Search Results for “pressure characteristic” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 13:02:36 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “pressure characteristic” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 17.1.2020 Acoustic problems of rocket launch https://journal.yuzhnoye.com/content_2020_1-en/annot_17_1_2020-en/ Wed, 13 Sep 2023 11:36:44 +0000 https://journal.yuzhnoye.com/?page_id=31054
A three components of acoustic sources can be defined here – broadband signals from large and small components of of turbulent jet and tonal signals which usually being overlooked during the estimation of overall sound pressure level. The paper considers various aspects of acoustics of the launch of rocket systems, which includes characteristics of acoustic sources in supersonic jets, possibilities and physical limitation factors, under which it is possible to control the sound radiation.
]]>

17. Acoustic problems of rocket launch

Organization:

Institute of Hydromechanics of National Academy of Sciences of Ukraine, Kyiv, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 155-159

DOI: https://doi.org/10.33136/stma2020.01.155

Language: Russian

Annotation: Due to an increase of power of rocket engines, the high intensity sound field generated by the exhaust jets have become an important factor, which determines the success rate of a rocket launch. Ensuring a successful launch of a rocket system became harder due to new engineering problems. Identification and definition of acoustic sources structure within a complex supersonic jet, being a one of the most important scientific problems, which have to be solved to find the ways to control accoustic radiation. A three components of acoustic sources can be defined here – broadband signals from large and small components of of turbulent jet and tonal signals which usually being overlooked during the estimation of overall sound pressure level. The paper considers various aspects of acoustics of the launch of rocket systems, which includes characteristics of acoustic sources in supersonic jets, possibilities and physical limitation factors, under which it is possible to control the sound radiation. Among the possible ways to control the process of sound generation by a jet, a method of water injection in a jet is being studied. While saving the general thrust of the engine this method can not greatly reduce the sound radiation by a jet. It is recommended to use big amounts of water-air mix to protect the launch pad from damage. Significant progress on the topic of understanding the process of sound generation by supersonic jets can be achieved via mathematical modeling of sound radiation. The latest achievements of mathematical modeling of sound generation by supersonic jets being presented.

Key words: Acoustics of rocket launch, acoustic efficiency of a jet, semi-empirical models of of jet acoustics, numeric-computational methods in aeroacoustics, control of jet-generated acoustic levels

Bibliography:
1. Lighthill M. J. On Sound Generated Aerodynamically: I. General Theory. Proc. Roy. Soc. London Ser. A, 211. 1952. Р. 564–581. https://doi.org/10.1098/rspa.1952.0060
2. Tam C. K. W. Jet noise. Theoretical Computftional Fluid Dynamics. 1998. No 10. Р. 393–405. https://doi.org/10.1007/s001620050072
3. Lubert C. P. Sixty years of launch vehicle acoustics. Proc.Mtgs.Acoust. Vol. 31. 2017. https://doi.org/10.1121/2.0000704
4. Ask the Astronaut: What does launch feel like? URL: https://www.airspacemag. com/ask-astronaut/ask-astronaut-what-does-launch-feel-what-thoughts-and-emotions-run-through-your-mind-180959920/
5. Tim P. Ask an Astronaut: My Guide to Life in Space. 2018. 272 p.
6. Saucer B. What’s the Deal with Rocket Vibration? MIT Technology Review. July 15, 2009. URL: https://www.technology-review.com/s/414364https:/whats-the-deal-with-rocket-vibrations/
7. Ross D. Mechanics of Underwater noise. 1976. 266 p.
8. Varnier J. Experimental study and simulation of rocket engine free jet noise. AIAA J. 2001. Vol. 39, Nо 10. P. 1851–1859. https://doi.org/10.2514/2.1199
9. Eldred K. M. Acoustic loads generated by the propulsion system. NASA SP-8072, 1971. 49 p.
10. Balakrishnan P., Srinivason K. Impinging get noise reduction using non-circular jets. Applied Acoustics. 2019. Vol. 143. Р. 19-30. https://doi.org/10.1016/j.apacoust.2018.08.016
11. Tsutsumi S. Acoustic generation mechanism of a supersonic jet impinging on deflectors / S. Tsutsumi, R. Takaki, Y. Nakanishi, K. Okamoto, S. Teramoto 52th AIAA Aerospace Sci. Meet. AIAA Pap. 2014-0882. 2014. 12 p. https://doi.org/10.2514/6.2014-0882
12. Ahuja K. K., Manes J. P., Massey K. C., Calloway A. B. An Evaluation of various concepts of Reducing Supersonic Jet Noise, AIAA-90-3982. AIAA 13th Aeroacoustic Conference, 1990. Р. 1-21. https://doi.org/10.2514/6.1990-3982
13. Krathapalli A., Lenkatakrishnan L., Elovarsan R., Laurenco L. Supersonic Jet Noise Suppression by Water Injection. AIAA 2000-2025. 6th AIAA/CEAS Aeroacoustic Conference, 2000. Р. 1-25.
14. Moratilla-Vega M. A., Lackhole K., Janicka J., Xia H., Page C. J. Jet Noise Analysis using an Efficient LES/ High-Order Acoustic Coupling Method. Computer and Fluid. 2020. https://doi.org/10.1016/j.compfluid.2020.104438
Downloads: 18
Abstract views: 
597
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; North Bergen; Plano; Columbus; Monroe; Ashburn; Ashburn; Seattle; San Mateo; San Mateo; Boardman; Ashburn12
Singapore Singapore; Singapore; Singapore; Singapore4
Brazil Joinville1
Ukraine Dnipro1
17.1.2020  Acoustic problems of rocket launch
17.1.2020  Acoustic problems of rocket launch
17.1.2020  Acoustic problems of rocket launch

Keywords cloud

]]>
9.1.2020 Experimental investigation of a liner-free propellant tank made from polymer composite materials https://journal.yuzhnoye.com/content_2020_1-en/annot_9_1_2020-en/ Wed, 13 Sep 2023 10:43:08 +0000 https://journal.yuzhnoye.com/?page_id=31035
2020, (1); 90-98 DOI: https://doi.org/10.33136/stma2020.01.090 Language: Russian Annotation: The exploratory and experimental investigations were conducted into design of propellant tank made of composite polymer materials for work in cryogenic environment at operating pressure of 7.5 kgf/cm2 . When determining the configuration of a liner-free composite propellant tank, the main requirement was ensuring its leak-tightness at internal excess pressure and cryogenic temperature effect. Before defining the final configuration, the types of materials, reinforcing patterns, and possible ways to ensure leak-tightness were analyzed, and preliminary tests were conducted of physical and mechanical characteristics of thin-wall samples of composite materials and tubular structures with different reinforcing patterns.
]]>

9. Experimental investigation of a liner-free propellant tank made from polymer composite materials

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 90-98

DOI: https://doi.org/10.33136/stma2020.01.090

Language: Russian

Annotation: The exploratory and experimental investigations were conducted into design of propellant tank made of composite polymer materials for work in cryogenic environment at operating pressure of 7.5 kgf/cm2 . When determining the configuration of a liner-free composite propellant tank, the main requirement was ensuring its leak-tightness at internal excess pressure and cryogenic temperature effect. The world experience of creating similar designs was analyzed and the requirements were defined imposed on configuration of propellant tank load-bearing shells. Before defining the final configuration, the types of materials, reinforcing patterns, and possible ways to ensure leak-tightness were analyzed, and preliminary tests were conducted of physical and mechanical characteristics of thin-wall samples of composite materials and tubular structures with different reinforcing patterns. The tests of carbon plastic samples were conducted at different curing modes to determine the most effective one from the viewpoint of strength characteristics and the tests for permeability by method of mouthpiece were conducted. The tests of pilot propellant tank showed that the calculated values of deformations and displacements differ from the experimental values by no more than 10 %. Using the parameters measurement results from the tests on liquid nitrogen, the empirical formulas were obtained to calculate linear thermal expansion coefficient of the package of materials of load -bearing shell. The empirical dependences were constructed of relative ring deformations at load-bearing shell middle section on pressure and temperature. The tests confirmed correctness of adopted solutions to ensure strength and leak-tightness of propellant tank load-bearing shell at combined effect on internal excess pressure and cryogenic temperature, particularly at cyclic loading. The materials used and propellant tank manufacturing technologies ensure leak-tightness of load-bearing shell at liquid nitrogen operating pressure of 7.5 kgf/cm2 and strength at excess pressure of 15 kgf/cm2 and allow conducting approbation of prospective stage of the integrated launch vehicle.

Key words: load-bearing shell, permeability, cryogenic propellant, relative deformations, linear thermal expansion coefficient

Bibliography:
1. Frantsevich I. М., Karpinos D. М. Kompozitsionnye materialy voloknistogo stroeniia. K., 1970.
2. TSM YZH ANL 009 00. Composite fuel tank for ILV, Dnipro, Yuzhnoye SDO, 2019.
3. Zheng H., Zeng X., Zhang J., Sun H. The application of carbon fiber composites in cryotank. Solidification. 2018. https://doi.org/10.5772/intechopen.73127
Downloads: 20
Abstract views: 
953
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Los Angeles; North Bergen; Monroe; Ashburn; Seattle; Ashburn; Seattle; Seattle; Portland; San Mateo12
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro1
9.1.2020  Experimental investigation of a liner-free propellant tank made from polymer composite materials
9.1.2020  Experimental investigation of a liner-free propellant tank made from polymer composite materials
9.1.2020  Experimental investigation of a liner-free propellant tank made from polymer composite materials

Keywords cloud

]]>
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles https://journal.yuzhnoye.com/content_2018_2-en/annot_19_2_2018-en/ Thu, 07 Sep 2023 12:23:58 +0000 https://journal.yuzhnoye.com/?page_id=30801
Therefore, it is possible to determine the characteristics of the random error components directly on the basis of registered data. Combined Methods to Determine Probabilistic Characteristics. Combined Estimation of Complex Systems Characteristics. Vt222М Absolute Pressure Sensor: ТU Vt2.832.075TU.
]]>

19. Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 157-172

DOI: https://doi.org/10.33136/stma2018.02.157

Language: Russian

Annotation: The measurement errors upon conducting flight tests for launch vehicles are evaluated by considering the interferences and uncertainties in the measurement system procedure. Formal use of this approach can lead to unpredictable consequences. More reliable evaluation of errors upon conducted measurements can be achieved if the measurement process is regarded as a procedure of successive activities for designing, manufacturing, and testing the measurement system and the rocket including measurements and their processing during the after-flight analysis of the received data. The sampling rates of the main controlled parameters are three to ten times higher than the frequency range of their changing. Therefore, it is possible to determine the characteristics of the random error components directly on the basis of registered data. The unrevealed systematic components create the basic uncertainty in the evaluation of the examined parameter’s total measurement error. To evaluate the precision and measurement accuracy of a particular launch, the article suggests specifying the preliminary data on measurement error components determined during prelaunch processing and launch. Basic structures of algorithms for evaluation of precision and measurement accuracy for certain mathematical models that form the measured parameters were considered along with the practical case when static correlation existed among the measured parameters.

Key words: flight tests, sensor, measurement error, mathematical model

Bibliography:
1. Novitsky P. V., Zograf I. A. Evaluation of Measurement Errors. L., 1985. 248 p.
2. Shmutzer E. Relativity Theory. Modern Conception. Way to Unity of Physics. М., 1981. 230 p.
3. Blekhman I. I., Myshkis A. D., Panovenko Y. G. Applied Mathematics: Subject, Logic, Peculiarities of Approaches. К., 1976. 270 p.
4. Moiseyev N. N. Mathematical Problems of System Analysis. М., 1981. 488 p.
5. Bryson A., Ho Yu-Shi. Applied Theory of Optimal Control. М., 1972. 544 p.
6. Yevlanov L. G. Monitoring of Dynamic Systems. М., 1972. 424 p.
7. Sergiyenko A. B. Digital Signal Processing: Collection of publications. 2011. 768 p.
8. Braslavsky D. A., Petrov V. V. Precision of Measuring Devices. М., 1976. 312 p.
9. Glinchenko A. S. Digital Signal Processing: Course of lectures. Krasnoyarsk, 2008. 242 p.
10. Garmanov A. V. Practice of Optimization of Signal-Noise Ratio at ACP Connection in Real Conditions. М., 2002. 9 p.
11. Denosenko V. V., Khalyavko A. N. Interference Protection of Sensors and Connecting Wires of Industrial Automation Systems. SТА. No. 1. 2001. P. 68-75.
12. Garmanov A. V. Connection of Measuring Instruments. Solution of Electric Compatibility and Interference Protection Problems. М., 2003. 41 p.
13. TP ACS Encyclopedia. bookASUTR.ru.
14. Smolyak S. A., Titarenko B. P. Stable Estimation Methods. М., 1980. 208 p.
15. Fomin A. F. et al. Rejection of Abnormal Measurement Results. М., 1985. 200 p.
16. Medich J. Statistically Optimal Linear Estimations and Control. М., 1973. 440 p.
17. Sage E., Mells J. Estimation Theory and its Application in Communication and Control. М., 1976. 496 p.
18. Filtration and Stochastic Control in Dynamic Systems: Collection of articles / Under the editorship of K. T. Leondes. М., 1980. 408 p.
19. Krinetsky E. I. et al. Flight Tests of Rockets and Spacecraft. М., 1979. 464 p.
20. Viduyev N. G., Grigorenko A. G. Mathematical Processing of Geodesic Measurements. К., 1978. 376 p.
21. Aivazyan S. A., Yenyukov I. S., Meshalkin L. D. Applied Statistics. Investigation of Dependencies. М., 1985. 487 p.
22. Sirenko V. N., Il’yenko P. V., Semenenko P. V. Use of Statistic Approaches in Analysis of Gas Dynamic Parameters in LV Vented Bays. Space Technology. Missile Armaments: Collection of scientific-technical articles. Issue 1. P. 43-47.
23. Granovsky V. A., Siraya T. N. Methods of Experimental Data Processing at Measurements. L., 1990. 288 p.
24. Zhovinsky A. N., Zhovinsky V. N. Engineering Express Analysis of Random Processes. М., 1979. 112 p.
25. Anishchenko V. A. Control of Authenticity of Duplicated Measurements in Uncertainty Conditions. University News. Minsk, 2010. No. 2. P. 11-18.
26. Anishchenko V. A. Reliability and Accuracy of Triple Measurements of Analog Technological Variables. University News. Minsk, 2017. No. 2. P. 108-117.
27. Shenk H. Theory of Engineering Experiment. М., 1972. 381 p.
28. Bessonov А. А., Sverdlov L. Z. Methods of Statistic Analysis of Automatic Devices Errors. L., 1974. 144 p.
29. Pugachyov V. N. Combined Methods to Determine Probabilistic Characteristics. М., 1973. 256 p. https://doi.org/10.21122/1029-7448-2017-60-2-108-117
30. Gandin L. S., Kagan R. L. Statistic Methods of Meteorological Data Interpretation. L., 1976. 360 p.
31. Zheleznov I. G., Semyonov G. P. Combined Estimation of Complex Systems Characteristics. М., 1976. 52 p.
32. Vt222М Absolute Pressure Sensor: ТU Vt2.832.075TU. Penza, 1983.
Downloads: 16
Abstract views: 
510
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Monroe; Ashburn; Seattle; Seattle; Portland; San Mateo; Ashburn10
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Dnipro1
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests https://journal.yuzhnoye.com/content_2018_2-en/annot_10_2_2018-en/ Thu, 07 Sep 2023 11:29:45 +0000 https://journal.yuzhnoye.com/?page_id=30766
Selection of turbulent flow model has a noticeable impact on prediction of flow characteristics. The calculation allows obtaining a temperature profile of the wall and providing the recommendations for selection of pressure measurement place in the nozzle extension for the purpose of reducing sensors indication error.
]]>

10. Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 83-93

DOI: https://doi.org/10.33136/stma2018.02.083

Language: Russian

Annotation: At Yuzhnoye State Design Office, the Cyclone-4 launch vehicle 3rd stage engine has been developed and is under testing. For adjustment of the engine and test bench systems, in the first firing tests the radiation-cooled nozzle extension was replaced with a steel water-cooled one. It was planned to start the engine with water-cooled nozzle extension without vacuumizing and without gad dynamic pipe, which conditioned operation with flow separation at the output edge of water-cooled nozzle extension. Therefore, the calculation of flow in the nozzle with water-cooled extension, flow separation place, and thermal load on watercooled nozzle extension during operation in ground conditions is an important task. Selection of turbulent flow model has a noticeable impact on prediction of flow characteristics. The gas dynamic analysis of the nozzle with water-cooled extension showed the importance of using the turbulent flow model k-ω SST for the flows with internal separation of boundary layer and with flow separation at nozzle section. The use the flow model k-ω SST for calculation of nozzle with flow separation or with internal transitional layer allows adequately describing the flow pattern, though, as the comparison with experimental data showed, this model predicts later flow separation from the wall than that obtained in the tests. The calculation allows obtaining a temperature profile of the wall and providing the recommendations for selection of pressure measurement place in the nozzle extension for the purpose of reducing sensors indication error. With consideration for the special nature of the nozzle extension wall temperature field, the cooling mode was selected. The tests of RD861K engine nozzle with water-cooled extension allow speaking about its successful use as a required element for testing engine start and operation in ground conditions without additional test bench equipment.

Key words: turbulent flow, flow separation, cooling, technological extension

Bibliography:
1. Massiet P., Rocheque E. Experimental Investigation of Exhaust Diffusors for Rocket Engines. Investigation of Liquid Rocket Engines. М., 1964. P. 96-109.
2. Mezhevov A. V., Skoromnov V. I., Kozlov A. V. et al. Introduction of Radiation Cooling Nozzle Head of Made of Carbon-Carbon Composite Material on DM-SL Upper Stage 11D58M Main Engine. News of Samara Aerospace University. No. 2 (10). 2006. P. 260-264.
3. Fluent. Software Package, Ver. 6.2.16, Fluent Inc., Lebanon, NH, 2004.
4. Wilcox D. C. Turbulence Modeling for CFD. DCW Industries, Inc. La Canada, California, 1998. 460 р.
5. Andersen D., Tannehill J., Platcher R. Computational Hydromechanics and Heat Exchange: in 2 volumes М., 1990. 384 p.
6. Rodriguez C. G., Culter, A. D. Numerical Analysis of the SCHOLAR Supersonic Combustor, NASA-CR-2003-212689. 2003. 36 р.
7. Rajasekaran A., Babu V. Numerical Simulation of Three-dimensional Reacting Flow in a Model Supersonic Combustor. Journal of Propulsion and Power. Vol. 22. No. 4. 2006. Р. 820-827. https://doi.org/10.2514/1.14952
8. Spalart P., Allmaras S. A one-equation turbulence model for aerodynamic flows: Technical Report. American Institute of Aero-nautics and Astronautics. AIAA-92-0439. 1992. Р. 5-21. https://doi.org/10.2514/6.1992-439
9. Launder B. E., Spalding D. B. Lectures in Mathematical Models of Turbulence. London, 1972. Р. 157-162.
10. Rajasekaran A., Babu V. Numerical Simulation of Three-dimensional Reacting Flow in a Model Supersonic Combustor. Journal of Propulsion and Power. Vol. 22. No. 4. 2006. Р. 820-827. https://doi.org/10.2514/1.14952
11. Ten-See Wang. Multidimensional Unstructured Grid Liquid Rocket-Engine Nozzle Performance and Heat Transfer Analysis. Journal of Propulsion and Power. Vol. 22. No. 1. 2006. 21 р. https://doi.org/10.2514/1.14699
12. Hyun Ko, Woong-Sup Yoon. Performance Analysis of Secondary Gas Injection into a Conical Rocket Nozzle. Journal of Propulsion and Power. Vol. 18, No. 3. 2002. Р. 585-591. https://doi.org/10.2514/2.5972
13. Wilson E. A., Adler D., Bar-Yoseph P. Thrust-Vectoring Nozzle Performance Mode-ling. Journal of Propulsion and Power. Vol. 19, No. 1. 2003. Р. 39-47. https://doi.org/10.2514/2.6100
14. Gross A., Weiland C. Numerical Simulation of Hot Gas Nozzle Flows. Journal of Propulsion and Power. Vol. 20, No. 5. 2004. Р. 879-891. https://doi.org/10.2514/1.5001
15. Gross A., Weiland C. Numerical Simulation of Separated Cold Gas Nozzle Flows. Journal of Propulsion and Power. Vol. 20, No. 3. 2004. Р. 509-519. https://doi.org/10.2514/1.2714
16. Deck S., Guillen P. Numerical Simulation of Side Loads in an Ideal Truncated Nozzle. Journal of Propulsion and Power. Vol. 18, No. 2. 2002. Р. 261-269. https://doi.org/10.2514/2.5965
17. Östlund J., Damgaard T., Frey M. Side-Load Phenomena in Highly Overexpanded Rocket Nozzle. Journal of Propulsion and Power. Vol. 20, No. 4. 2004. Р. 695-704. https://doi.org/10.2514/1.3059
18. Goldberg U. C. Separated Flow Treatment with a New Turbulence Model. AIAA Journal. Vol. 24, No. 10. 1986. Р. 1711-1713. https://doi.org/10.2514/3.9509
19. Golovin V.S., Kolchugin B.A., Labuntsov D.A. Experimental Investigation of Heat Exchange and Critical Heat Loads at Water Boiling in Free Motion Conditions. 1963. Vol. 6, No 2. p. 3-7.
20. Mikheyev М. А., Mikheyeva I. M. Heat-Transfer Principles. 2nd edition stereotyped. М., 1977. 343 p.
21. Kutateladze S. S., Leontyev A. I. Heat-Mass Exchange and Friction in Turbulent Boundary Layer. М., 1972. 341 p.
Downloads: 16
Abstract views: 
561
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; North Bergen; Plano; Monroe; Ashburn; Columbus; Seattle; San Mateo; Boardman; Ashburn11
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro1
10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests
10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests
10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
9.2.2018 The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps https://journal.yuzhnoye.com/content_2018_2-en/annot_9_2_2018-en/ Thu, 07 Sep 2023 11:25:59 +0000 https://journal.yuzhnoye.com/?page_id=30763
Key words: pressure characteristic , cavitation characteristic , inducers of the variable-pitch , continuous-pitch inducers , pump efficiency Bibliography: 1. pressure characteristic , cavitation characteristic , inducers of the variable-pitch , continuous-pitch inducers , pump efficiency .
]]>

9. The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 76-82

DOI: https://doi.org/10.33136/stma2018.02.076

Language: Russian

Annotation: In the present-day rocket engineering, the liquid rocket engines with pump feed system have gained wide acceptance. As a rule, the pumps used in liquid rocket engines are screw-axifugal. The screw serves to increase pressure upstream of the axifugal wheel, thus ensuring its cavitation-free operation. The screws used in the screw-axifugal pumps of liquid rocket engines may be of two types: with constant and variable step. The screws with constant step are easier to calculate, profile and manufacture as compared to the screws with variable step. As known from the literature, the use of the screw with variable step increases power characteristics of the screw-axifugal pump. The purpose of investigation is comparative analysis of cavitation and power characteristics of the following high-speed low-consumption screw-axifugal pumps of liquid rocket engines with jointed screws, screws of constant and variable step:  RD868 engine oxidizer and fuel pumps;  RD859 engine fuel pumps;  RD861K engine fuel pumps. Besides, the analysis has been made of the impact of design features and geometrical dimensions of the screws with variable and constant step on power characteristics of the screw-axifugal high-speed lowconsumption pumps of liquid rocket engines. Special attention has been given to the analysis of anticavitation properties of the pumps with screws of variable step and pumps with jointed screws. Based on the results of investigation, it has been ascertained that when using the joint screws and screws with variable step instead of the screws with constant step in the high-speed low-consumption screw-axifugal pumps of liquid rocket engines, the pump delivery head increases from 0.65 to 3.83%, the efficiency increases up to 1.7%. The use of jointed screw and screw of variable step as compared with the screw of constant step does not have any impact on cavitation properties of low-consumption crew-axifugal pumps of liquid rocket engines.

Key words: pressure characteristic, cavitation characteristic, inducers of the variable-pitch, continuous-pitch inducers, pump efficiency

Bibliography:
1. Pre-burner operating method for rocket turbopump: Patent 6505463 USA: MPK F02K9/48 / William D. Kruse, Thomas J. Mueller, John J. Weede (USA); Northrop Grumman Corporation. No. 20020148215; claimed 17.01.2001; published 14.01.2003, Bulletin No. 09/761,957. 5 p.
2. Hybrid rocket motor using a turbopump to pressurize a liquid propellant constituent: Patent 6640536 USA: MPK F02K9/50, F02K9/48, F02K9/46, F02K9/72, F02K9/56 / Korey R. Kline, Kevin W. Smith, Eric E. Schmidt, Thomas O. Bales; Hy Pat Corporation (Miami, FL). No. 20030136111; claimed 22.01.2002; published 04.11.2003, Bulletin No. 10/054,646. – 11 p.
3. Chebayevsky V. F., Petrov V. I. Cavitation Characteristics of High-Speed Auger-Centrifugal Pumps. М., 1973. 152 p.
4. Petrov V. I., Chebayevsky V. F. Cavitation on High-Speed Impeller Pumps. М., 1982. 192 p.
5. Ovsyanikov V. B., Borovsky B. I. Theory and Calculation of Liquid Rocket Engines Generator Sets. М, 1986. 376 p.
6. Borovsky B. I. Power Parameters and Characteristics of High-Speed Impeller Pumps. М., 1989. 181 p.
Downloads: 18
Abstract views: 
684
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; North Bergen; Plano; Monroe; Ashburn; Boardman; Seattle; Portland; San Mateo; San Mateo; San Mateo; Columbus; Ashburn14
Singapore Singapore; Singapore; Singapore3
Ukraine Dnipro1
9.2.2018 The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps
9.2.2018 The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps
9.2.2018 The Impact of Worm Design on Power and Anti-Cavitation Properties of Worm-Centrifugal Pumps

Keywords cloud

]]>
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall https://journal.yuzhnoye.com/content_2018_2-en/annot_7_2_2018-en/ Thu, 07 Sep 2023 11:12:23 +0000 https://journal.yuzhnoye.com/?page_id=30754
Experimental Investigation of Dynamic Characteristics of Gas Pressure Regulator in Multiple Ignition LRE Starting System.
]]>

7. Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2018 (2); 57-67

DOI: https://doi.org/10.33136/stma2018.02.057

Language: Russian

Annotation: During experimental investigation of the dynamic characteristics of a pneumatic test bench for testing liquid rocket engine high-flowrate automatic units, the effect was detected of 20-35% sound speed increase in the gas flow moving along the channel with corrugated wall (metal hose) which is a part of test bench drain system. The article presents the results of experiments and the task of theoretical justification of the effect is solved. It is indicated that its causes may be two mutually complementary factors – a decrease of gas compressibility at eddy motion and oscillations of metal hose wall. The physical model is considered that describes variation of gas elasticity and density in the conditions of high flow vorticity. It is supposed that in the near-wall layer of the channel, toroidal vortexes (vortex rings) are formed, which move into turbulent core of the flow where their size decreases and the velocity of rotation around the ring axis of torus increases. The spiral shape of the corrugation ensures also axial rotation, which increases vortexes stability. The intensive rotation around the ring axis creates considerable centrifugal forces; as a result, the dependence of pressure on gas density and the sound speed increase. The mathematical model has been developed that describes coupled longitudinal-lateral oscillations of gas and channel’s corrugated shell. It is indicated that in the investigated system, two mutually influencing wave types are present – longitudinal, which mainly transfer gas pressure pulses along the channel and lateral ones, which transfer the shell radial deformation pulses. As a result of modeling, it has been ascertained that because of the lateral oscillations of the wall, the propagation rate of gas pressure longitudinal waves (having the same wave length as in the experiments at test bench) turns out to be higher than adiabatic sound speed.

Key words: rocket engine automatic units, pneumatic test bench, metal hose, corrugated shell, toroidal vortex, longitudinal-lateral oscillations

Bibliography:
1. Shevchenko S. A. Experimental Investigation of Dynamic Characteristics of Gas Pressure Regulator in Multiple Ignition LRE Starting System. Problems of Designing and Manufacturing Flying Vehicle Structures: Collection of scientific works. 2015. Issue 4 (84). P. 49-68.
2. Shevchenko S. A., Valivakhin S. A. Results of Mathematical Modeling of Transient Processes in Gas Pressure Regulator. NTU “KhPI” News. 2014. No. 39 (1082). P. 198-206.
3. Shevchenko S. A., Valivakhin S. A. Mathematical Model of Gas Pressure Regulator. NTU “KhPI” News. 2014. No. 38 (1061). P. 195-209.
4. Shevchenko S. A., Konokh V. I., Makoter A. P. Gas Dynamic Resistance and Sound Speed in Channel with Corrugated Wall. NTU “KhPI” News. 2016. No. 20 (1192). P. 94-101.
5. Flexible Metal Hoses. Catalogue. Ufimsky Aggregate Company “Hydraulics”, 2001.
6. Loytsyansky L.G. Liquid and Gas Mechanics. М., 1978. 736 p.
7. Prisnyakov V. F. et al. Determination of Gas Parameters at Vessel Emptying Taking into Account Compressibility and Manifold Resistance. Problems of High-Temperature Engineering: Collection of scientific works. 1981. P. 86-94.
8. Kirillin V. A., Sychyov V. V., Sheydlin A. E. Technical Thermodynamics. М., 2008. 486 p.
9. Grekhov L. V., Ivashchenko N. A., Markov V. A. Propellant Equipment and Control Systems of Diesels. М., 2004. 344 p.
10. Sychyov V. V., Vasserman A. A., Kozlov A. D. et al. Thermodynamic Properties of Air. М., 1978. 276 p.
11. Shariff K., Leonard A. Vortex rings. Annu. Rev. Fluid Mech. 1992. Vol. 24. P. 235-279. https://doi.org/10.1146/annurev.fl.24.010192.001315
12. Saffman F. Vortex Dynamics. М., 2000. 376 p.
13. Akhmetov D. G. Formation and Basic Parameters of Vortex Rings. Applied Mechanics and Theoretical Physics. 2001. Vol. 42, No 5. P. 70–83.
14. Shevchenko S. A., Grigor’yev A. L., Stepanov M. S. Refinement of Invariant Method for Calculation of Gas Dynamic Parameters in Rocket Engine Starting Pneumatic System Pipelines. NTU “KhPI” News. 2015. No. 6 (1115). P. 156-181.
Downloads: 15
Abstract views: 
626
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Plano; Columbus; Los Angeles; Monroe; Ashburn; Ashburn; Seattle; San Mateo; Boardman10
Singapore Singapore; Singapore; Singapore3
Ukraine Dnipro; Dnipro2
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall

Keywords cloud

]]>
5.2.2018 Electromagnetic Valves Developed by Yuzhnoye SDO Liquid Rocket Engines Design Office https://journal.yuzhnoye.com/content_2018_2-en/annot_5_2_2018-en/ Thu, 07 Sep 2023 11:01:49 +0000 https://journal.yuzhnoye.com/?page_id=30749
Recently, Yuzhnoye State Design Office develops the apogee RD840 LRE with 400 N thrust, for the conditions of which the direct-action electrohydraulic valve was developed and tested with the following characteristics: pressure – up to 2.15 MPa, consumed power in operation mode – less than 7.1 W, action time – not more than 0.02 s, mass – 0.19 kg.
]]>

5. Electromagnetic Valves Developed by Yuzhnoye SDO Liquid Rocket Engines Design Office

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 34-48

DOI: https://doi.org/10.33136/stma2018.02.034

Language: Russian

Annotation: In the pneumohydraulic systems of liquid rocket engines and propulsion systems, electromagnetic valves that allow making the pneumohydraulic systems more simple and ensuring multiple ignition of liquid rocket engines have found wide application. The Yuzhnoye-developed electromagnetic valves are designed according to two schemes – of direct and indirect action. In the direct-action electromagnetic valves, the shutting-off device opens (closes) the throat with the force developed by electric magnet. They have gained acceptance in the pneumohydraulic systems with the working medium pressure of ~8.5 MPa, they are of simple design and have high operating speed (0.001…0.05 s). In the electromagnetic valves with amplification, the electromagnet armature is connected with control valve and the main shutting-off device moves due to the force from working medium pressure drop on it. They are used in the operating pressure range of 0.5…56 MPa, at that, the action time is 0.025…0.15 s. For the European Vega launch vehicle fourth stage main engine assembly that has pressure propellant feeding system, the electrohydraulic valve with amplification and drainage was developed. The dependence of this electrohydraulic valve high speed from the line’s output length is decreased to the maximum due to the installation of Venturi nozzle at the output connecting branch. This electrohydraulic valve is operable at the pressure below 8 MPa, the action time is 0.08…0.12 s. The present-day spacecraft gas-jet orientation and stabilization systems use as propulsion devices the electromagnetic valves with nozzles whose thrust is, as a rule, not more than 30 N and the working medium pressure is up to 24 MPa. Yuzhnoye State Design Office developed for 15B36 gas-jet system the electropneumatic valve with amplification and nozzle, which is operable at the pressure below 45 MPa, ensures the action frequency of up to 10 Hz and is capable of creating the thrust of 100 N on gaseous argon. To solve the task of decreasing the dependence of operability and high speed of electromagnetic valves with drainage and amplification on geometry of lines in which a valve is installed, the electropneumatic valve was developed that has spool elements ensuring reliable and quick action with long input lines of 0.004 m diameter. Its mass is 2…2.5 times lower than the mass of analogs. Recently, Yuzhnoye State Design Office develops the apogee RD840 LRE with 400 N thrust, for the conditions of which the direct-action electrohydraulic valve was developed and tested with the following characteristics: pressure – up to 2.15 MPa, consumed power in operation mode – less than 7.1 W, action time – not more than 0.02 s, mass – 0.19 kg. The presented electromagnetic valves by their technical and operational characteristics meet the highest world requirements and have found wide utility in liquid rocket engines and propulsion systems.

Key words: electrohydraulic valve, electropneumatic valve, pneumohydraulic system, direct-action electric valve, electric valve with amplification, action time

Bibliography:
1. Electric Hydraulic Valve: Patent 89948 Ukraine: MPK F 16K 32/02 / Shnyakin V. M., Konokh V. I., Kotrekhov B. I., Troyak A. B., Boiko V. S.; Applicant and patent holder Yuzhnoye State Design Office. а 2006 02543; claimed 09.03.2006; published 25.03.2010, Bulletin No. 6.
2. Boiko V. S., Konokh V. I. Stabilization of Opening Time of Electric Hydraulic Valve with Boost in Liquid Rocket Engine Hydraulic System. Problems of Designing and Manufacturing Flying Vehicle Structures: Collection of scientific works. 2015. Issue 4 (84). P. 39-48.
3. Electric Valve: Patent 97841, Ukraine: MPK F 16K 32/02 / Shnyakin V. M., Konokh V. I., Kotrekhov B. I., Troyak A. B., Boiko V. S., Ivashura A. V.; Applicant and patent holder Yuzhnoye State Design Office. а 2009 12002; claimed 23.11.2009; published 26.03.2012, Bulletin No. 6.
4. Boiko V. S., Konokh V. I. Increase of Action Stability of Electric Pneumatic Valve with Boost in the System with Increased Inlet Hydraulic Resistance. Aerospace Engineering and Technology: Scientific-Technical Journal. 2013. Issue 3 (100). P. 90-95.
5. Flying Vehicles Pneumatic Systems Units / Lyaskovsky I. F., Shishkov A. I., Romanenko N. T., Romanenko M. T., Chernov M. T., Yemel’yanov V. V. / Under the editorship of N. T. Romanenko. М., 1976. 176 p.
Downloads: 14
Abstract views: 
622
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Plano; Dublin; Monroe; Ashburn; Ashburn; Boardman; Seattle; Portland; Boardman9
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro1
5.2.2018 Electromagnetic Valves Developed by Yuzhnoye SDO Liquid Rocket Engines Design Office
5.2.2018 Electromagnetic Valves Developed by Yuzhnoye SDO Liquid Rocket Engines Design Office
5.2.2018 Electromagnetic Valves Developed by Yuzhnoye SDO Liquid Rocket Engines Design Office

Keywords cloud

]]>
3.2.2018 Possible Ways of Modernization of VEGA Launch Vehicle AVUM Stage Main Engine Assembly https://journal.yuzhnoye.com/content_2018_2-en/annot_3_2_2018-en/ Thu, 07 Sep 2023 08:42:19 +0000 https://journal.yuzhnoye.com/?page_id=30733
This LRE has a combination of attractive characteristics, such as high specific pulse, low mass, multiple ignitions in flight, high reliability confirmed by good results of flight test of the prototype engines. Increasing the thrust and specific pulse of Vega LV VG143 main engine assembly and AVUM stage takes place due to the use of pneumopump propellant feeding system instead of standard pressure feeding. Besides, the information is presented on RD859, RD864, RD866 and RD869 prototype engines, the data on their basic characteristics, testing and operation. Main engine of the Vega fourth stage: characteristics and heritage.
]]>

3. Possible Ways of Modernization of VEGA Launch Vehicle AVUM Stage Main Engine Assembly

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 16-24

DOI: https://doi.org/10.33136/stma2018.02.016

Language: Russian

Annotation: The Ukrainian companies Yuzhnoye SDO and SE PA YMZ supply VG143 main engine assembly for Vega LV AVUM upper stage, which is a one-chamber LRE of 250 kg thrust with five ignitions in flight. By the present, 11 successful launches of Vega LV have been made. In the process of flight operation, there were no critical comments on engines operation. This LRE has a combination of attractive characteristics, such as high specific pulse, low mass, multiple ignitions in flight, high reliability confirmed by good results of flight test of the prototype engines. The reserve of this engine from the viewpoint of further modernization is far from being exhausted. Enhancing the capabilities of payload injection by launch vehicles into various orbits of artificial Earth satellites is the main task for the developers of ILV as a whole and for the developers of separate assemblies and systems, such as LRE being part of ILV. With consideration for the experience of prototype engines testing, we should note the following ways of main engine assembly modernization: – increasing the specific pulse due to the increase of nozzle expansion ratio; – decreasing the volume of internal manifolds and mass of chamber; – increasing the operation time; – increasing the ignitions number; – increasing the duration of pauses between ignitions and orbital functioning time. Increasing the thrust and specific pulse of Vega LV VG143 main engine assembly and AVUM stage takes place due to the use of pneumopump propellant feeding system instead of standard pressure feeding. Besides, the information is presented on RD859, RD864, RD866 and RD869 prototype engines, the data on their basic characteristics, testing and operation. The below information is of interest to LRE and LV developers.

Key words: main engine assembly, liquid rocket engine, ways of modernization, engine chamber

Bibliography:
1. Shnyakin V., Shul’ga V., Zhivotov A., Dibrivny A. Creating a new generation of space-craft liquid rocket engines basing on pneumopump propellant supply systems. Space Propulsion: International Conference. France, Bordeaux. 2012.
2. Shul’ga V. Development status and improvement methods for upper stage engines of Vega and Cyclone launch vehicles. Space Propulsion; International Conference. Germany, Cologne. 2014.
3. De Rose L., Parmigiani P., Shnyakin V., Shulga V., Pereverzyev V., Caramelli F. Main engine of the Vega fourth stage: characteristics and heritage. 4th International Conference on Launcher Technology “Space Launcher Liquid Propulsion”. Netherlands, Noordwijk. 2018.
4. Kovalenko A. N., Pereverzev V. G., Marchan R. A., Blishun Y. V. Experimental Confirmation of Feasibility of Improving Power-Mass Characteristics of LRE for Vega Launch Vehicle Upper Stage: Paper presentation at the International Scientific-Technical Conference. S. P. Korolev SGAU, 2014.
Downloads: 18
Abstract views: 
650
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Monroe; Ashburn; Columbus; Ashburn; Seattle; San Mateo; San Mateo; San Mateo; Boardman; Ashburn13
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro1
3.2.2018 Possible Ways of Modernization of VEGA Launch Vehicle AVUM Stage Main Engine Assembly
3.2.2018 Possible Ways of Modernization of VEGA Launch Vehicle AVUM Stage Main Engine Assembly
3.2.2018 Possible Ways of Modernization of VEGA Launch Vehicle AVUM Stage Main Engine Assembly

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
1.1.2017 Methodology for Measurement Uncertainty Evaluation during Metrological Certification of Measuring Instruments https://journal.yuzhnoye.com/content_2017_1/annot_1_1_2017-en/ Wed, 19 Jul 2023 06:34:56 +0000 https://journal.yuzhnoye.com/?page_id=29354
The example is presented of the evaluation of measurement uncertainties of pressure measurement channel. Introduction of the methodology under consideration will ensure compliance of the metrological characteristics determined with the regulations of international normative documents.
]]>

1. Methodology for Measurement Uncertainty Evaluation during Metrological Certification of Measuring Instruments

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (1); 3-7

Language: Russian

Annotation: The analysis is presented of measurement uncertainties components by A and B types during metrological certification of measuring instrumentation. The example is presented of the evaluation of measurement uncertainties of pressure measurement channel. Introduction of the methodology under consideration will ensure compliance of the metrological characteristics determined with the regulations of international normative documents.

Key words:

Bibliography:
Downloads: 27
Abstract views: 
245
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Los Angeles; Monroe; Seattle; Ashburn; Seattle; Portland; San Mateo; San Mateo; San Mateo; Boardman; Ashburn; Boardman13
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore11
Ukraine Dnipro; Dnipro2
Finland Helsinki1
1.1.2017 Methodology for Measurement Uncertainty Evaluation during Metrological Certification of Measuring Instruments
1.1.2017 Methodology for Measurement Uncertainty Evaluation during Metrological Certification of Measuring Instruments
1.1.2017 Methodology for Measurement Uncertainty Evaluation during Metrological Certification of Measuring Instruments
]]>
14.1.2017 Design Studies into Dynamic and Structural Characteristics of Two-Stage Direct-Action Solenoid-Operated Hydraulic Valve https://journal.yuzhnoye.com/content_2017_1/annot_14_1_2017-en/ Wed, 28 Jun 2023 11:39:18 +0000 https://journal.yuzhnoye.com/?page_id=29497
Design Studies into Dynamic and Structural Characteristics of Two-Stage Direct-Action Solenoid-Operated Hydraulic Valve Authors: Boiko V. 2017 (1); 88-94 Language: Russian Annotation: The configuration is considered of direct-action electrohydraulic valve ensuring wider operating range of the working fluid flow rate and pressure. The mathematical model of electrohydraulic valve is presented and the computational investigations of dynamic characteristics were performed. (2017) "Design Studies into Dynamic and Structural Characteristics of Two-Stage Direct-Action Solenoid-Operated Hydraulic Valve" Космическая техника.
]]>

14. Design Studies into Dynamic and Structural Characteristics of Two-Stage Direct-Action Solenoid-Operated Hydraulic Valve

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (1); 88-94

Language: Russian

Annotation: The configuration is considered of direct-action electrohydraulic valve ensuring wider operating range of the working fluid flow rate and pressure. The mathematical model of electrohydraulic valve is presented and the computational investigations of dynamic characteristics were performed. As a result of the investigations, the calculated dependencies were obtained that enable evaluating the design parameters impact on valve opening time when designing an electrohydraulic valve of given type.

Key words:

Bibliography:
1. Flying Vehicles Pneumatic Systems Units / I. F. Lyaskovsky, А. I. Shishkov, N. T. Romanenko, М. Т. Romanenko, М. Т. Chernov, V. V. Yemel’yanov; Under the editorship of N. T. Romanenko. М., 1976. 176 p.
2 Rotmansky O. I. Space Flying Vehicles Reaction Control Systems Valves / O. I. Rotmansky, I. R. Krichker. М., 1980. 136 p.
3. Useful Model Patent 95379 Russian Federation, MPK F16K32/02. Electromagnetic Stop Valve (Options) / Applicants and patent holders V. V. Zakharenkov, V. I. Kotelnikov. №2010106035/22; Claimed 19.02.2010; Published 20.08.2014, Bulletin No. 23. 4 p.: il.
4. Roters G. Electromagnetic Mechanisms. М., 1949. 522 p.
5. Patent 89948 Ukraine, MPK F16K32/02. Electrohydraulic Valve / V. M. Shnyakin, V. I. Konokh, B. I. Kotrekhov, А. B. Troyak, V. S. Boiko; Applicant and patent holder Yuzhnoye State Design Office, Dnipropetrovsk. а 2006 02543; Claimed 09.03.2006; Published 25.03.2010, Bulletin No. 6. 4 p.: il.
6. Gutovsky M. V. Reference Book on Designing and Calculation of Aviation Electric Equipment Elements / М. V. Gutovsky, V. F. Korshunov. М., 1962. 165 p.
7. Mathematic Modeling of Liquid Rocket Engines Working Process / Е. N Belyayev, V. K. Chvanov, V. V. Chervakov; Under the editorship of V. K. Chvanov. М., 1999. 228 p.
Downloads: 21
Abstract views: 
237
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Baltimore; Los Angeles; North Bergen; Ashburn; Seattle; Ashburn; Seattle; Portland; San Mateo; San Mateo; San Mateo; Boardman12
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro; Dnipro2
14.1.2017 Design Studies into Dynamic and Structural Characteristics of Two-Stage Direct-Action Solenoid-Operated Hydraulic Valve
14.1.2017 Design Studies into Dynamic and Structural Characteristics of Two-Stage Direct-Action Solenoid-Operated Hydraulic Valve
14.1.2017 Design Studies into Dynamic and Structural Characteristics of Two-Stage Direct-Action Solenoid-Operated Hydraulic Valve
]]>