Search Results for “physical and mechanical properties” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 05 Nov 2024 20:31:22 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “physical and mechanical properties” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 15.1.2024 Enhancing operability of the fuel system units in the hot climate conditions https://journal.yuzhnoye.com/content_2024_1-en/annot_15_1_2024-en/ Mon, 17 Jun 2024 07:43:36 +0000 https://journal.yuzhnoye.com/?page_id=34974
The results of accelerated climatic testing of specimens of mechanical rubber articles, as well as the results of climatic endurance testing of the units for the period simulating 20-year service life are specified, and the main types of defects which result in the loss of performance properties of the mechanical rubber articles are as follows: great (up to 100%) residual deformation of intersections, cracking, loss of elasticity. Key words: leaktightness of articles , fluorosiloxane rubber , rubber , temperature of the hot climate , physical-mechanical properties of the rubber , climatic endurance tests , elastic properties , warranty life Bibliography: Lepetov V. leaktightness of articles , fluorosiloxane rubber , rubber , temperature of the hot climate , physical-mechanical properties of the rubber , climatic endurance tests , elastic properties , warranty life .
]]>

15. Enhancing operability of the fuel system units in the hot climate conditions

Organization:

DINTEM Ukrainian Research Design-Technological Institute of Elastomer Materials and Products LLC1; FED Joint Stock Company2

Page: Kosm. teh. Raket. vooruž. 2024, (1); 129-135

DOI: https://doi.org/10.33136/stma2024.01.129

Language: Ukrainian

Annotation: The article dwells on the problem of enhancement of durability for the mechanical rubber articles, which is directly related to the enhance of rubber resistance to various types of heat aging. Heat resistance during compression is most important for rubbers used for seals of various types: rings, collars, armored collars, gaskets for aviation and rocket technology hardware. Stress relaxation and the accumulation of relative residual deformation of rubbers, caused by the kinetic rearrangement of chemical bonds, are extremely sensitive to the influence of high temperatures. The main cause of the defects is the loss of elastic properties of the seals because of the accelerated heat aging of the nitrile group under conditions of long-term exposure to elevated temperatures in conditions of hot climate. The results of accelerated climatic testing of specimens of mechanical rubber articles, as well as the results of climatic endurance testing of the units for the period simulating 20-year service life are specified, and the main types of defects which result in the loss of performance properties of the mechanical rubber articles are as follows: great (up to 100%) residual deformation of intersections, cracking, loss of elasticity. The warranty life of fuel system units, made of ИРП-1078 nitrile rubber, does not exceed 12 years. Replacing the existing rubbers with rubbers created on the basis of more heat-bearing rubbers is the most promising way to improve the performance properties of the mechanical rubber articles under the high temperatures. The new D2301 rubber is based on fluorosiloxane rubber. It provides high thermal stability and, especially, the ability to maintain high performance properties for a long time under the simultaneous impact of hostile environment and high temperatures. The results of climatic endurance testing of fuel system units, equipped with rubber articles made of D2301 rubber, fully justify the increase of the specified service life of the specified units from 12 to 16 years. It is recommended to introduce D2301 rubber into the effective normative documentation and continue studies in order to extend the nomenclature of mechanical rubber articles made of D2301 rubber to provide the reliable sealing of units during the service life of 16 years or longer.

Key words: leaktightness of articles, fluorosiloxane rubber, rubber, temperature of the hot climate, physical-mechanical properties of the rubber, climatic endurance tests, elastic properties, warranty life

Bibliography:
  1. Lepetov V. A., Yurtsev L. N. Raschet i konstruirovanie rezinovykh izdeliy. Moskva.
    Khimia. 1971. 417 s.
Downloads: 24
Abstract views: 
1325
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA San Jose; Saint Louis; Los Angeles; Los Angeles; Los Angeles; Chicago; Columbus; Ashburn; Portland; San Mateo; Ashburn11
Germany Falkenstein; Düsseldorf; Falkenstein3
Canada Toronto; Toronto; Toronto3
China Shenzhen; Pekin2
India Mumbai1
Singapore Singapore1
France1
Thailand Songkhla1
Ukraine Kremenchuk1
15.1.2024 Enhancing operability of the fuel system units in the hot climate conditions
15.1.2024 Enhancing operability of the fuel system units in the hot climate conditions
15.1.2024 Enhancing operability of the fuel system units in the hot climate conditions

Keywords cloud

]]>
23.2.2018 On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body https://journal.yuzhnoye.com/content_2018_2-en/annot_23_2_2018-en/ Thu, 07 Sep 2023 12:35:25 +0000 https://journal.yuzhnoye.com/?page_id=30813
In the phenomenological approach under study, allowing for reflection properties of the space, earlier unknown interdependent information-physical link of the body and its mechanical particles with space under the accelerated motion was determined in the state of rest of the gravitation field as well as in the state of weightlessness.
]]>

23. On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 190-206

DOI: https://doi.org/10.33136/stma2018.02.190

Language: Russian

Annotation: Presented is the theoretical justification of the phenomenon of the inertia initiation under accelerated motion of the body, and gravity origin in the circumterrestrial space. There is no description of the physical nature of the inertia and gravity in the scientific publications. In the phenomenological approach under study, allowing for reflection properties of the space, earlier unknown interdependent information-physical link of the body and its mechanical particles with space under the accelerated motion was determined in the state of rest of the gravitation field as well as in the state of weightlessness. Alongside with the environment, eigenspace, i.e. configuration space of the body and corresponding metric lines of the space are considered. Idea of metric lines agrees with the concept of F. Wilczek, the American physicist, Nobel-Prize laureate, on the existence of the unobservable metric field in the real space. Solution of the problem rests on the example of the cantilever beam and mathematical model of the information reflection process, which for the first time takes into consideration previously unknown property of space reflection. Under the accelerated motion of the body reflection gains the acceleration vector dt d а     . In this case reflection manifests itself in the initiation of the beam of polarization vector under study   ~ in every point of the configuration space and is expressed as     ~ а . Value of the polarization vector equals the value of acceleration vector with negative sign. As a result metric lines of the configuration space under conditions of beam acceleration become polarized lines, generating vector information inertia field. Interaction of mechanical particles with the information inertia field in the configuration space generates physical inertia field of force, providing the real inertia under accelerated motion of the beam. (Relatively slow motion of bodies is studied as compared to the speed of light). According to the set forth unconventional approach the nature of the earth gravity is conditioned by the polarization of the radial metric lines of the circumterrestrial space. And polarization vector is directed to the center of the Earth and equals acceleration vector of the free fall with the same sign. Interaction of the body with specific mass with the vector information field of the Earth generates the physical force field of gravity. Article deals with the fundamental issues of theoretical physics and other fields of natural science. Materials of the conducted research are regarded as a potential scientific discovery.

Key words: configuration space, modified method of sections, information and vacuum environment, metric lines, property of space reflection, polarization, scalar information field, vector information field

Bibliography:
1. Vilchek F. Fine Physics. Mass, Ester and Unification of World Forces. Collection of publications, 2018. 336 p.
2. Sivukhin D. V. General Course of Physics. Vol. 1. М., 1989. 576 p.
3. Logunov А. А. Lectures on Relativity Theory and Gravitation. Modern Analysis of Problem. М., 1987. 272 p.
4. Feinman R., Layton R., Sands M. Feinman Lectures in Physics. Vol. 1. Modern Natural Science. The Laws of Mechanics. Vol. 2. Space. Time. Motion / Translation from English. М., 1976. 439 p.
5. Mulyar Y. M. On Stability of Compressed Rod. Technical mechanics. Dnepropetrovsk, 2000. No. 2. P. 51-57.
6. Mulyar Y. M., Perlik V. I. On Mathematical Model Representation of Information Field in Loaded Deformed System. Information and Telecommunication Technologies. М., 2012. No. 15. P. 61-74.
7. Vernadsky V. I. Reflections of Natural Scientist. Space and Time in Inanimate and Animate Nature. М., 1975. 173 p.
8. Ursul A. D. Reflection and Information. М., 1973. 231 p.
9. Vladimirov Y. S. Metaphysics. М., 2002. 550 p.
10. Author’s Certificate 181066 USSR. Energy Absorber / А. М. Buyanovsky, Y. М. Mulyar. Discoveries. Inventions. 1993. No. 15. P. 101.
11. Cacku M. Physics of Impossible / Translation from English. М., 2016. 456 p.
12. Proceedings of the International Scientific Conference “Problems of Ideality in Science”. М., 2001. 352 p.
13. Mulyar Y. M., Fyodorov V. M., Tryasuchev L. M. On the Impact of Initial Imperfections on Rod Stability Loss in Conditions of Axial Compression. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2017. Issue 1 (113). P. 48-58.
14. Dyomin A.I. Paradigm of Dualism. Space – Time, information – energy. М., 2007. 320 p.
15. Lisin A.I. Paradigm of Dualism. Ide: Reality of ideality. Part 1. М., 1999. 382 p.
Downloads: 43
Abstract views: 
1372
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Miami; Ashburn; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Columbus; Columbus; Ashburn; Seattle; Seattle; Portland; San Mateo; Ashburn; Des Moines; Boardman; Ashburn; Seattle25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Canada Toronto; Toronto; Monreale3
Unknown;2
India1
Finland Helsinki1
France1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
23.2.2018 On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body
23.2.2018 On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body
23.2.2018 On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body

Keywords cloud

]]>
13.1.2018 On Selection of Materials for Creation of Modern LV Thermostating System Mating Hoses https://journal.yuzhnoye.com/content_2018_1-en/annot_13_1_2018-en/ Tue, 05 Sep 2023 06:52:56 +0000 https://journal.yuzhnoye.com/?page_id=30469
2 Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine 1 ; State Enterprise DINTEM Ukrainian Research Design-Technological Institute of Elastomer Materials and Products 2 Page: Kosm. Raw Stuff and Materials: Inf. Investigation of Alkali Impact on Adhesive Properties of Ethylene-Propylene Vulcanizing Agents. Investigations of Physical-Mechanical Characteristics of Rubbers Based on Caoutchoucs of New Generation: Scientific–Technical Report DO-387-89, DF VNIIEMI.
]]>

13. On Selection of Materials for Creation of Modern LV Thermostating System Mating Hoses

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; State Enterprise DINTEM Ukrainian Research Design-Technological Institute of Elastomer Materials and Products2

Page: Kosm. teh. Raket. vooruž. 2018 (1); 72-84

DOI: https://doi.org/10.33136/stma2018.01.072

Language: Russian

Annotation: A series of materials is proposed for creation of space launch vehicle low-pressure air thermostating systems joints hoses. The topical issues are considered of materials designing with consideration for specific features of the hoses as special industrial rubber articles of launch vehicle launch sites.

Key words:

Bibliography:
1. Raw Stuff and Materials: Inf. Bull. М., 1999. No. 1. 44 p. https://doi.org/10.1007/978-1-4615-2802-9_3
2. Svitlichna R. F., Lotakov V. S., Chumicheva N. P. State and Prospects of Using Rubbers of New Generation in Rubber Industry of Ukraine: Scientific-Technical Report. К., 2001. No. 3. 13 p.
3. Nesterova L. A., Reznichenko S. V., Noskova L. F. et al. Experience of Using BNKS Paraffinate Nitrile Rubber in Formulations of Oil-Resistant Rubbers of Various Purpose at JSC “Uralsky Zavod RTI”. Med. Conf. on rubber: Collection of abstracts. М., 2000. No. 4. 121 p.
4. Investigation to Select Optimal Options of Replacing Raw Materials and Rubbers with Specifying Guaranteed Service and Storage Life of Rubber Products Being Components of Special Articles: Scientific–Technical Report DO-473-2002 UNUKTI DINTEM SE. 2002. 47 p.
5. Raw Stuff and Materials: Inf. Bull. М., 1999. No. 5. 55 p.
6. Raw Stuff and Materials: Inf. Bull. М., 2001. No. 3. 90 p.
7. Raw Stuff and Materials: Inf. Bull. М., 2001. No. 3. 96 p.
8. Raw Stuff and Materials: Inf. Bull. М., 2000. No. 3. 43 p.
9. Lotakov V. S., Yevchik V. S., Utlenko E. V. et al. Investigation of Operability of Rubbers with Adhesion Additives in Rubber-Metal Valves. Manufacture of Tires, Rubber Products and ATI. М., 1980. No. 4. P. 43-44.
10. Lotakov V. S., Yevchik V. S., Markova L. A. et al. Investigation of Alkali Impact on Adhesive Properties of Ethylene-Propylene Vulcanizing Agents. Caoutchouc and Rubber: Scientific–Technical Report. UNIKTI-DINTEM SE. 1981. No. 6. P. 18-19.
11. Svitlichna R. F., Bogutska E. O., Lotaakov V. S. et al. Technical Carbon of N Series. Prospects of Using in Rubber Mixtures of Caoutchoucs of New Generation: Scientific–Technical Report. К., 2006. No. 3. P. 17-20.
12. Yevchik V. S., Bogutskaya E. A., Khorolsky M. S. Investigations to Select Optimal Options of Replacing Raw Materials and Rubbers with Specifying Guaranteed Service and Storage Life of Rubber Products Being Components of 11K77 Article: Scientific–Technical Report DO-468-2000, UNIKTI-DINTEM SE. 2000. 55 p.
13. Nudelman Z. N., Lavrova L. N. Effective Vulcanization of Fluorine Rubbers. The III Ukr. International Scientific-Technical Conference of Rubber Industry Workers: Collection of abstracts. Dnepropetrovsk, 2000. 43 p.
14. Semyonov G. D., Yevchik V. S., Zaitseva T. P., Lotakov V. S. Prospects of Using New Vulcanizing Systems in Rubber Mixtures Based on Fluoroelastomers: Scientific–Technical Report. К., 2001. No. 3. 18 p.
15. Yevchik V. S., Zaitseva T. P., Khorolsky M. S. Investigations of Physical-Mechanical Characteristics of Rubbers Based on Caoutchoucs of New Generation: Scientific–Technical Report DO-387-89, DF VNIIEMI. Dnepropetrovsk, 2000. 61 p.
16. Belozerov N. V. Rubber Technology. М., 1979. 201 p.
17. Blokh G. A. Organic Rubber Vulcanization Accelerators. М.,1964. 156 p.
18. Big Reference Book of Rubber Industry Worker in 2 parts. Part 1. Rubbers and Ingredients / Under the general editorship of S. V. Reznichenko and Y. L. Morozov. М., 2012. 740 p.
19. Polyurethane Chemistry and Technology: Collection of conference papers. Manchester, 1967. 254 p.
20. Degteva T. G. et al. The Impact of Additives on Thermal Ageing of Rubbers and Model Gaskets Made of SKEP. Caoutchouc and Rubber. М., 1984. No. 8. P. 17-19.
21. Lepetov V. A. Rubber Products. L., 1976. 440 p.
22. Lepetov V. A., Yurtsev L. N. Calculations and Designing of Rubber Products and Production Accessories. М., 2009. 417 p.
23. New Prospective Hoses and Scarce and Commercially Inviable Rubbers, Ingredients and Materials: Recommendation No. 51-РМ-22/38/57/50-1050-83. М., 1983. 42 p.
24. Kornev A. E. et al. Technology of Elastomer Materials. М., 2009. 504 p.
25. Gerasimenko A. А. Protection of Machines from Biological Damages. M., 1984. 92 p.
26. Principles of Constructing Formulations and Using Rubbers for Rubber Products of Tropical Version: Recommendation No. 51-РМ-26-48-66. М., 1966. 56 p.
27. Assessment of Rubber Resistance to Damage by Thermites: Recommendation No. 51-РМ-4-622-75. М., 1975. 36 p.
28. Increasing Rubber Products Service Life in Conditions of Tropical Climate: Recommendation No. 51-РМ-4-697-76. М., 1976. 23 p.
29. Assessment of Rubber Resistance to Mould: Recommendation No. 51-РМ-4-407-73. М., 1976. 42 p.
Downloads: 43
Abstract views: 
895
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Columbus; Matawan; Baltimore; Plano; Miami; Ashburn; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Seattle; Seattle; Tappahannock; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Ashburn; Boardman26
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Canada Toronto; Toronto; Toronto; Monreale4
Finland Helsinki1
Unknown Hong Kong1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
13.1.2018 On Selection of Materials for Creation of Modern LV Thermostating System Mating Hoses
13.1.2018 On Selection of Materials for Creation of Modern LV Thermostating System Mating Hoses
13.1.2018 On Selection of Materials for Creation of Modern LV Thermostating System Mating Hoses
]]>
25.1.2019 Technological Peculiarities of Manufacturing Products of Irregular Profile by Method of Selective Laser Melting of 316L Powder Metal Material https://journal.yuzhnoye.com/content_2019_1-en/annot_25_1_2019-en/ Wed, 24 May 2023 16:01:06 +0000 https://journal.yuzhnoye.com/?page_id=27730
Results of the mechanical tests of the obtained specimens have shown that the technology of selective laser melting provides development of products made of powder metal material 316L with optimal complex of physical and mechanical properties. It is shown that transition to the selective laser melting technology will enable production of the aerospace products, in particular geometrically-complex parts made of powder metal material 316L, in one technological cycle, excluding cutting, punching, refinement, cropping, welding, manufacturing of special tools or stamps Key words: specimens , heat treatment , alloy , physical and mechanical properties , technological cycle Bibliography: 1. specimens , heat treatment , alloy , physical and mechanical properties , technological cycle .
]]>

25. Technological Peculiarities of Manufacturing Products of Irregular Profile by Method of Selective Laser Melting of 316L Powder Metal Material

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 171-181

DOI: https://doi.org/10.33136/stma2019.01.171

Language: Russian

Annotation: This article considers the practical data on parts (specimens) manufacturing from powder metal material 316L using the innovative method of selective laser melting; the comparative study of the structure and physical and mechanical properties of 316L material, the combined influence of heat treatment and specimen orientation relative to the arrangement plate on the physical and mechanical properties and structure of specimens made of 316L alloy. Results are presented of the following: comparative study of the physical and mechanical properties and structure of specimens, manufactured using the selective laser melting technologies with horizontal and vertical placement relative to the arrangement plate; dependence of the ultimate strength and unit elongation on the annealing temperature. The possibility and suitability of the selective laser melting technology to manufacture parts and space-rocket hardware are evaluated. Experimental study of the specimens heat treatment conditions after selective laser melting enabled the definition of the optimal condition for the 316L alloy and have shown that heat treatment of the manufactured specimens under the heating at 1230 °С with the subsequent tempering at the temperature of 510 °С gives the homogeneous structure to the material of specimens made of alloy 316L, its dendritic structure, inherent in the specimen material in its initial condition, disappears after selective laser melting. Results of the mechanical tests of the obtained specimens have shown that the technology of selective laser melting provides development of products made of powder metal material 316L with optimal complex of physical and mechanical properties. It is shown that transition to the selective laser melting technology will enable production of the aerospace products, in particular geometrically-complex parts made of powder metal material 316L, in one technological cycle, excluding cutting, punching, refinement, cropping, welding, manufacturing of special tools or stamps

Key words: specimens, heat treatment, alloy, physical and mechanical properties, technological cycle

Bibliography:
1. Dovbysh V. M., Zabednev P. V., Zelenko M. A. Additivnye technologii I izdeliya iz metalla// Bibliotechka liteischika. №8–9. 2014. P. 33-38.
2. Kempen K., Thijs L., Van Humbeeck J., Kruth J.-P. Mechanical properties of AlSi10Mg produced by SLM / Physics Procedia. №39. 2012. Р. 439–446. https://doi.org/10.1016/j.phpro.2012.10.059
3. Olakanmi E. O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: Effect of processing conditions and powder properties / Journal of Materials Processing Technology. №213. 2013. Р. 1387–1405. https://doi.org/10.1016/j.jmatprotec.2013.03.009
4. Eleftherios Louvis, Fox Peter, Sutcliffe Christopher J. Selective laser melting of aluminium components // Journal of Materials Processing Technology. – №211. 2011. Р. 275–284. https://doi.org/10.1016/j.jmatprotec.2010.09.019
5. Aboulkhair Nesma T., Everitt Nicola M., Ashcroft Ian, Tuck Chris. Reducing porosity in AlSi10Mg parts processed by selective laser melting // Additive Manufacturing Journal. №1–4. 2014. Р. 77 – 86. https://doi.org/10.1016/j.addma.2014.08.001
Downloads: 37
Abstract views: 
947
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Plano; Dublin; Phoenix; Phoenix; Monroe; Seattle; Ashburn; Ashburn; Ashburn; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman; Ashburn18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Unknown Canberra;2
Bangladesh Dhaka1
Great Britain London1
France1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Lithuania Šiauliai1
Ukraine Dnipro1
25.1.2019 Technological Peculiarities of Manufacturing Products of Irregular Profile by Method of Selective Laser Melting of 316L Powder Metal Material
25.1.2019 Technological Peculiarities of Manufacturing Products of Irregular Profile by Method of Selective Laser Melting of 316L Powder Metal Material
25.1.2019 Technological Peculiarities of Manufacturing Products of Irregular Profile by Method of Selective Laser Melting of 316L Powder Metal Material

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
19.1.2019 Peculiarities of Radio Transparent Fairings Development https://journal.yuzhnoye.com/content_2019_1-en/annot_19_1_2019-en/ Wed, 24 May 2023 16:00:43 +0000 https://journal.yuzhnoye.com/?page_id=27724
Development of the radome solves the complex task of coupling and optimization of the geometric aspects of design with physical-mechanical, radio and thermal properties of materials.
]]>

19. Peculiarities of Radio Transparent Fairings Development

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 132-138

DOI: https://doi.org/10.33136/stma2019.01.132

Language: Russian

Annotation: The main task of the radiotransparent radome design is to develop a structure that reliably protects the aircraft components, sensitive instrumentation of the guidance system from incoming air flow and heating in all phases of operation, meeting all the requirements of minimum weight, allowable temperature under the radome, strength, centre of mass and radio characteristics. Development of the radome solves the complex task of coupling and optimization of the geometric aspects of design with physical-mechanical, radio and thermal properties of materials. The article dwells on the aspects of development of the radiotransparent radomes depending on the aircraft flight speed; basic requirements for the selection of outside perimeter configuration; structural materials, providing the required radio properties in combination with minimum mass and necessary strength, acceptable temperature inside the fairing. Yuzhnoye-developed radome for the up to 5 M aircraft was considered, consisting of ogive shell made of АФ-10ПО fiberglass, heat-resistant tip and structural ring made of aluminum alloy. Methods of thermal and strength analyses of the shell are considered, results of calculations confirming the fitness for work of the structure are presented. Options of configuration with ceramic shells and methods of their coupling with rings are presented for the aircraft that reaches up to 5 M speed. Basic principles of radiotransparent radomes development and aspects of ceramic shells coupling with structural rings are considered, as well as the results of strength analyses and thermal calculations that ensure the performance of the structure and equipment in the area under the radome.

Key words: structural ring, under dome area, aircraft

Bibliography:
1. Rusin M. Y. Proektirovanie golovnykh obtekateley raket iz keramicheskykh i compozitsionnykh materialov: Ucheb. posobie. M.: Izd-vo MGTU im. N. E. Baumana, 2005. 64 p.
2. Mossakovskiy V. I. i dr. Prochnost’ raketnykh konstruktsiy. M.: Vyssh. shk., 1990. 190 p.
3. Pat. 114323 Ukraine, MPK H01Q1/42. Golovnoy obtekatel’ ballisticheskoy rakety/ Shevtsov Ye. I., Kharchenko Y. D., Voloshin V. V., Samoilenko I. D.; zayavitel’ i patentoobladatel’ KB «Yuzhnoye». Opubl. 10.03.2017
Downloads: 48
Abstract views: 
756
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Appleton; Matawan; Baltimore; Plano; Columbus; Ashburn; Phoenix; Monroe; Ashburn; Seattle; Columbus; Ashburn; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn23
Ukraine Dnipro; Kyiv; Dnipro; Kyiv; Kyiv; Mykolayiv; Dnipro; Kyiv; Dnipro; Kyiv10
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Canada Toronto; Toronto; Toronto; Monreale4
Cambodia Phnom Penh1
Finland Helsinki1
Unknown1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
19.1.2019 Peculiarities of Radio Transparent Fairings Development
19.1.2019 Peculiarities of Radio Transparent Fairings Development
19.1.2019 Peculiarities of Radio Transparent Fairings Development

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>