Search Results for “numerical and analytical methods” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 12:53:03 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “numerical and analytical methods” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 1.2.2019 Optimization of the trajectory of the antiaircraft guided missile https://journal.yuzhnoye.com/content_2019_2-en/annot_1_2_2019-en/ Sat, 16 Sep 2023 21:19:15 +0000 https://journal.yuzhnoye.com/?page_id=28723
The analytical solution cannot be obtained, therefore, according to modern tendencies, optimization by numerical method of original development was performed. The basis of the method is two-level optimization which is carried out, in turn, by two different numerical methods and for two different criteria functions.
]]>

1. Optimization of the trajectory of the antiaircraft guided missile

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (2); 3-10

DOI: https://doi.org/10.33136/stma2019.02.003

Language: Russian

Annotation: The article is devoted to optimization of a trajectory of the antiaircraft guided missile performed in design phase. The review of existing solutions on this issue confirmed the topicality of the problem. The analytical solution cannot be obtained, therefore, according to modern tendencies, optimization by numerical method of original development was performed. The basis of the method is two-level optimization which is carried out, in turn, by two different numerical methods and for two different criteria functions. At the top level, by method of random search and as a variant, by method of coordinate descent, the search was carried out for a fixed set of intermediate for the specified flight range trajectory points which co-ordinates in aggregate provide the necessary optimum. At the bottom level, for each pair of consecutive intermediate points, the boundary problem of falling into distant point by one-dimensional optimization was solved. The coordinate descent method was used for search for the simplified flight program. As optimization criteria for top level, minimum flight time or maximum final speed, for bottom  terminal criterion were used. The control program selected the angle of attack  program. As a result, the optimum and suboptimum (additionally ensuring minimum calculation time) trajectories and flight programs to maximum range and different altitudes were obtained. The analysis of results showed practical proximity of trajectories of minimum flight time and maximum final speed.

Key words: anti-aircraft missile, optimization, angle of attack program, trajectory

Bibliography:
1. Letov A. M. Dynamika poleta i upravlenie. M., 1969. 360 s.
2. Ushan’ V. N. Metod synteza optymalnykh traektoriy dlya vyvoda dynamicheskykh obiektov v zadannuyu tochku. Systemy obrobky informatsii. 2014. № 1 (117). S. 67-71.
3. Zarubinskaya A. L. Optimalnoe upravlenie dvizheniem letatelnykh apparatov v atmosfere ot starta do tochek vstrechi. Technicheskaya mekhanika. 1997. № 5. S. 23-28.
4. Grabchak V. I. Osnovni aspekty opysu zadachi pro optimalnu shvidkodiu keruvanny rukhom rakety. Systemy ozbroyennya i viyskova tekhnika. 2014. № 4(40). S. 13-20.
5. Shaw Y. Ong. Optimal Planar Evasive Aircraft Maneuvers Against Proportional Navigation Missiles. Journal of guidance, control and dynamics. 1996. Vol. 19, № 6. Р. 1210-1215. https://doi.org/10.2514/3.21773
6. Renjith R. Kumar. Near-Optimal Three-Dimensional Air-to-Air Missile Guidance Against Maneuvering Target. Journal of guidance, control and dynamics. 1995. Vol. 18, № 3. Р. 457-464. https://doi.org/10.2514/3.21409
7. Paul J. Enright. Conway Discrete Approximations to Optimal Trajectories Using Direct Transcription and Nonlinear Programming. Journal of guidance, control, and dynamics. 1992. Vol. 15, № 4. Р. 994-1002. https://doi.org/10.2514/3.20934
8. Craig A. Phillips. Trajectory Optimization for a Missile Using a Multitier Approach. Journal of Spacecraft and Rockets. 2000. Vol. 37, № 5. Р. 653-662. https://doi.org/10.2514/2.3614
9. Lebedev A. A., Gerasyuta N. F. Ballistila raket. M., 1970. 244 s.
10. Proektirovanie zenitnykh upravlyaemykh raket / I. I. Arkhangelskiy i dr.; pod red. I. S. Golubeva i V. G. Svetlova. M., 2001. 732 s.
11. Drakin I. I. Osnovy proektirovania letatelnykh apparatov s uchetom ekonomicheskoy effektivnosti. M., 1973. 224 s.
12. Beiko I. V., Bublik B. N., Zinko P. N. Metody i algoritmy resheniya zadach optimizatsii. K., 1983. 512 s.
13. Krinetskiy Ye. I. Systemy samonavedeniya. M., 1970. 236 s.
Downloads: 49
Abstract views: 
1886
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Matawan; Baltimore;; Boydton; Plano; Dublin; Ashburn; Los Angeles; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Boardman; Seattle; Seattle; Portland; San Mateo; San Mateo; Columbus; Des Moines; Des Moines; Boardman; Boardman; Ashburn30
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore10
Ukraine Odessa; Dnipro2
Finland Helsinki1
Unknown Hong Kong1
Canada Monreale1
Türkiye Istanbul1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
1.2.2019 Optimization of the trajectory of the antiaircraft guided missile
1.2.2019 Optimization of the trajectory of the antiaircraft guided missile
1.2.2019 Optimization of the trajectory of the antiaircraft guided missile

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
11.1.2020 Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies https://journal.yuzhnoye.com/content_2020_1-en/annot_11_1_2020-en/ Wed, 13 Sep 2023 10:51:08 +0000 https://journal.yuzhnoye.com/?page_id=31040
The primary attention is paid to the use of FEM-based direct numerical methods and the research results for which analytical methods can be useful for making a preliminary assessment of the bearing capacity of load-bearing structures, and in some cases for their rational design. Key words: numerical and analytical methods , stress-strain state , rocket structures , shell system , reinforcing load-bearing elements , local and general stability , machine learning technology Bibliography: 1. numerical and analytical methods , stress-strain state , rocket structures , shell system , reinforcing load-bearing elements , local and general stability , machine learning technology .
]]>

11. Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies

Organization:

Zaporizhzhia National University, Zaporizhzhia, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 107-113

DOI: https://doi.org/10.33136/stma2020.01.107

Language: Russian

Annotation: This article analyzes the results of studies, which are based on numerical methods of analysis, of the stress-strain state of thin-walled shell structures. This article also discusses analytical solutions that apply asymptotic approaches and a method of initial parameters in a matrix form for solving a problem of equal stability of reinforced compartments of combined shell systems of the rocket and space technology within the scope of the research being carried out jointly by teams of Yuzhnoye State Design Office and Zaporizhzhya National University. The primary attention is paid to the use of FEM-based direct numerical methods and the research results for which analytical methods can be useful for making a preliminary assessment of the bearing capacity of load-bearing structures, and in some cases for their rational design. This article does not contrast numerical and analytical approaches but about the possibility of using them effectively. The article talks about possible ways of using the up-to-date technique of machine learning (Machine Learning Technology) in the calculation and experimental methods for determining the characteristics of the rocket and space technology.

Key words: numerical and analytical methods, stress-strain state, rocket structures, shell system, reinforcing load-bearing elements, local and general stability, machine learning technology

Bibliography:
1. Jean-Jacques Rousseau. URL: https://www.sdamesse.ru/2019/03/blog-post_14.html.
2. Akimov D. V., Gristchak V. Z., Gomenjuk S. I., Grebenyk S. N., Lisniak А. А., Choporov S. V., Larionov I. F., Klimenko D. V., Sirenko V. N. Matematicheskoe modelirovanie i issledovanie prochnosti silovykh elementov konstruktsij kosmicheskikh letatelnykh apparatov. Visn. Zaporiz’koho nats. un-tu. Fiz.-mat. nauky. 2015. № 3. S. 6–13.
3. Akimov D. V., Gristchak V. Z., Gomenjuk S. I., Larionov I. F., Klimenko D. V., Sirenko V. N. Finite-element analysis and experimental investigation on the strength of a three-layered honeycomb sandwich structure of spacecraft adapter module. Strength of Materials. 2016. № 3. P. 52–57. https://doi.org/10.1007/s11223-016-9775-y
4. Akimov D. V., Larionov I. F., Klimenko D. V., Gristchak V. Z., Gomenjuk S. I. Matematicheskoe modelirovanie i issledovanie napriazhenno-deformirovannogo sostoianiia otsekov raket kosmicheskogo naznacheniia. Kosmicheskaya tekhnika. Raketnoe vooruzhenie: sb. nauch.-tekhn. st. GP «KB «Yuzhnoye». Dnipro, 2019. Vyp. 1. S. 21–27. https://doi.org/10.33136/stma2019.01.021
5. Yarevskii Ye. А. Teoreticheskie osnovy metodov kompiuternogo modelirovaniia: ucheb.-metod. posobie. Sankt-Peterburg, 2010. 83 S.
6. Klovanich S. F. Metod konechnykh elementov v nelineinykh zadachakh inzhenernoi mekhaniki. Zaporozhie, 2009. 394 S.
7. Akimov D. V., Gristchak V. Z., Larionov I. F., Gomenjuk S. I., Klimenko D. V., Choporov S. V., Grebenyk S. N. Matematicheskoe obespechenie analiza prochnosti silovykh elementov raketno-kosmicheskoi techniki. Problemy obchysliuvalnoi mekhaniky i mitsnosti konstruktsii: zb. nayk. prats. 2017. Vyp. 26. S. 5–21.
8. Akimov D. V., Gristchak V. Z., Gomenjuk S. I., Larionov I. F., Klimenko D. V., Sirenko V. N. Eksperimentalnoe issledovanie deformirovannogo sostoianiia i prochnosti mezhstupenchatogo otseka raketonositelia pri staticheskom vneshnem nagruzhenii. Novi materialy i technolohii v metalurhii ta mashynobuduvanni. 2016. №1. S. 82–89.
9. Akimov D. V., Gristchak V. Z., Grebenyk S. N., Gomenjuk S. I. Sravnitelnyi analiz metodik rascheta napriazhenno-deformirovannogo sostoianiia elementov konstruktsii raketonositelia. Novi materialy i technolohii v metalurhii ta mashynobuduvanni. 2016. № 2. S. 116–120.
10. Gristchak V. Z., Gomeniuk S. I., Grebeniuk S. N., Larionov I. F., Degtiarenko P. G., Akimov D. V. An Investigation of a Spacecraft’s Propellant Tanks Shells Bearing Strength. Aviation in XXI-st Century. Safety in Aviation and Space Technologies: Proccedings the Sixth world congress. Kiev, 2014. Vol. 1. Р. 1.14.49–1.14.51.
11. Gristchak V. Z., Manievich А. I. Vliianiie zhestkosti shpangoutov na izgib iz ploskosti na ustoichivost podkreplennoi tsilindricheskoi obolochki. Gidroaeromechanika i teoriia uprugosti. 1972. Vyp. 14. S. 121–130.
12. Gristchak V. Z., Diachenko N. M. Opredelenie oblastei ustoichivosti konicheskoi obolochki pri kombinirovanom nagruzhenii na baze gibridnogo asimptoticheskogo podkhoda. Visn. Zaporiz’koho nats. un-tu. Fiz.-mat. nauky. 2017. №2. S. 32–46. URL: http:// nbuv.gov.ua/UJRN/Vznu_mat_2017_2_6.
13. Dehtiarenko P. H., Gristchak V. Z., Gristchak D. D., Diachenko N. M. K probleme ravnoustojchivosti podkreplenoi obolochechnoi konstruktsii pri kombinirovannom nagruzhenii. Kosmicheskaia nauka I technologiia. 2019. Т. 25, № 6(121). S. 3–14.
14. Kononiuk А. Е. Fundamentalnaia teoriia oblachnykh technologij: v 18 kn. Kyiv, 2018. Kn. 1. 620 s.
15. URL: http://datareview.info/article/vse-modeli-mashinnogo-obucheniya-imeyut-svoi-nedostatki
16. Choporova О. V., Choporov S. V., Lysniak А. О. Vykorystannia mashynnoho navchannia dlia prohnozuvannia napruzheno-deformovannoho stanu kvadratnoi plastyny. Matematychne modeliuvannia fizychnykh I tekhnolohichnykh system. Visnyk KhNTU. 2019. № 2(69). S. 192–201.
Downloads: 39
Abstract views: 
1263
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Dublin; Phoenix; Monroe; Ashburn; Columbus; Ashburn; Seattle; Portland; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Ashburn21
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore10
Finland Helsinki1
Unknown1
Pakistan Bahawalpur1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
11.1.2020  Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies
11.1.2020  Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies
11.1.2020  Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies

Keywords cloud

]]>
6.1.2020 Mechanics of a satellite cluster. Methods for estimating the probability of their maximal approach in flight https://journal.yuzhnoye.com/content_2020_1-en/annot_6_1_2020-en/ Wed, 13 Sep 2023 06:19:43 +0000 https://journal.yuzhnoye.com/?page_id=31028
2020, (1); 57-75 DOI: https://doi.org/10.33136/stma2020.01.057 Language: Russian Annotation: The methods are proposed (analytical and numerical based on motion equations integration) to evaluate probability of first approaches to small distances of satellites of cluster uncontrolled in flight in long time intervals.
]]>

6. Mechanics of a satellite cluster. Methods for estimating the probability of their maximal approach in flight

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 57-75

DOI: https://doi.org/10.33136/stma2020.01.057

Language: Russian

Annotation: The methods are proposed (analytical and numerical based on motion equations integration) to evaluate probability of first approaches to small distances of satellites of cluster uncontrolled in flight in long time intervals. As the number of satellites injected into area of one base orbit grows, the necessity of evaluating such probability constantly increases – already at present their number in some cases exceeds hundred units. In flight, such satellites form in limited area of space rather compact cluster; the satellite density in such cluster exceeds by many orders the density of operating space objects at their functioning altitudes. Due to somewhat different satellite orbiting periods, the distances between them in flight direction continuously change, different precession motion of orbital planes determines their angular spread – approach in flight. It was determined that maximal probability of approach of whatever pair of satellites of cluster to small distances is the case if in some neighborhood of numbers of their flight orbits, simultaneously two events are realized – the satellites approach to minimal distances in flight direction and angular spread of their orb ital planes is close to zero. The conditions are determined of separation of whatever two satellites of cluster (their separation directions and velocities) – that ensure simultaneous realization of the above events in some neighborhood of number of flight orbits. The analytical relations were obtained that allow determining the corresponding numerical values of satellite approach parameters. For particular case – satellite separation at the equator – maximal probability of approach of two satellites of cluster to small distances is the case when their relative separation velocities are equal in flight direction and in perpendicular to this direction. For the option of injecting 12 satellites to the area of one base orbit of ~ 650 km altitude and  98 inclination, the parameters of satellites separation at the equator were determined that realize their uniform dispersion in the first orbits of autonomous flight. For 2 pairs (out of 66 formed for considered injection case) the conditions of maximal probability of their first approaches to small distances are realized. Using two developed methods evaluations of such probability were obtained.

Key words: mutually relative motion of the satellite cluster, sun-synchronous orbits, satellites approach probability

Bibliography:
1. Venttsel’ Е. S. Teoriia veroiatnostei. М., 1958. 464 s.
2. Gerasiuta N. F., Lebedev А. А. Ballistika raket. М., 1970. 244 s.
3. GOST 25645, 115-84. Model’ plotnosti dlia ballisticheskogo obespecheniia poletov ISZ. М., 1985.
4. Degtyarev A. V., Sheptun A. D. Proektno-ballisticheskie resheniia po gruppovym zapuskam kosmicheskikh apparatov v raion neskolkikh bazovykh orbit. Kosmicheskaia tekhnika. Raketnoe vooruzhenie. 2011. Vyp. 2. S. 37–51.
5. Degtyarev A. V., Sheptun A. D., Vorobiova I. A. Organizatsiia ravnomernogo raskhozhdeniia gruppirovki malykh sputnikov posle otdeleniia i ikh priemlemogo razneseniia na etapakh posleduiushchikh sblizhenii. Kosmichna nauka i tekhnologiia. 2016. № 3. S. 25–31. https://doi.org/10.15407/knit2016.03.025
6. Kugaenko B. V., Eliasberg P. E. Evoliutsiia pochti krugovykh orbit ISZ pod vliianiem zonalnykh garmonik. Kosmicheskie issledovaniia. 1968. Vyp. 2. S. 186–202.
7. Degtyarev O. V., Denysov V. І., Shchehol’ V. А., Degtyarenko P. H., Nesterov О. V., Mashtak І. V., Sheptun А. D., Avchynnikov І. K., Sirenko V. М., Tatarevsky K. Е. Sposib pidhotovky ta provedennia hrupovogo zapusky suputnykiv u kosmosi odniieiu paketoiu: pat. Ukrainy № 87290. Opubl. 10.02.2014.
8. Eliasberg P. E. Vvedenie v teoriiu poleta iskusstvennykh sputnikov Zemli. М., 1965. 540 s.
9. Eliasberg P. E. i dr. Dvizhenie iskusstvennykh sputnikov v gravitatsionnom pole Zemli. М., 1967. 299 s.
10. Degtyarev A., Vorobiova I., Sheptun A. Organization uniform dispersal for group of small satellites after their separation and acceptable spread at stages of their further approaches. Amer. J. Aerospace Eng. 2015. № 2. P. 36–42. https://doi.org/10.11648/j.ajae.20150205.11
11. Vorobiova I., Sheptun A. Organization uniform dispersal for group of small satellites after their separation and acceptable spread at stages of their further approaches. IAC-15-B4.5.11. Jerusalem, 2015. P. 4–9.
Downloads: 33
Abstract views: 
792
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; San Mateo; San Mateo; Des Moines; Boardman; Ashburn17
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
India Mumbai1
Cambodia Phnom Penh1
Finland Helsinki1
Unknown1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
6.1.2020 Mechanics of a satellite cluster. Methods for estimating the probability of their maximal approach in flight
6.1.2020 Mechanics of a satellite cluster. Methods for estimating the probability of their maximal approach in flight
6.1.2020 Mechanics of a satellite cluster. Methods for estimating the probability of their maximal approach in flight

Keywords cloud

]]>
15.2.2017 Oxidizer Feedline Structural Optimization Results https://journal.yuzhnoye.com/content_2017_2/annot_15_2_2017-en/ Wed, 09 Aug 2023 12:10:23 +0000 https://journal.yuzhnoye.com/?page_id=29846
2017 (2); 77-82 Language: Russian Annotation: Two design options of manifold and dividing valve are considered, the loss calculation by analytical and numerical methods has been made.
]]>

15. Oxidizer Feedline Structural Optimization Results

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (2); 77-82

Language: Russian

Annotation: Two design options of manifold and dividing valve are considered, the loss calculation by analytical and numerical methods has been made. Based on the calculation results, the optimal design option has been selected. The calculation correctness is confirmed as a result of development tests of the design.

Key words:

Bibliography:
1. Idel’chik I. E. Guide on Hydraulic Resistances / Under the editorship of M. O. Steinberg. 3rd edition revised and enlarged. М., 1992. 672 p.
2. Yan’shin B. I. Hydrodynamic Characteristics of Regulating Valves and Pipeline Elements. М., 1965. 259 p.
3. Gurevich D. F. Calculation and Designing of Pipeline Fittings: Calculation of Pipeline Fittings. 5th edition. М., 2008. 480 p.
4. Frenkel N. Z. Hydraulics. М., L., 1956. 451 p.
5. Reference Book on Hydraulics, Hydraulic Machines, and Hydraulic Actuators / Under the editorship of B. B. Nekrasov. Minsk, 1985.
6. Alyamovsky A. A. “Solid Works” Computer Modeling in Engineering Practice. Saint Petersburg, 2012. 445 p.
Downloads: 36
Abstract views: 
793
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Dublin; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Boardman; Seattle; Seattle; Tappahannock; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Boardman; Ashburn21
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Unknown; Hong Kong2
Ukraine Dnipro; Dnipro2
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
15.2.2017 Oxidizer Feedline Structural Optimization Results
15.2.2017 Oxidizer Feedline Structural Optimization Results
15.2.2017 Oxidizer Feedline Structural Optimization Results
]]>
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays https://journal.yuzhnoye.com/content_2019_1-en/annot_4_1_2019-en/ Thu, 25 May 2023 12:09:18 +0000 https://journal.yuzhnoye.com/?page_id=27709
As a result of analysis of the current situation with the stress-strain state studies of the complex configuration shell structures and mathematical support of the load-bearing capacity calculation of the aerospace structures, the following actual research trends can be singled out: 1) improvement of the methods of analytical estimation of the thin-walled structures’ strength and resistance; 2) improvement of the numerical methods of composite materials mechanical properties analysis; 3) development or application of the existing software packages and ADE-systems, automatizing stress-strain state analysis with visualization of the processes under study.
]]>

4. Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Zaporizhzhia National University, Zaporizhzhia, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2019, (1); 21-27

DOI: https://doi.org/10.33136/stma2019.01.021

Language: Russian

Annotation: This paper presents the overview and features of the stress-strain state analysis of the multilayer shell structures widely used in the design of the missile compartments. As a result of analysis of the current situation with the stress-strain state studies of the complex configuration shell structures and mathematical support of the load-bearing capacity calculation of the aerospace structures, the following actual research trends can be singled out: 1) improvement of the methods of analytical estimation of the thin-walled structures’ strength and resistance; 2) improvement of the numerical methods of composite materials mechanical properties analysis; 3) development or application of the existing software packages and ADE-systems, automatizing stress-strain state analysis with visualization of the processes under study. One of the most important steps of the third research trend is development of the initial data input media (setting the model parameters) and presentation of analysis results with account of the user interface visualization. The description of the mathematical simulation and experimental studies of the stress-strain state of the interstage bay made of carbon fiber sandwich structure is presented and short description of the structure condition after the tests is provided. Based on the analysis it can be concluded that development of the geometric simulation methods, taking into account the manufacturing deviations, is an independent problem from the point of view of practical applications in the aerospace technology.

Key words: sandwich structure, interstage bay, finite-element model, manufacturing deviations, test loads

Bibliography:

1. Vorovich I. I., Shlenev M. A. Plastiny I obolochki // Itogi nauki. Mechanika: Sbornik obzorov. M.: Nauka, 1963. P. 91–176.
2. Grigolyuk E. I., Kogan F. A. Sovremennoe sostoyanie teorii mnogosloynykh obolochek/ Prikladnaya mechanika. 972. T. 8, № 6. P. 3–17.
3. Grigolyuk E. I., Kulikov G.M. Razvitie obschego napravlenia v teorii mnogo – р max=630…651 kg/cm2/ Kosmicheskay technika. Raketnoe vooruzhenie. Space Technology. Missile Armaments. 2019. Vyp. 1 (117) 27 sloinykh obolochek/ Mechanika compositnykh materialov. 1972. T. 8, № 6. P. 3–17.
4. Grigorenko Ya. M., Vasilenko A. T., Pankratova N. D. K otsenke dopuscheniy teorii trekhsloinykh obolochek s zapolnitelem // Prikladnaya mechanika. 1984. T. 20, № 5. P. 19–25.
5. Dudchenko A. A., Lurie S. A., Obraztsov I. F. Anizotropnye mnogosloynye plastiny I obolochki / Itogi nauki I techniki. Mechanika deformiruemogo tverdogo tela. T. 15. M.: VINITI, 1983. P. 3–68.
6. Kurshin L. M. Obzor rabot po raschetu trekhsloynykh plastin I obolochek / Raschet prostranstvennykh konstruktsiy. Vyp. 1. M.: Gosstroyizdat, 1962. P. 163–192.
7. Noor A. K., Burton W. S., Bert C. W. Computational Models for Sandwich Panels and Shells / Applied Mechanics Reviews. 1996. Vol. 49, No 3. P. 155–199.
8. Piskunov V. G., Rasskazov A. O. Razvitie teorii cloistykh plastin I obolochek // Prikladnaya mechanika. 2002. T. 38, № 2. P. 22–56.
9. Grigorenko Ya. M., Budak V. D., Grigorenko O. Ya. Rozvyazannya zadach teorii bolonok na osnovi disrento –continualnykh metodiv: Navch. posib. Mykolaiv: Ilion, 2010. 294 p.
10. Carrera Е., Brischetto S. A Survey With Numerical Assessment of Classical and Refined Theories for the Analysis of Sandwich Plates // Applied Mechanics Reviews. 2009. Vol. 62, No 1. P. 1–17.
11. Grigolyuk E. I. Uravnenia trekhsloinykh obolochek s legkim zapolnitelem // Izv. AN SSSR. Otdelenie tekhnicheskikh nauk. 1957. № 1. P. 77–84.
12. Ambartsumyan S. A. Teoria anizotropnykh plastin: Prochnost’, ustoichivost’ i kolebania. M.: Nauka, 1987. 360 p.
13. Carrera Е. Historical review of Zig-Zag theories for multilayered plates and shells / Applied Mechanics Reviews. 2003. Vol. 56, No 3. P. 287–308.
14. Teichman F. K., Wang C.-T. Finite deflections of Curved Sandwich Cylinders. Sherman M. Fairchild Publ. Fund. Inst. Aero. Sci. Paper FF-4. Institute of the Astronautical Sciences, 1951. P. 14.
15. Teichman F. K., Wang C.-T., Gerard G. Buckling of Sandwich Cylinders under Axial Compression / Journal of the Aeronautical Sciences. 1951. Vol. 18, No 6. P. 398–406.
16. Vinson J. R. Sandwich Structures / Applied Mechanics Reviews. 2001. Vol. 54, No 4. P. 201–214.
17. Lin J., Fei Y., Zhihua W., Longmao Z. A numerical simulation of metallic cylindrical sandwich shells subjected to air blast loading / Latin American Journal of Solids and Structures. 2013. Vol. 10. P. 631–645.
18. Wu J., Pan L. Nonlinear theory of multilayer sandwich shells and its application (I) – general theory // Applied Mathematics and Mechanics. 1997. Vol. 18, No 1. P. 19–27.
19. Xu J., Wang C., Liu R. Nonlinear stability of truncated shallow conical sandwich shell with variable thickness / Applied Mathematics and Mechanics. 2000. Vol. 21, No 9. P. 977–986.
20. Komissarova G. L., Klyuchnikova V. G., Nikitenko V. N. K otsenke predelov primenimosti priblizhennykh teoriy sloistykh plastin// Prikladnaya mechanika. 1979. T. 15, № 6. P. 131–134.
21. Khalili S. M. R., Kheirikhah M. M., Malekzadeh Fard K. Buckling analysis of composite sandwich plates with flexible core using improved high-order theory / Mechanics of Advanced Materials and Structures. 2015. Vol. 22, No 4. P. 233–247.
22. Kien T. N., Tai H. T., Thuc P. V. A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates / Steel and Composite Structures. 2015. Vol. 18, No 1. P. 91–120.
23. Gorshkov A. G., Starovoitov E. I., Yarovaya A. V. Mechanika sloistykh vyazkouprugoplasticheskikh elementov konstruktsiy. М.: Fizmatlit, 2005. 576 p.
24. Chumachenko Ye. N., Polyakova T. V., Aksenov A. S. i dr. Matematicheskoe modelirovanie v nelineinoy mechanike: Obzor programmnykh complexov dlya resheniya zadach modelirovania slozhnykh system, Pr-2155. M.: Institut kosmicheskykh issledovaniy RAN, 2009. 44 p.
25. Opyt i novye tekhnologii inzhenernogo analiza v interesakh kosmosa: press-reliz / I. Novikov / GNKTs im. M. V. Khrunicheva. Rezhim dostupa: www.khrunichev.ru/ main.php?id=18mid=2132.

Downloads: 40
Abstract views: 
1005
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; North Bergen; Plano; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Ashburn18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Unknown Brisbane;;3
Germany Frankfurt am Main; Frankfurt am Main; Falkenstein3
Canada; Monreale2
Netherlands Amsterdam; Amsterdam2
Finland Helsinki1
Romania Voluntari1
Ukraine Dnipro1
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>