Garkusha V. A., Shevchenko B. A., Rada N. A., Prilukova L. V. Eksperimentalnaya otrabotka sredstv obespecheniya sploshnosti komponentov topliva kosmicheskykh letatelnykh apparatov: Obzor po materialam otkrytoy zarubezhnoy pechati za 1963–1983. Seria UP. № 235. GONTI-3. 1984. 38 s.
Downloads: 42
Abstract views: 
631
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Dublin; Ashburn; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Boardman; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn24
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Ukraine Dnipro; Dnipro2
Philippines1
Finland Helsinki1
Canada Monreale1
France Strasbourg1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
5.2.2019 Features of the development testing of the propellants deposition inside the tanks of launch vehicles
5.2.2019 Features of the development testing of the propellants deposition inside the tanks of launch vehicles
5.2.2019 Features of the development testing of the propellants deposition inside the tanks of launch vehicles

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>