Search Results for “optimization” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 13:02:12 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “optimization” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 1.2.2019 Optimization of the trajectory of the antiaircraft guided missile https://journal.yuzhnoye.com/content_2019_2-en/annot_1_2_2019-en/ Sat, 16 Sep 2023 21:19:15 +0000 https://journal.yuzhnoye.com/?page_id=28723
Optimization of the trajectory of the antiaircraft guided missile Authors: Izhko V. 2019, (2); 3-10 DOI: https://doi.org/10.33136/stma2019.02.003 Language: Russian Annotation: The article is devoted to optimization of a trajectory of the antiaircraft guided missile performed in design phase. The analytical solution cannot be obtained, therefore, according to modern tendencies, optimization by numerical method of original development was performed. The basis of the method is two-level optimization which is carried out, in turn, by two different numerical methods and for two different criteria functions. At the bottom level, for each pair of consecutive intermediate points, the boundary problem of falling into distant point by one-dimensional optimization was solved. As optimization criteria for top level, minimum flight time or maximum final speed, for bottom  terminal criterion were used. Key words: anti-aircraft missile , optimization , angle of attack program , trajectory Bibliography: 1.
]]>

1. Optimization of the trajectory of the antiaircraft guided missile

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (2); 3-10

DOI: https://doi.org/10.33136/stma2019.02.003

Language: Russian

Annotation: The article is devoted to optimization of a trajectory of the antiaircraft guided missile performed in design phase. The review of existing solutions on this issue confirmed the topicality of the problem. The analytical solution cannot be obtained, therefore, according to modern tendencies, optimization by numerical method of original development was performed. The basis of the method is two-level optimization which is carried out, in turn, by two different numerical methods and for two different criteria functions. At the top level, by method of random search and as a variant, by method of coordinate descent, the search was carried out for a fixed set of intermediate for the specified flight range trajectory points which co-ordinates in aggregate provide the necessary optimum. At the bottom level, for each pair of consecutive intermediate points, the boundary problem of falling into distant point by one-dimensional optimization was solved. The coordinate descent method was used for search for the simplified flight program. As optimization criteria for top level, minimum flight time or maximum final speed, for bottom  terminal criterion were used. The control program selected the angle of attack  program. As a result, the optimum and suboptimum (additionally ensuring minimum calculation time) trajectories and flight programs to maximum range and different altitudes were obtained. The analysis of results showed practical proximity of trajectories of minimum flight time and maximum final speed.

Key words: anti-aircraft missile, optimization, angle of attack program, trajectory

Bibliography:
1. Letov A. M. Dynamika poleta i upravlenie. M., 1969. 360 s.
2. Ushan’ V. N. Metod synteza optymalnykh traektoriy dlya vyvoda dynamicheskykh obiektov v zadannuyu tochku. Systemy obrobky informatsii. 2014. № 1 (117). S. 67-71.
3. Zarubinskaya A. L. Optimalnoe upravlenie dvizheniem letatelnykh apparatov v atmosfere ot starta do tochek vstrechi. Technicheskaya mekhanika. 1997. № 5. S. 23-28.
4. Grabchak V. I. Osnovni aspekty opysu zadachi pro optimalnu shvidkodiu keruvanny rukhom rakety. Systemy ozbroyennya i viyskova tekhnika. 2014. № 4(40). S. 13-20.
5. Shaw Y. Ong. Optimal Planar Evasive Aircraft Maneuvers Against Proportional Navigation Missiles. Journal of guidance, control and dynamics. 1996. Vol. 19, № 6. Р. 1210-1215. https://doi.org/10.2514/3.21773
6. Renjith R. Kumar. Near-Optimal Three-Dimensional Air-to-Air Missile Guidance Against Maneuvering Target. Journal of guidance, control and dynamics. 1995. Vol. 18, № 3. Р. 457-464. https://doi.org/10.2514/3.21409
7. Paul J. Enright. Conway Discrete Approximations to Optimal Trajectories Using Direct Transcription and Nonlinear Programming. Journal of guidance, control, and dynamics. 1992. Vol. 15, № 4. Р. 994-1002. https://doi.org/10.2514/3.20934
8. Craig A. Phillips. Trajectory Optimization for a Missile Using a Multitier Approach. Journal of Spacecraft and Rockets. 2000. Vol. 37, № 5. Р. 653-662. https://doi.org/10.2514/2.3614
9. Lebedev A. A., Gerasyuta N. F. Ballistila raket. M., 1970. 244 s.
10. Proektirovanie zenitnykh upravlyaemykh raket / I. I. Arkhangelskiy i dr.; pod red. I. S. Golubeva i V. G. Svetlova. M., 2001. 732 s.
11. Drakin I. I. Osnovy proektirovania letatelnykh apparatov s uchetom ekonomicheskoy effektivnosti. M., 1973. 224 s.
12. Beiko I. V., Bublik B. N., Zinko P. N. Metody i algoritmy resheniya zadach optimizatsii. K., 1983. 512 s.
13. Krinetskiy Ye. I. Systemy samonavedeniya. M., 1970. 236 s.
Downloads: 49
Abstract views: 
1884
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Matawan; Baltimore;; Boydton; Plano; Dublin; Ashburn; Los Angeles; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Boardman; Seattle; Seattle; Portland; San Mateo; San Mateo; Columbus; Des Moines; Des Moines; Boardman; Boardman; Ashburn30
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore10
Ukraine Odessa; Dnipro2
Finland Helsinki1
Unknown Hong Kong1
Canada Monreale1
Türkiye Istanbul1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
1.2.2019 Optimization of the trajectory of the antiaircraft guided missile
1.2.2019 Optimization of the trajectory of the antiaircraft guided missile
1.2.2019 Optimization of the trajectory of the antiaircraft guided missile

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
16.1.2020 Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations https://journal.yuzhnoye.com/content_2020_1-en/annot_16_1_2020-en/ Wed, 13 Sep 2023 11:18:27 +0000 https://journal.yuzhnoye.com/?page_id=31052
The methodology applied in this work makes it possible to qualitatively evaluate the gas-dynamic effect of combustion products jets on gas duct for subsequent optimization of its design.
]]>

16. Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 149-154

DOI: https://doi.org/10.33136/stma2020.01.149

Language: Russian

Annotation: Launch vehicle lift-off is one of the most critical phases of the whole mission requiring special technical solutions to ensure trouble-free and reliable launch. A source of increased risk is the intense thermal and pressure impact of rocket propulsion jet on launch complex elements and on rocket itself. The most accurate parameters of this impact can be obtained during bench tests, which are necessary to confirm the operability of the structure, as well as to clarify the parameters and configuration of the equipment and systems of complex. However, full-scale testing is expensive and significantly increases the development time of the complex. Therefore, a numerical simulation of processes is quite helpful in the design of launch complexes. The presented work contains simulation of liquid rocket engine combustion products jet flowing into the gas duct at the rocket lift-off, taking into account the following input data: the parameters of propulsion system, geometric parameters of launch complex elements, propulsion systems nozzles and gas duct. A three-dimensional geometric model of the launch complex, including rocket and gasduct, was constructed. The thermodynamic parameters of gas in the engine nozzle were verified using NASA CEA code and ANSYS Fluent. When simulating a multicomponent jet, the equations of conservation of mass, energy, and motion were solved taking into account chemical kinetics. The three-dimensional problem was solved in ANSYS Fluent in steady-state approach, using Pressure-based solver and RANS k-omega SST turbulence model. The calculation results are the gas-dynamic and thermodynamic parameters of jets, as well as distribution of gas-dynamic parameters at nozzle exit, in flow and in boundary layer at gas duct surface. The methodology applied in this work makes it possible to qualitatively evaluate the gas-dynamic effect of combustion products jets on gas duct for subsequent optimization of its design.

Key words: liquid rocket engine, combustion products, multicomponent flow, ANSYS Fluent

Bibliography:
1. Bonnie J. McBride, Sanford Gordon. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. II. Users Manual and Program Descriptions: NASA Reference Publication 1311. 1996.
2. Ten-See Wang. Thermophysics Characterization of Kerosene Combustion. Journal of Thermophysics and Heat Transfer. 2001. № 2, Vol. 15. P. 140–147. https://doi.org/10.2514/2.6602
3. Maas U., Warnatz J. Ignition Processes in Carbon-Monoxide-Hydrogen-Oxygen Mixtures: Twenty-Second Symposium (International) on Combustion. The Combustion Institute, 1988. P. 1695–1704. https://doi.org/10.1016/S0082-0784(89)80182-1
4. Timoshenko V. I. Teoreticheskiie osnovy tekhnicheskoj gazovoj dinamiki. Kiev, 2013. S. 154–155.
Downloads: 41
Abstract views: 
1625
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Dublin; Dublin; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Ashburn; Portland; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Boardman22
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro; Kyiv; Dnipro3
Unknown;2
Germany; Falkenstein2
Belgium Brussels1
Finland Helsinki1
France Paris1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
16.1.2020  Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations
16.1.2020  Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations
16.1.2020  Parameters of the supersonic jet of a block propulsion system, flowing into a gas duct, considering chemical kinetics of gas-cycle transformations

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles https://journal.yuzhnoye.com/content_2018_2-en/annot_19_2_2018-en/ Thu, 07 Sep 2023 12:23:58 +0000 https://journal.yuzhnoye.com/?page_id=30801
Practice of Optimization of Signal-Noise Ratio at ACP Connection in Real Conditions.
]]>

19. Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 157-172

DOI: https://doi.org/10.33136/stma2018.02.157

Language: Russian

Annotation: The measurement errors upon conducting flight tests for launch vehicles are evaluated by considering the interferences and uncertainties in the measurement system procedure. Formal use of this approach can lead to unpredictable consequences. More reliable evaluation of errors upon conducted measurements can be achieved if the measurement process is regarded as a procedure of successive activities for designing, manufacturing, and testing the measurement system and the rocket including measurements and their processing during the after-flight analysis of the received data. The sampling rates of the main controlled parameters are three to ten times higher than the frequency range of their changing. Therefore, it is possible to determine the characteristics of the random error components directly on the basis of registered data. The unrevealed systematic components create the basic uncertainty in the evaluation of the examined parameter’s total measurement error. To evaluate the precision and measurement accuracy of a particular launch, the article suggests specifying the preliminary data on measurement error components determined during prelaunch processing and launch. Basic structures of algorithms for evaluation of precision and measurement accuracy for certain mathematical models that form the measured parameters were considered along with the practical case when static correlation existed among the measured parameters.

Key words: flight tests, sensor, measurement error, mathematical model

Bibliography:
1. Novitsky P. V., Zograf I. A. Evaluation of Measurement Errors. L., 1985. 248 p.
2. Shmutzer E. Relativity Theory. Modern Conception. Way to Unity of Physics. М., 1981. 230 p.
3. Blekhman I. I., Myshkis A. D., Panovenko Y. G. Applied Mathematics: Subject, Logic, Peculiarities of Approaches. К., 1976. 270 p.
4. Moiseyev N. N. Mathematical Problems of System Analysis. М., 1981. 488 p.
5. Bryson A., Ho Yu-Shi. Applied Theory of Optimal Control. М., 1972. 544 p.
6. Yevlanov L. G. Monitoring of Dynamic Systems. М., 1972. 424 p.
7. Sergiyenko A. B. Digital Signal Processing: Collection of publications. 2011. 768 p.
8. Braslavsky D. A., Petrov V. V. Precision of Measuring Devices. М., 1976. 312 p.
9. Glinchenko A. S. Digital Signal Processing: Course of lectures. Krasnoyarsk, 2008. 242 p.
10. Garmanov A. V. Practice of Optimization of Signal-Noise Ratio at ACP Connection in Real Conditions. М., 2002. 9 p.
11. Denosenko V. V., Khalyavko A. N. Interference Protection of Sensors and Connecting Wires of Industrial Automation Systems. SТА. No. 1. 2001. P. 68-75.
12. Garmanov A. V. Connection of Measuring Instruments. Solution of Electric Compatibility and Interference Protection Problems. М., 2003. 41 p.
13. TP ACS Encyclopedia. bookASUTR.ru.
14. Smolyak S. A., Titarenko B. P. Stable Estimation Methods. М., 1980. 208 p.
15. Fomin A. F. et al. Rejection of Abnormal Measurement Results. М., 1985. 200 p.
16. Medich J. Statistically Optimal Linear Estimations and Control. М., 1973. 440 p.
17. Sage E., Mells J. Estimation Theory and its Application in Communication and Control. М., 1976. 496 p.
18. Filtration and Stochastic Control in Dynamic Systems: Collection of articles / Under the editorship of K. T. Leondes. М., 1980. 408 p.
19. Krinetsky E. I. et al. Flight Tests of Rockets and Spacecraft. М., 1979. 464 p.
20. Viduyev N. G., Grigorenko A. G. Mathematical Processing of Geodesic Measurements. К., 1978. 376 p.
21. Aivazyan S. A., Yenyukov I. S., Meshalkin L. D. Applied Statistics. Investigation of Dependencies. М., 1985. 487 p.
22. Sirenko V. N., Il’yenko P. V., Semenenko P. V. Use of Statistic Approaches in Analysis of Gas Dynamic Parameters in LV Vented Bays. Space Technology. Missile Armaments: Collection of scientific-technical articles. Issue 1. P. 43-47.
23. Granovsky V. A., Siraya T. N. Methods of Experimental Data Processing at Measurements. L., 1990. 288 p.
24. Zhovinsky A. N., Zhovinsky V. N. Engineering Express Analysis of Random Processes. М., 1979. 112 p.
25. Anishchenko V. A. Control of Authenticity of Duplicated Measurements in Uncertainty Conditions. University News. Minsk, 2010. No. 2. P. 11-18.
26. Anishchenko V. A. Reliability and Accuracy of Triple Measurements of Analog Technological Variables. University News. Minsk, 2017. No. 2. P. 108-117.
27. Shenk H. Theory of Engineering Experiment. М., 1972. 381 p.
28. Bessonov А. А., Sverdlov L. Z. Methods of Statistic Analysis of Automatic Devices Errors. L., 1974. 144 p.
29. Pugachyov V. N. Combined Methods to Determine Probabilistic Characteristics. М., 1973. 256 p. https://doi.org/10.21122/1029-7448-2017-60-2-108-117
30. Gandin L. S., Kagan R. L. Statistic Methods of Meteorological Data Interpretation. L., 1976. 360 p.
31. Zheleznov I. G., Semyonov G. P. Combined Estimation of Complex Systems Characteristics. М., 1976. 52 p.
32. Vt222М Absolute Pressure Sensor: ТU Vt2.832.075TU. Penza, 1983.
Downloads: 37
Abstract views: 
1038
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Miami; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Portland; San Mateo; Des Moines; Boardman; Ashburn21
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Indonesia Jakarta1
China Shanghai1
Finland Helsinki1
Unknown1
Great Britain London1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Belarus Hrodna1
Ukraine Dnipro1
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs https://journal.yuzhnoye.com/content_2018_2-en/annot_12_2_2018-en/ Thu, 07 Sep 2023 11:38:27 +0000 https://journal.yuzhnoye.com/?page_id=30770
Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs Authors: Aksyonenko A. The structure of the mathematical model was given along with the calculation sequence of criterion functional that was used for optimization of design parameters, control programs and basic characteristics of the guided missile. Complex Task of Optimization of Space Rocket Basic Design Parameters and Motion Control Programs. Methodological Support for Selection of Launch Vehicle Configuration, Optimization of Design Parameters and Flight Control Programs. Optimization of Super-Light Launch Vehicle Design Parameters. Flight Control Optimization and Thrust Optimization of Controllable Rocket Object Main Propulsion System. On Problem of Optimization of Design Parameters and Control programs of a Rocket Object With Solid Rocket Motor. Complex Task of Optimization of Super-Light Solid-Propellant Launch Vehicle Design Parameters and Control Programs.
]]>

12. Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2018 (2); 101-116

DOI: https://doi.org/10.33136/stma2018.02.101

Language: Russian

Annotation: The main scientific and methodological propositions for designing single-stage guided missiles with main solid rocket motors that are intended for delivering payload to the given spatial point with required and specified kinematic motion parameters are defined. The aim of the article is to develop methodology for the early design phase to improve the basic characteristics of guided missiles, including formalization of complex problem to optimize design parameters, trajectory parameters and motion control programs for guided missiles capable of flying along the ballistic, aeroballistic or combined trajectories. The task is defined as a problem of the optimal control theory with limitations in form of equality, inequality and differential constraints. An approach to program forming is proposed for motion control in the form of polynomial that brings the problem of the optimal control theory to a simpler problem of nonlinear mathematical programming. When trajectory parameters were calculated the missile was regarded as material point of variable mass and the combined equations for center-of-mass motion of the guided missile with projections on axes of the terrestrial reference system were used. The structure of the mathematical model was given along with the calculation sequence of criterion functional that was used for optimization of design parameters, control programs and basic characteristics of the guided missile. The mathematical model of the guided missile provides adequate accuracy for design study to determine: overall dimensions and mass characteristics of the guided missile in general and its structural components and subsystems; power, thrust and consumption characteristics of the main engine; aerodynamic and ballistic characteristics of the guided missile. The developed methodology was tested by solving design problems. Applications of the developed program were studied to present the research results in a user-friendly form.

Key words: complex problem of the optimal control theory, problem of nonlinear mathematical programming, main solid rocket motor, limitations for motion parameters and basic characteristics of the object

Bibliography:
1. Degtyarev A. V. Rocket Engineering: Problems and Prospects. Selected scientific-technical publications. Dnepropetrovsk, 2014. 420 p.
2. Shcheverov D. N. Designing of Unmanned Aerial Vehicles. М., 1978. 264 p.
3. Sinyukov А. М. et al. Ballistic Solid-Propellant Rocket / Under the editorship of A. M. Sinyukov. М., 1972. 511 p.
4. Varfolomeyev V. I. Designing and Testing of Ballistic Rockets / Under the editorship of V. I. Varfolomeyev, M. I. Kopytov. М., 1970. 392 p.
5. Vinogradov V. A., Grushchansky V. A., Dovgodush S. I. et al. Effectiveness of Complex Systems. Dynamic Models. М., 1989. 285 p.
6. Il’ichyov A. V., Volkov V. D., Grushchansky V. A. Effectiveness of Designed Complex Systems’ Elements. М., 1982. 280 p.
7. Krotov V. F., Gurman V. I. Methods and Problems of Optimal Control. М., 1973. 446 p.
8. Pontryagin L. S. et al. Mathematical Theory of Optimal Processes. М., 1969. 385 p.
9. Tarasov E. V. Algorithms of Flying Vehicles Optimal Designing. М., 1970. 364 p.
10. Alpatov A. P., Sen’kin V. S. Complex Task of Optimization of Space Rocket Basic Design Parameters and Motion Control Programs. Technical Mechanics. 2011. No. 4. P. 98-113.
11. Alpatov A. P., Sen’kin V. S. Methodological Support for Selection of Launch Vehicle Configuration, Optimization of Design Parameters and Flight Control Programs. Technical Mechanics. 2013. No. 4. P. 146-161.
12. Sen’kin V. S. Optimization of Super-Light Launch Vehicle Design Parameters. Technical Mechanics. 2009. No. 1. P. 80-88.
13. Sen’kin V. S. Flight Control Optimization and Thrust Optimization of Controllable Rocket Object Main Propulsion System. Technical Mechanics. 2000. No. 1. P. 46-50.
14. Syutkina-Doronina S. V. On Problem of Optimization of Design Parameters and Control programs of a Rocket Object With Solid Rocket Motor. Aerospace Engineering and Technology. 2017. No. 2 (137). P. 44-59.
15. Lebedev А. А., Gerasyuta N. F. Rocket Ballistics. М., 1970. 244 p.
16. Razumov V. F., Kovalyov B. K. Design Basis of Solid-Propellant Ballistic Missiles. М., 1976. 356 p.
17. Yerokhin B. T. SRM Theoretical Design Basis. М., 1982. 206 p.
18. Abugov D. I., Bobylyov V. M. Theory and Calculation of Solid Rocket Motors. М., 1987. 272 p.
19. Shishkov А. А. Gas Dynamics of Powder Rocket Motors. М., 1974. 156 p.
20. Sen’kin V. S. Complex Task of Optimization of Super-Light Solid-Propellant Launch Vehicle Design Parameters and Control Programs. Technical Mechanics. 2012. No. 2. P. 106-121.
21. Methodological Support to Determine in Initial Designing Phase the Design Parameters, Control Programs, Ballistic, Power, and Mass-Dimensional Characteristics of Controllable Rocket Objects Moving In Aeroballistic Trajectory: R&D Report. ITM of NASU and SSAU, Yuzhnoye SDO. Inv. No. 40-09/2017. 2017. 159 p.
Downloads: 41
Abstract views: 
798
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Matawan; Baltimore; Plano; Miami; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Ashburn; Ashburn23
Unknown; Brisbane;;4
Ukraine Kharkiv; Dnipro; Dnipro; Kyiv4
Singapore Singapore; Singapore; Singapore; Singapore4
Germany Frankfurt am Main; Falkenstein2
Finland Helsinki1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs

Keywords cloud

]]>
23.2.2017 Optimization Technique for Mass of Locally Loaded Rocket Bays with Wafer Structure https://journal.yuzhnoye.com/content_2017_2/annot_23_2_2017-en/ Wed, 09 Aug 2023 12:39:28 +0000 https://journal.yuzhnoye.com/?page_id=29948
Optimization Technique for Mass of Locally Loaded Rocket Bays with Wafer Structure Authors: Danchenko V. 2017 (2); 131-136 Language: Russian Annotation: The paper addresses a new, authors- developed method of mass optimization of rocket bays of wafer structure bearing during operation on locally disposed parking supports. (2017) "Optimization Technique for Mass of Locally Loaded Rocket Bays with Wafer Structure" Космическая техника. "Optimization Technique for Mass of Locally Loaded Rocket Bays with Wafer Structure" Космическая техника. quot;Optimization Technique for Mass of Locally Loaded Rocket Bays with Wafer Structure", Космическая техника. Optimization Technique for Mass of Locally Loaded Rocket Bays with Wafer Structure Автори: Danchenko V. Optimization Technique for Mass of Locally Loaded Rocket Bays with Wafer Structure Автори: Danchenko V. Optimization Technique for Mass of Locally Loaded Rocket Bays with Wafer Structure Автори: Danchenko V.
]]>

23. Optimization Technique for Mass of Locally Loaded Rocket Bays with Wafer Structure

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (2); 131-136

Language: Russian

Annotation: The paper addresses a new, authors- developed method of mass optimization of rocket bays of wafer structure bearing during operation on locally disposed parking supports. The method allows, due to more rational distribution of materials in the structure in accordance with acting load, decreasing the mass of bays by up to 20%.

Key words:

Bibliography:
1. Linnik A. K. Designing of Liquid Ballistic Missiles Cases. Dnepropetrovsk, 1994. P. 65-66.
2. Lizin V. T., Pyatkin V. A. Designing of Thin-Wall Structures. М., 1985. P. 14, 93.
3. Dzhur E. A., Vdovin S. I. et al. Space Rockets Manufacturing Technology. Dnepropetrovsk, 1992. P. 35, 36.
4. Patent 112339 Ukraine, MPK FD2 K 9/32 (2006.1), FD2 K 9/60 (2006/1), ВG4 G 1/22 (2006.1). Method of Manufacturing Lightweight Prints of Locally Loaded Wafer Structure / V. G. Danchenko, E. I. Shevtsov, V. V. Gusev (Ukraine); Applicant and holder Yuzhnoye SDO. No. а 201408785; Claimed 04.08.2014; Published 25.08.2016, Bulletin No. 16.
Downloads: 35
Abstract views: 
996
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore;; Columbus; Columbus; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Boardman; Boardman23
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Dnipro; Dnipro2
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
23.2.2017 Optimization Technique for Mass of Locally Loaded Rocket Bays with Wafer Structure
23.2.2017 Optimization Technique for Mass of Locally Loaded Rocket Bays with Wafer Structure
23.2.2017 Optimization Technique for Mass of Locally Loaded Rocket Bays with Wafer Structure
]]>
21.2.2017 Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft https://journal.yuzhnoye.com/content_2017_2/annot_21_2_2017-en/ Wed, 09 Aug 2023 12:32:56 +0000 https://journal.yuzhnoye.com/?page_id=29940
Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft Authors: Husarova I. 2017 (2); 121-126 Language: Russian Annotation: The paper considers the TZS-U design developed by Yuzhnoye SDO specialists for windward part of reusable spacecraft with external metal three-layer panel, U-like joint and tiled thermal protection, in which the problem is solved of compensation of thermal expansions and sealing of gaps; for optimization of structural mass. (2017) "Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft" Космическая техника. "Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft" Космическая техника. quot;Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft", Космическая техника. Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft Автори: Husarova I.
]]>

21. Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Oles Honchar Dnipro National University, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2017 (2); 121-126

Language: Russian

Annotation: The paper considers the TZS-U design developed by Yuzhnoye SDO specialists for windward part of reusable spacecraft with external metal three-layer panel, U-like joint and tiled thermal protection, in which the problem is solved of compensation of thermal expansions and sealing of gaps; for optimization of structural mass. The specially created dispersion-hardened powder alloy based on nichrome and aluminum with yttrium dioxide with decreased specific mass of 7500 kg/m3 and lighter felt of MKRF brand are used , and honeycomb filler of three-layer panel is replaced by the filler with square cell.

Key words:

Bibliography:
1. Aerothermal performance and structural integrity of a René-41 thermal protection system at Mach 6.6 / W. D. Deveikis, R. Miserentino, I. Weinstein, J. L. Schideler. NASA-TN-D-7943, NASA, Washington DC. 1975. 105 р.
2. Poteet C. C., Blosser M. L. Improving Metallic Thermal-Protection-System Hypervelocity Impact Resistance Through Numerical Simulation. Journal of Spacecraft and Rockets. 2004. Vol. 41, No. 2. Р. 221-232.
3. Advanced metallic thermal protection system development / M. L. Blosser, R. R. Chen, I. H. Schmidt et al. AIAA-2002-0504; AIAA, Washington DC. 2002. 56 р.
4. David E. European Directions for Hypersonic Thermal Protection Systems and Hot Structures. 31st Annual Conference on Composite Materials and Structures (Daytona Beach, FL, January 22, 2007). 44 р.
5. Gusarova I. A. Selection of Scheme of Heat Protection Tile Attachment to Reusable Spacecraft Body. Problems of Designing and Manufacturing Flying Vehicle Structures. 2016. No. 4 (88). P. 105-113.
6. Gusarova I. A. Evaluation of Thermal Resistance of Three-Layer Honeycomb Panel Produced from YuIPM-1200 Alloy by Method of Diffusion Welding in Vacuum / I. A. Gusarova, М. Parko, А. М. Potapov, Y. V. Fal’chenko, L. V. Petrushinets, Т. V. Melnichenko, V. E. Fedorchuk. Automatic Welding. 2016. No. 12 (759). P. 31-35.
7. Patent 108096 Ukraine. Method of Producing Heat-Resistant Alloy Based on Nichrome / V. V. Skorokhod, V. P. Solntsev, G. O. Frolov, Т. O. Solntseva, О. М. Potapov, V. G. Tikhiy, I. A. Gusarova, Y. M. Litvinenko / Application No. а2012 11691; Claimed 04.10.2012; Published 25.03.2015, Bulletin No. 6. 4 p.
Downloads: 33
Abstract views: 
514
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Dublin; Columbus; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Tappahannock; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Boardman; Ashburn19
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro; Dnipro2
Unknown Sidney1
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
21.2.2017 Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft
21.2.2017 Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft
21.2.2017 Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft
]]>
20.2.2017 Research Support for Development of Launch Vehicle Payload Unit Composite Load-Bearing Compartments https://journal.yuzhnoye.com/content_2017_2/annot_20_2_2017-en/ Wed, 09 Aug 2023 12:26:27 +0000 https://journal.yuzhnoye.com/?page_id=29866
Basic parameters’ optimization concept for composite nose fairings of launchers / V. Optimization of Cyclone-4 Launch Vehicle Payload Fairing Design Parameters / V. Mass Optimization of Launch Vehicle Payload Fairing Irregular Zones.
]]>

20. Research Support for Development of Launch Vehicle Payload Unit Composite Load-Bearing Compartments

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Kharkiv Aviation Institute, Kharkiv, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (2); 112-120

Language: Russian

Annotation: Some main results of scientific support of development of launch vehicle head module composite loadbearing bays are presented. The methodology is proposed for developing these units. By the example of payload fairing and interstage bay of Cyclone-4 launch vehicle, high efficiency is shown of proposed methodology implementation when selecting their rational design and technological parameters.

Key words:

Bibliography:
1. Degtyarev A. V. Rocket Technology. Problems and Prospects. Selected scientific-technical publications. Dnepropetrovsk, 2014. 420 p.
2. Kovalenko V. A., Kondrat’yev A. V. Use of Polymer Composite Materials in Space Rockets as Reserve of Increasing their Mass and Functional Effectiveness. Aerospace Engineering and Technology. 2011. No. 5 (82). P. 14-20.
3. Kondrat’yev A. V. et al. Analysis of Nomenclature of Type Composite Units of Space Rockets and Structural Schemes Applied for them / A. V. Kondrat’yev, A. G. Dmitrenko, K. D. Stenile, А. А. Tsaritsynsky. Problems of Designing and Manufacturing Flying Vehicle Structures: Collection of scientific works of N. E. Zhukovsky Aerospace University “KhAI”. Issue 3 (79). Kharkiv, 2014. P. 19 – 30.
4. Potapov A. M. et al. Comparison of Payload Fairings of Existing and Prospective Domestic Launch Vehicles and their Foreign Analogs / А. М. Potapov, V. A. Kovalenko, A. V. Kondrat’yev. Aerospace Engineering and Technology. 2015. No. 1(118). P. 35 – 43.
5. Gaidachuk A. V. et al. Methodology of Developing Effective Design and Technological Solutions of Space Rocketry Composite Units: Monography in 2 volumes. Vol. 2. Synthesis of Space Rocketry Composite Units Parameters at Heterogeneous Loading / A. V. Gaidachuk, V. E. Gaidachuk, A. V. Kondrat’yev, V. A. Kovalenko, V. V. Kirichenko, А. M. Potapov / Under the editorship of A. V. Gaidachuk. Kharkiv, 2016. 250 p.
6. Gaidachuk A. V. et al. Methodology of Developing Effective Design and Technological Solutions of Space Rocketry Composite Units: Monography in 2 volumes. Vol. 1. Creation of Space Rocketry Units with Specified Quality of Polymer Composite Materials / A. V. Gaidachuk, V. E. Gaidachuk, A. V. Kondrat’yev, V. A. Kovalenko, V. V. Kirichenko, А. M. Potapov / Under the editorship of A. V. Gaidachuk. Kharkiv, 2016. 263 p.
7. Smerdov A. A. Development of Methods to Design Space Rocketry Composite Materials and Structures: Dissertation of Doctor of Engineering Science: 05.07.02, 05.02.01. М., 2007. 410 p.
8. Slyvyns’kyy V. et al. Basic parameters’ optimization concept for composite nose fairings of launchers / V. Slyvyns’kyy, V. Gajdachuk, V. Kirichenko, A. Kondratiev. 62nd International Astronautical Congress, IAC 2011 (Cape Town, 3-7 October 2011). Red Hook, NY: Curran, 2012. Vol. 9. P. 5701-5710.
9. Gaidachuk V. E. et al. Optimization of Cyclone-4 Launch Vehicle Payload Fairing Design Parameters / V. E. Gaidachuk, V. I. Slivinsky, A. V. Kondrat’yev, A. P. Kushnar’ov, Effectiveness of Honeycomb Structures in Aerospace Products: Proceedings of III International Scientific-Practical Conference (Dnepropetrovsk, 27-29 May 2009). Dnepropetrovsk, 2009. P. 88 – 95.
10. Zinov’yev A. M. et al. Design and Technological Solution and Carrying Capacity of Cyclone-4 Launch Vehicle Interstage Bay Made of Polymer Composite Materials / А. М. Zinov’yev, А. P. Kushnar’ov, A. V. Kondrat’yev, А. М. Potapov, А. P. Kuznetsov, V. A. Kovalenko. Aerospace Engineering and Technology. 2013. No. 3 (100). P. 46-53.
11. Karpov Y. S. Connection of Parts and Units Made of Composite Materials: Monography. Kharkiv, 2006. 359 p.
12. Kondrat’yev A. V. Mass Optimization of Launch Vehicle Payload Fairing Irregular Zones. Problems of Designing and Manufacturing Flying Vehicle Structures: Collection of scientific works of N. E. Zhukovsky Aerospace University “KhAI”. Issue 47 (4). Kharkiv, 2006. P. 126 – 133.
13. Degtyarev A. V. et al. Evaluation of Carrying Capacity of Launch Vehicle Bays Separation System Composite Fitting / A. V. Degtyarev, A. P. Kushnar’ov, V. V. Gavrilko, V. A. Kovalenko, А. V. Kondrat’yev, А. М. Potapov. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2013. Issue 1. P. 18-21.
14. Patent 81537 UA, MPK (2013.01) F42B 15/36 (2006.01) B64D 1/00 Fitting of Rocket’s Three-Layer Shell / О. М. Zinov’yev, О. P. Kuznetsov, V. V. Gavrilko, О. М. Potapov, V. O. Kovalenko et al.; Applicant and patent holder NVF Dniprotechservice, Yuzhnoye SDO. No. u 2012 11210; Claimed 27.09.2012; Published 10.07.13, Bulletin 13. 4 p.
15. Zinov’yev A. M. et al. Manufacturing Technology of Cyclone-4 Launch Vehicle Experimental Large-Sized Interstage Bay Made of Carbon Plastics / А. M. Zinov’yev, А. P. Kushnar’ov, А. V. Kondrat’yev, А. М. Potapov, А. P. Kuznetsov, V. A. Kovalenko. Problems of Designing and Manufacturing Flying Vehicle Structures: Collection of scientific works of N. E. Zhukovsky Aerospace University “KhAI”. Issue 2 (74). Kharkiv, 2013. P. 7 – 17.
16. Zinov’yev A. M. et al. Static Tests of Cyclone-4 Launch Vehicle Experimental Interstage Bay Made of Carbon Plastic / А. М. Zinov’yev, А. P. Kushnar’ov, А. V. Kondrat’yev, А. М. Potapov, А. P. Kuznetsov, V. A. Kovalenko. Aerospace Engineering and Technology. 2013. No. 4(101). P. 28-35.
Downloads: 44
Abstract views: 
1187
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Ashburn; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Boardman24
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore13
China Shanghai1
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
20.2.2017 Research Support for Development of Launch Vehicle Payload Unit Composite Load-Bearing Compartments
20.2.2017 Research Support for Development of Launch Vehicle Payload Unit Composite Load-Bearing Compartments
20.2.2017 Research Support for Development of Launch Vehicle Payload Unit Composite Load-Bearing Compartments
]]>
15.2.2017 Oxidizer Feedline Structural Optimization Results https://journal.yuzhnoye.com/content_2017_2/annot_15_2_2017-en/ Wed, 09 Aug 2023 12:10:23 +0000 https://journal.yuzhnoye.com/?page_id=29846
Oxidizer Feedline Structural Optimization Results Authors: Veskov E. (2017) "Oxidizer Feedline Structural Optimization Results" Космическая техника. "Oxidizer Feedline Structural Optimization Results" Космическая техника. quot;Oxidizer Feedline Structural Optimization Results", Космическая техника. Oxidizer Feedline Structural Optimization Results Автори: Veskov E. Oxidizer Feedline Structural Optimization Results Автори: Veskov E. Oxidizer Feedline Structural Optimization Results Автори: Veskov E. Oxidizer Feedline Structural Optimization Results Автори: Veskov E.
]]>

15. Oxidizer Feedline Structural Optimization Results

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (2); 77-82

Language: Russian

Annotation: Two design options of manifold and dividing valve are considered, the loss calculation by analytical and numerical methods has been made. Based on the calculation results, the optimal design option has been selected. The calculation correctness is confirmed as a result of development tests of the design.

Key words:

Bibliography:
1. Idel’chik I. E. Guide on Hydraulic Resistances / Under the editorship of M. O. Steinberg. 3rd edition revised and enlarged. М., 1992. 672 p.
2. Yan’shin B. I. Hydrodynamic Characteristics of Regulating Valves and Pipeline Elements. М., 1965. 259 p.
3. Gurevich D. F. Calculation and Designing of Pipeline Fittings: Calculation of Pipeline Fittings. 5th edition. М., 2008. 480 p.
4. Frenkel N. Z. Hydraulics. М., L., 1956. 451 p.
5. Reference Book on Hydraulics, Hydraulic Machines, and Hydraulic Actuators / Under the editorship of B. B. Nekrasov. Minsk, 1985.
6. Alyamovsky A. A. “Solid Works” Computer Modeling in Engineering Practice. Saint Petersburg, 2012. 445 p.
Downloads: 36
Abstract views: 
793
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Dublin; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Boardman; Seattle; Seattle; Tappahannock; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Boardman; Ashburn21
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Unknown; Hong Kong2
Ukraine Dnipro; Dnipro2
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
15.2.2017 Oxidizer Feedline Structural Optimization Results
15.2.2017 Oxidizer Feedline Structural Optimization Results
15.2.2017 Oxidizer Feedline Structural Optimization Results
]]>
16.2.2016 Method of Coefficient for Optimization and Analysis of Operating State of Fine Filter Cases https://journal.yuzhnoye.com/content_2016_2-en/annot_16_2_2016-en/ Tue, 06 Jun 2023 12:05:36 +0000 https://journal.yuzhnoye.com/?page_id=28333
Method of Coefficient for Optimization and Analysis of Operating State of Fine Filter Cases Authors: Satokin V. (2016) "Method of Coefficient for Optimization and Analysis of Operating State of Fine Filter Cases" Космическая техника. "Method of Coefficient for Optimization and Analysis of Operating State of Fine Filter Cases" Космическая техника. quot;Method of Coefficient for Optimization and Analysis of Operating State of Fine Filter Cases", Космическая техника. Method of Coefficient for Optimization and Analysis of Operating State of Fine Filter Cases Автори: Satokin V. Method of Coefficient for Optimization and Analysis of Operating State of Fine Filter Cases Автори: Satokin V. Method of Coefficient for Optimization and Analysis of Operating State of Fine Filter Cases Автори: Satokin V. Method of Coefficient for Optimization and Analysis of Operating State of Fine Filter Cases Автори: Satokin V.
]]>

16. Method of Coefficient for Optimization and Analysis of Operating State of Fine Filter Cases

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2016 (2); 98-101

Language: Russian

Annotation: The problem of numerical simulation of operating condition of Thermostating System fine filter casings is considered. A method of coefficient, allowing for optimal functioning, is discovered and proven. Investigation was conducted in the finite element analysis package ANSYS.

Key words:

Bibliography:
Downloads: 38
Abstract views: 
428
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Matawan; Baltimore; Plano; Miami; Columbus; Monroe; Ashburn; Ashburn; Seattle; Tappahannock; Portland; Portland; San Mateo; Des Moines; Des Moines; Boardman; Boardman; Ashburn; Boardman21
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro; Dnipro2
Finland Helsinki1
Unknown1
France1
Mongolia1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
16.2.2016 Method of Coefficient for Optimization and Analysis of Operating State of Fine Filter Cases
16.2.2016 Method of Coefficient for Optimization and Analysis of Operating State of Fine Filter Cases
16.2.2016 Method of Coefficient for Optimization and Analysis of Operating State of Fine Filter Cases
]]>
26.1.2019 New Technologies and Problems of Their Introducing in Ukraine https://journal.yuzhnoye.com/content_2019_1-en/annot_26_1_2019-en/ Wed, 24 May 2023 16:01:10 +0000 https://journal.yuzhnoye.com/?page_id=27731
The cost analysis is considered as the most effective optimization method at selection of optimal design and manufacturing technology for its possible implementation at the company. Key words: additive technologies , software products , optimization , quality Bibliography: 1. additive technologies , software products , optimization , quality .
]]>

26. New Technologies and Problems of Their Introducing in Ukraine

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 182-187

DOI: https://doi.org/10.33136/stma2019.01.182

Language: Russian

Annotation: The process of introducing new technologies at Yuzhnoye SDO requires major changes of aerospace products designing methods and project management methods, which allows realizing new opportunities, reducing manufacturing expenses with simultaneous increase of products quality. New software products are presented directed at solving the problems identified when using additive technologies at Yuzhnoye SDO. Such as Autodesk Netfabb, AM Process Simulation, ESI Additive Manufacturing and others that allow optimizing the model for additive technologies through the change of material structure, taking into account and compensation of heat setting during printing propose the tools for creating bionic design. Creation of new technologies of producing cooled nozzle block of LRE chamber without soldering became possible due to integrated approach, with optimal combination of already existing technical solutions with principally new ones, such as laser welding and surfacing. The cost analysis is considered as the most effective optimization method at selection of optimal design and manufacturing technology for its possible implementation at the company. The personnel problem, the issues of quality improvement and labor productivity increase in all production phases are foundational to reduce manufacturing cost.

Key words: additive technologies, software products, optimization, quality

Bibliography:
1. Kovalenko A. N., Kirsanov D. V., Mirosidi N. A., Shelyagin V. D., Bernatskiy A. V., Siora A. V. Razrabotka novoy technologii izgotovleniya soplovykh blokov bez ispolzovaniya paiki/ Kosmicheskaya technika. Raketnoe vooruzhenie: Sb. nauch.-techn. st. Vyp. 2 (116). 2018. Dnepropetrovsk: GP KB «Yuzhnoye». P. 68-75.
2. Jones J. K. Metody proektirovania. M.: Mir, 1986.
3. Nieve Henry R. Prostranstvo doctora Deminga. M.: Alpina Publisher, 2005.
Downloads: 43
Abstract views: 
696
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Boydton; Plano; Miami; Dublin; Columbus; Ashburn; Detroit; Phoenix; Phoenix; Los Angeles; Monroe; Ashburn; Seattle; Ashburn; Seattle; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn23
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Algeria Annaba1
Finland Helsinki1
Unknown1
Belarus Minsk1
France1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Lithuania Šiauliai1
Ukraine Dnipro1
26.1.2019 New Technologies and Problems of Their Introducing in Ukraine
26.1.2019 New Technologies and Problems of Their Introducing in Ukraine
26.1.2019 New Technologies and Problems of Their Introducing in Ukraine

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>