Search Results for “motor starting operation” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 12:52:55 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “motor starting operation” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 10.1.2020 Calculation and selection of parameters for a propellant consumption diagram of dual-thrust main SRM https://journal.yuzhnoye.com/content_2020_1-en/annot_10_1_2020-en/ https://journal.yuzhnoye.com/?page_id=31037
2020, (1); 99-106 DOI: https://doi.org/10.33136/stma2020.01.099 Language: Russian Annotation: The main solid rocket motors of surface-to-air missiles and some short-range missiles have, as a rule, two operation modes – starting (augmented rating) and cruise (with decreased propellant consumption level).
]]>

10. Calculation and selection of parameters for a propellant consumption diagram of dual-thrust main SRM

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 99-106

DOI: https://doi.org/10.33136/stma2020.01.099

Language: Russian

Annotation: The main solid rocket motors of surface-to-air missiles and some short-range missiles have, as a rule, two operation modes – starting (augmented rating) and cruise (with decreased propellant consumption level). The methods to calculate intraballistic characteristics of such motors have a number of peculiarities, which set them apart from the methods of determining the characteristics of motors with constant propellant consumption level. The purpose of this article is to analyze such peculiarities, design methods, to find interrelation between the parameters of propellant consumption diagram, to determine the impact on the latter of motor design features and propellant characteristics. To achieve this goal, the method of analytical dependencies was developed. The equations obtained show that the required parameters of diagrams (including consumption-thrust characteristics difference between the starting and cruise modes) can be ensured due to varying either case diameter or propellant combustion rate or due to combined variation of these values. In practice, the cases are possible when for some reasons it does not seem possible to vary the case diameter or propellant combustion rate and the requirements to consumption diagram cannot be satisfied to the full extent. The task of motor developer in that case consists in determination of acceptable (alternative) propellant consumption diagrams that would be closest to required. The proposed method is based on calculation and construction of nomograms of dependencies of relative propellant consumption in cruse mode on relative time of starting leg at different propellant combustion rates and constant (required) case diameter and vice versa, at different values of case diameter and constant (available) propellant combustion rate. Using these nomograms, the rocket developer can determine the propellant consumption diagram acceptable for the rocket. In a number of cases, design limitations for separate main motor assemblies are imposed on consumption characteristic diagram that have an impact on its required parameters. The presented materials allow evaluating that impact and contain the proposals to remove it. The presented method allows quickly determining the conditions needed to fulfill required propellant combustion products consumption diagrams and in case of nonfulfillment of these conditions – allow presenting alternative options for selection of most acceptable one.

Key words: solid propellant charge mass, propellant combustion rate, combustion chamber pressure, operation time in starting and cruise modes, combustion chamber pressure difference

Bibliography:
1. K vyboru velichiny davliniia v kamere sgoraniia marshevykh RDTT: tekhn. otchet / GP “KB “Yuzhnoye”. Dnipro, 2017. 19 s.
2. Enotov V. G., Kushnir B. I., Pustovgarova Е. V. Avtomatizirovannaia proektnaia otsenka kharakteristik marshevykh dvigatelei na tverdom toplive s korpusom iz vysokoprochnykh metallicheskikh materialov takticheskikh i operativno-takticheskikh raket: ucheb.-metod. posobie / pod red. А. S. Kirichenko. Dnepropetrovsk, 2014. 72 s.
3. Sorkin R. Е. Gasotermodinamika raketnykh dvigatelei na tverdom toplive. М, 1967. 368 s.
Downloads: 34
Abstract views: 
1200
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Los Angeles; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Columbus; Ashburn; Boardman; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Boardman23
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Unknown Melbourne1
Finland Helsinki1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
10.1.2020  Calculation and selection of parameters for a propellant consumption diagram of dual-thrust main SRM
10.1.2020  Calculation and selection of parameters for a propellant consumption diagram of dual-thrust main SRM
10.1.2020  Calculation and selection of parameters for a propellant consumption diagram of dual-thrust main SRM

Keywords cloud

]]>
15.1.2019 Simulation of SMR Oscillations in Rig that Arise during Firing Bench Test https://journal.yuzhnoye.com/content_2019_1-en/annot_15_1_2019-en/ Wed, 24 May 2023 16:00:27 +0000 https://journal.yuzhnoye.com/?page_id=27720
Key words: elastic oscillations , motor starting operation , sudden loading , measurement of thrust , principle of superposition , initial thrust Bibliography: 1. elastic oscillations , motor starting operation , sudden loading , measurement of thrust , principle of superposition , initial thrust .
]]>

15. Simulation of SMR Oscillations in Rig that Arise during Firing Bench Test

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 102-108

DOI: https://doi.org/10.33136/stma2019.01.103

Language: Ukrainian

Annotation: This paper describes the firing rig test of the solid rocket motor, fastened to the rig in order to measure the thrust level. It is shown that when the motor enters the steady-state mode, the rig with solid rocket motor starts experiencing mechanical oscillations due to the sudden thrust build-up. Motion of the oscillating system is studied under the impact of the linearly or suddenly increasing impulse load. Mechanical oscillations damping is considered on the basis of the viscous friction model. Procedure of the analytical modeling of the damped oscillations is suggested for the complex pattern of the loading variations, based on the fundamental principle of superposition, according to which the motor displacement during the oscillating motion is considered as sum of displacements due to the impact of the impulsive, sudden and linearly increasing loadings. This procedure simulates different time variations of thrust as motor enters the steady-state mode. Oscillating motion with parameters of the oscillating system and thrust change with time option have been simulated as they were realized during the firing rig tests of one of the solid rocket motors. Simulated and experimental (thrust sensor readings) curves of the elastic force were compared, which showed the qualitative and quantitative conformity of the suggested model of oscillations to the actual oscillations of the solid rocket motor, installed in the rig during the firing rig test. Values of the initial thrust, initial impulse and other simulation parameters were updated, adjusting the simulated curve of the elastic force to the experimental one. It was concluded that simulation of the elastic oscillations of the solid rocket motor in the rig using the suggested analytical model will enable more reliable definition of the initial thrust of the motor and its time behavior, impulse loading due to the separation of the plug and used elements that separate with it. Application of the suggested procedure of motor oscillations simulation in the phase of rig design will enable more detailed prediction of the occurring processes as well as the estimation of parameters of the individual elements, units and rig as a whole.

Key words: elastic oscillations, motor starting operation, sudden loading, measurement of thrust, principle of superposition, initial thrust

Bibliography:

1. Beskrovniy I. B., Kirichenko A. S., Balitskiy I. P. i dr. Opyt predpriyatiya po proektirovaniyu i ekspluatatsii stapeley dlya ispytaniy RDTT / Kosmicheskaya technika. Raketnoye vooruzhenie: Sb. nauch.- techn. st. 2008. Vyp. 1. Dnepropetrovsk: GP KB «Yuzhnoye». P. 119–127.
2. Bidermann V. L. Teoria mechanicheskykh kolebaniy: Uchebnik dlya VUZov. M.: Vyssh. shk., 1980. 408 p.
3. Yablonskiy A. A., Noreyko S. S. Kurs teorii kolebaniy. Ucheb. Posobie dlya studentov VUZov. Izd. 3-e, ispr. i dop. M.: Vyssh. shk., 1975. 248 p.

Downloads: 34
Abstract views: 
822
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore;; Plano; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Boardman; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn20
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Belgium Brussels1
China Pekin1
Finland Helsinki1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
Russia Saint Petersburg1
Ukraine Dnipro1
15.1.2019 Simulation of SMR Oscillations in Rig that Arise during Firing Bench Test
15.1.2019 Simulation of SMR Oscillations in Rig that Arise during Firing Bench Test
15.1.2019 Simulation of SMR Oscillations in Rig that Arise during Firing Bench Test

Keywords cloud

]]>