Search Results for “nondestructive testing” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 12:34:34 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “nondestructive testing” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 20.2.2018 The Use of Special Devices during Launch Pad Development Testing https://journal.yuzhnoye.com/content_2018_2-en/annot_20_2_2018-en/ Thu, 07 Sep 2023 12:27:24 +0000 https://journal.yuzhnoye.com/?page_id=30805
The Use of Special Devices during Launch Pad Development Testing Authors: Fedenko B. This device enables to conduct static nondestructive tests on the launch pad in order to check its strength after manufacturing and during the whole operating period. Advantages of the pad loading device include low materials consumption, low cost in comparison with composite weights (with large load values), provision of the required modes for applying and removing the test load, controlled separate loading of each support of the launch pad, high mobility, short duration of testing, possibility of using launch pads of other rocket complexes with lower or equal test load values for testing.
]]>

20. The Use of Special Devices during Launch Pad Development Testing

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 173-177

DOI: https://doi.org/10.33136/stma2018.02.173

Language: Russian

Annotation: One of the tasks of the development tests conducted on a launch pad is verification of its strength properties. The tests are carried out after the launch pad was manufactured and assembled on-site as well as during the whole operating period (if necessary). Load mode was chosen in consideration of cost and possibility of providing the required loading conditions. Two modes of creating the required test load were examined: usage of weights with corresponding mass (load simulators) or special devises (which have smaller mass as compared with load simulators). The descriptions, basic characteristics, advantages and disadvantages of composite and bulk weights and pad loading device are given. This article studies the pad loading device under development. This device enables to conduct static nondestructive tests on the launch pad in order to check its strength after manufacturing and during the whole operating period. The device consists of the load-bearing frame, hydraulic system, locks, control system and measurement system. Advantages of the pad loading device include low materials consumption, low cost in comparison with composite weights (with large load values), provision of the required modes for applying and removing the test load, controlled separate loading of each support of the launch pad, high mobility, short duration of testing, possibility of using launch pads of other rocket complexes with lower or equal test load values for testing. Therefore, the pad loading device enables to achieve the required test load values while having considerably smaller dimensions and mass as compared with composite weights and bigger functional possibilities as compared with bulk weights. Small overall dimensions and operability reduce the number of needed personnel and equipment.

Key words: weight for testing, test load, loading device

Bibliography:
1. ISO 14625:2007. Space systems. Ground support equipment for use at launch, landing or retrieval sites. General requirement. Brought in 01.11.2007. 32 p.
2. Launch Vehicle Mass Dummy: Patent RU2491211 RF: MPK B64G 5/00, B64G 7/00, F42B 15/00 / Dneprotyazhmash. Published 27.08.2013. 12 p.
3. Method of Poles Static Testing and Poles Static Test Device: Patent RU2173747: RF E02D 33/00 / NPSF Fundamentspetstroy. Published 20.09.2001. 10 p.
4. ISO 16290:2013. Space systems. Definition of the Technology Readiness Levels (TRLs) and their criteria of assessment. Brought in 14.10.2013. 20 p.
Downloads: 37
Abstract views: 
840
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Miami; Phoenix; Monroe; Seattle; Columbus; Ashburn; Ashburn; Seattle; Portland; San Mateo; Des Moines; Boardman; Ashburn18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Germany;; Falkenstein3
Unknown;2
Finland Helsinki1
Japan1
Mongolia1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
20.2.2018 The Use of Special Devices during Launch Pad Development Testing
20.2.2018 The Use of Special Devices during Launch Pad Development Testing
20.2.2018 The Use of Special Devices during Launch Pad Development Testing

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
7.2.2019 On critical stress of the longitudinal stability of the stiffened cylindrical shells. Dynamic problem https://journal.yuzhnoye.com/content_2019_2-en/annot_7_2_2019-en/ Mon, 15 May 2023 15:45:47 +0000 https://journal.yuzhnoye.com/?page_id=27209
Key words: shell rigidity , dynamical problem , nondestructive testing Bibliography: 1. shell rigidity , dynamical problem , nondestructive testing .
]]>

7. On critical stress of the longitudinal stability of the stiffened cylindrical shells. Dynamic problem

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (2); 50-57

DOI: https://doi.org/10.33136/stma2019.02.050

Language: Russian

Annotation: New theoretical results were obtained in definition of the stability longitudinal stress of the stiffened cylindrical shells both with internal and external arrangement of the stiffened stacks. They were obtained due to application of the dynamic approach to the solution of the refined equilibrium equations, introduction of the Qfactor of the structural elements into the system of equations, definition and application of the forces and moments in the calculation, that act in the sections of the joint bending of the shell and elements of stiffening. Expressions are given, which define the process of stability loss, including parameters of wave generation and amplitude of shell oscillation from the moment of application of the axial compressive force P0 up to the moment of snap action. With dynamic approach to the solution of the problem of the shell’s longitudinal stability the achievement of the first zero frequency by one of the higher modes of bending oscillations of the shell will indicate the loss of stability under the impact of the axial compressive force P0. This process is most obvious during testing of the absolutely flexible shells, which permit multiple loading. In the initial step of shell loading with axial compressive force P0, high-frequency bending oscillations with m, n ˃˃ 1 modes and low amplitudes occur. With a rise in force P0 oscillation frequency begins to drop, and amplitude to increase, with oscillatory mode remaining unchanged. There is a snap action when zero frequency is achieved for the first time by one of the oscillatory modes. This fact allowed formulation of the basic principles of nondestructive method for estimation of the critical stability stress of the flight-ready shell, main point of which is in the comparison of the theoretical curve of the frequency drop due to force P0 action on the structure versus the actual curve of the frequency drop of the flight-ready structure under the impact of the same values of P0 in the elastic range.

Key words: shell rigidity, dynamical problem, nondestructive testing

Bibliography:
1. Kaplya P. G. K voprosu o kriticheskykh napryazheniyakh prodolnoy ustoichivosti gladkykh tsilendricheskikh obolochek. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauchn.- techn. st. / GP “KB “Yuzhnoye”. Dnepr, 2017. Vyp. 1. S. 8-17.
2. Kaplya P. G., Pinyagin V. D. K voprosu dinamiki podkreplennykh tsilendricheskikh obolochek. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauchn.- techn. st. / GP “KB “Yuzhnoye”. Dnepr, 2009. Vyp. 2. S. 59–73.
3. Timoshenko S. P. Ustoichivost’ sterzhney, plastin I obolochek. M., 1971. S. 257–259, 457–472.
4. Volmir A. S. Ustoichivost’ uprugykh system. M., 1963. S. 463–471, 491–495, 541.
5. Tikhonov V. I. Statisticheskaya radiotechnika. M., 1966. S. 112–115.
Downloads: 39
Abstract views: 
417
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore; Plano; Phoenix; Monroe; Ashburn; Seattle; Seattle; Seattle; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Des Moines; Boardman; Boardman; Ashburn; Ashburn22
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Unknown;2
China Shanghai1
Algeria Algiers1
Finland Helsinki1
Great Britain London1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
7.2.2019 On critical stress of the longitudinal stability of the stiffened cylindrical shells. Dynamic problem
7.2.2019 On critical stress of the longitudinal stability of the stiffened cylindrical shells. Dynamic problem
7.2.2019 On critical stress of the longitudinal stability of the stiffened cylindrical shells. Dynamic problem

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>