Search Results for “procedure” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Thu, 20 Jun 2024 09:42:32 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “procedure” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 1.1.2020 Solving a problem of optimum curves of descent using the enhanced Euler equation https://journal.yuzhnoye.com/content_2020_1-en/annot_1_1_2020-en/ Thu, 20 Jun 2024 11:13:04 +0000 https://test8.yuzhnoye.com/?page_id=27120
Taking into account this pro vision and some other assumptions, the procedures have been determined for simultaneous application of the Euler equation and its analogue being non-invariant in relation to the coordinate system.
]]>

1. Solving a problem of optimum curves of descent using the enhanced Euler equation

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The National Academy of Sciences of Ukraine, Kyiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 3-12

DOI: https://doi.org/10.33136/stma2020.01.003

Language: Russian

Annotation: The purpose of this study is the enhancement of Euler equation possibilities in order to solve the brachistochrone problem that is the determination of a curve of fastest descent. There are two circumstances: 1) the first integral of an Euler equation does not contain a partial derivative of integrand with respect to y in an explicit form; 2) when the classical Euler equation is derived, only the second term of integrand is integrated by parts. This allowed formulating a problem of determination of new conditions of functional extremality. It is assumed that the integrand of the first variation of a functional is equal to zero. Taking into account this pro vision and some other assumptions, the procedures have been determined for simultaneous application of the Euler equation and its analogue being non-invariant in relation to the coordinate system. The brachistochrone problem was solved using these equations: the curves that satisfy the conditions of weak minimum optimality were plotted. The time of a material point’s descent along the suggested curves and the classic extremals was numerically compared. It is shown that the application of suggested curves ensures short descent time as compared to the classic extremals.

Key words: first variation of a functional, joint application of extremality conditions, non-invariance in relation to the coordinate system, parametric shape of the second variation, optimum curves of descent

Bibliography:

1. Bliss G. A. Lektsii po variatsionnomu ischisleniiu. М., 1960. 462 s.
2. Yang L. Lektsii po variatsionnomu ischisleniiu i teorii optimalnogo uravneniia. М.,1974. 488 s.
3. Elsgolts L. E. Differentsialnye uravneniia i variatsionnoe ischislenie. М., 1965. 420 s.
4. Teoriia optimalnykh aerodinamicheskikh form / pod red. А. Miele. М., 1969. 507 s.
5. Shekhovtsov V. S. O minimalnom aerodinamicheskom soprotivlenii tela vrashcheniia pri nulevom ugle ataki v giperzvukovom neviazkom potoke. Kosmicheskaia tekhnika. Raketnoe vooruzhenie: Sb. nauch.-tekhn. st. / GP “KB “Yuzhnoye”. Dnipro, 2016. Vyp. 2. S. 3–8.
6. Sumbatov А. S. Zadacha o brakhistokhrone (klassifikatsiia obobshchenii i nekotorye poslednie resultaty). Trudy MFTI. 2017. T. 9, №3 (35). S. 66–75.

Downloads: 30
Abstract views: 
1167
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn19
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro; Odessa2
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
1.1.2020 Solving a problem of optimum curves of descent using the enhanced Euler equation
1.1.2020 Solving a problem of optimum curves of descent using the enhanced Euler equation
1.1.2020 Solving a problem of optimum curves of descent using the enhanced Euler equation

Keywords cloud

]]>
11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM https://journal.yuzhnoye.com/content_2024_1-en/annot_11_1_2024-en/ Mon, 17 Jun 2024 08:41:21 +0000 https://journal.yuzhnoye.com/?page_id=35014
It gave the possibility, for the first time for the lunar environment, to suggest a procedure to calculate the auger conveyor parameters, such as the conveyor capacity and the corresponding power of the electric motor, using known geometrical parameters of the mainline and pipeline, the auger conveyor filling ratio and the parameters of the selected electrical motor.
]]>

11. Parameters calculation of the lunar regolith transport system

Organization:

National Academy of Sciences of Ukraine, M.S. Poliakov Institute of geotechnical mechanics1; Ukrainian State University of Science and Technologies2; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2024, (1); 93-101

Language: Ukrainian

Annotation: The objective of this article is to develop a scientifically proven method of calculation of the auger conveyor parameters, such as the conveyor capacity and the corresponding power of the electrical motor, for different densities and porosities of conveyed materials, the geometrical parameters of the auger, and the specificity of the gravitational fields at the place of transportation. Another objective is to investigate potential limitations of the auger parameters when transporting lunar regolith. To reach these objectives, the known relations for calculating the auger conveyor parameters were applied, as well as the fundamental laws of the granular media mechanics, the principal equations of asynchronous motor electrodynamics, and the behavior of granular media when moving it with the auger conveyor, experimentally studied by the domestic authors. It gave the possibility, for the first time for the lunar environment, to suggest a procedure to calculate the auger conveyor parameters, such as the conveyor capacity and the corresponding power of the electric motor, using known geometrical parameters of the mainline and pipeline, the auger conveyor filling ratio and the parameters of the selected electrical motor. It gave the possibilities to study how the filling ratio of the auger conveyor influences its principal performance parameters and determine potential limitations of the geometrical parameters and the filling ratios of auger conveyors according to the parameters and features of the selected electrical motor. The allowable transportation distances, diameters, other geometrical parameters of auger conveyors, and conveyor filling ratios with the selected electrical motor have been determined. It has been proven that the solutions based on using auger conveyors would be most rational for transporting loose lunar regolith over the Moon’s surface because the auger conveyors are compact and adaptable, and they can be placed inside tubes and laid under the day surface, thereby ensuring the continuous transportation process. Furthermore, they are capable of autonomous operation and can use the electricity produced by solar arrays.

Key words: Moon, regolith, auger, electric motor, capacity, power

Bibliography:

1. Pustovgarov A. A., Osinoviy G. G. Kontseptsiya shlyuzovogo modulya misyachnoi bazy. ХХV Mizhnarodna molodizhna naukovo-praktychna conf. «Lyudyna i cosmos». Zbirnyk tez, NTsAOM, Dnipro, 2023. S. 86 – 87.
2. Semenenko P. V. Sposoby transortirovki poleznykh iskopaemykh ot mesta ikh dobychi k mestu pererabotki v lunnykh usloviyukh. P. V. Semenenko, D. G. Groshelev, G. G. Osinoviy, Ye. V. Semenenko, N. V. Osadchaya. XVII conf. molodykh vchenykh «Geotechnichni problemy rozrobky rodovysch». m. Dnipro, 24 zhovtnya 2019 r. S. 7.
3. Berdnik A. I. Mnogorazoviy lunniy lander. A. I. Berdnyk, M. D. Kalyapin, Yu. A. Lysenko, T. K. Bugaenko. Raketno-kosmichny complexy. 2019. T. 25. №5:3-10. ISSN 1561-8889.
4. Semenenko Ye. V., Osadchaya N. V. Traditsionnye i netraditsionnye vydy energii, a takzhe kosmicheskie poleznye iskopaemye v okolozemnom prostranstve. Nauch.-parakt. conf. «Sovremennye raschetno-experimentalnye metody opredeleniya characteristic raketno-kosmicheskoy techniki». m. Dnipro, 10 – 12 grudnya 2019 r. S. 62 – 63.
5. Komatsu pobudue excavator dlya roboty na Misyatsi https://www.autocentre.ua/ua/ news/concept/komatsu-postroit-ekskavator-dlya-raboty-na-lune-1380272.html.
6. Help NASA Design a Robot to Dig on the Moon https://www.nasa.gov/directorates/ stmd/help-nasa-design-a-robot-to-dig-on-the-moon/
7. Robert E. Grimm. Geophysical constaints on the lunar Procellarum KREEP Terrane. Vol. 118, Issue 4. April 2013. P. 768-778. https://agupubs-onlinelibrary-wiley-com.translate. goog/doi/10.1029/2012JE004114?_x_tr_sl=en&_x_tr_tl=ru&_x_tr_hl=ru&_x_tr_pto=sc
https://doi.org/10.1029/2012JE004114
8. Chen Li. A novel strategy to extract lunar mare KREEP-rich metal resources using a silicon collector. Kuixian Wei, Yang Li, Wenhui Ma, Yun Lei, Han Yu, Jianzhong Liu. Journal of Rare Earths Vol. 41, Issue 9, September 2023, P. 1429-1436. https://www-sciencedirect-com.translate.goog/science/article/ abs/pii/S1002072122001910?_x_tr_sl=en&_x_tr_tl=ru&_x_tr_hl=ru&_x_tr_pto=sc https://doi. org/10.1016/j.jre.2022.07.002
9. Moon Village Association https://moon-villageassociation.org/about/
10. GLOBAL MOON VILLAGE. https://space-architect.org/portfolio-item/ global-moon-village//
11. Just G. H. Parametric review of existing regolith excavation techniques for lunar In Situ Resource Utilization (ISRU) and recommendations for future excavation experiments. G. H. Just, Smith K., Joy K. H., Roy M. J. https://doi.org/10.1016/j.pss.2019.104746
https://www.sciencedirect.com/science/article/pii/S003206331930162X
12. Anthony J. Analysis of Lunar Regolith Thermal Energy Storage. Anthony J. Colozza Sverdrup Technology, Inc. Lewis Research Center Group Brook Park, Ohio NASA Contractor Report 189073. November 1991. S-9 https://denning.atmos.colostate.edu/readings/ lunar.regolith.heat.transfer.pdf
13. Obgruntuvannya vykorystannya shneka dlya utilizatsii vidkhodiv vuglezbagachennya z mozhlyvistyu pidvyschennya bezpeki energetychnoi systemy pidpriemstv. SLobodyannikova I. L., Podolyak K. K., Tepla T. D. Materialy XХІ Mizhnarod. conf. molodykh vchennykh (26 zhovt. 2023 roku, m. Dnipro). Dnipro: IGTM im. M.S. Polyakova NAN Ukrainy, 2023. S. 50–55.
14. Kulikivskiy V. L., Paliychuk V. K., Borovskiy V. M. Doslidzhennya travmuvannya zerna gvintovym konveerom. Konstryuvannya, vyrobnitstvo ta exspluatatsiya silskogospodarskykh mashin. 2016. Vyp. 46. S. 160 – 165.
14. Lyubin M. V., Tokarchuk O. A., Yaropud V. M. Osoblyvosti roboty krutopokhylennykh gvyntovykh transporterov pri peremischenni zernovoi produktsii. Tekhnika, energetika, transport APK. 216. № 3(95). S. 235 – 240.
15. Gevko R. B., Vitroviy A. O., Pik A. I. Pidvyschennya tekhnichnogo rivnya gnuchkykh gvyntovykh konveeriv. Ternopil: Aston, 2012. 204 s.
16. Bulgakov B. M., Adamchyuk V. V., Nadikto V. T., Trokhanyak O. M. Teoretichne obgruntuvannya parametriv gnuchkogo gvintovogo konveera dlya transportuvannya zernovykh materialiv. Visnyk agrarnoi nauki. 2023. № 4(841). S. 59 – 66.
17. New Views of the moon. Reviews in mineralogy and geochemistry. Eds. Joliff B.L., Wieczorek M.A., Shearer C.K., Neal C.R. Mineralogical Society of America. Reviews in mineralogy and geochemistry. 2006. Vol. 60. 721 p. DOI: 10.2138/rmg.2006.60.
18. Semenenko Ye. V. Nauchnye osnovy technologiy hydromechanizatsii otkrytoy razrabotki titan-cyrkonovykh rossypey. Yevgeniy Vladimirovich Semenenko. Kiev: Nauk. dumka, 2011. 232 s.

Downloads: 13
Abstract views: 
466
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Phoenix; Ashburn; Ashburn; Des Moines; Boardman; Ashburn7
Singapore Singapore; Singapore2
China Shanghai1
Finland Helsinki1
Netherlands Amsterdam1
Ukraine Dnipro1
11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM
11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM
11.1.2024 PARAMETERS CALCULATION OF THE LUNAR REGOLITH TRANSPORT SYSTEM

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
14.1.2024 EXPERIMENTAL STUDIES OF THE PERFORMANCE OF PYROTECHNIC DEVICES INSTALLED ON THE LAUNCH VEHICLE SEPARATION SYSTEMS https://journal.yuzhnoye.com/content_2024_1-en/annot_14_1_2024-en/ Mon, 17 Jun 2024 07:52:20 +0000 https://journal.yuzhnoye.com/?page_id=35004
Recommendations are provided to improve future experimental procedures.
]]>

14. Experimental studies of the performance of pyrotechnic devices installed on the launch vehicle separation systems

Автори: Bolyubash Ye. S.

Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2024, (1); 121-128

Language: Ukrainian

Annotation: Pyrotechnic devices are important elements in rocket and space technology, which to a large degree determine the flight success of the launch vehicles, since they enable instantaneous operations to separate spent stages, change configurations, ensure safety, etc. Pyrotechnic devices are subject to strict requirements for reliability, safety, security and efficiency. The article presents an experimental study of the performance of a linear shaped charge of a launch vehicle stage separation system. This type of linear shaped charge is one of the most common types of linear shaped charge, which are used in launch vehicle separation systems being developed in Ukraine. One of the main characteristics of the linear shaped charge, which determines the efficiency and reliability of the separation process, is the depth of penetration of the cumulative jet into the obstacle. The work studied the effect of a cumulative jet of a linear shaped charge with a semi-cylindrical cumulative part. An experimental confirmation of the performance of this type of linear shaped charge is presented, using the example of a linear shaped charge with a diameter of 5 mm, acting on an obstacle made of aluminum alloy grade 2219. The research methodology, experimental scenario, in particular, a description of the research object and a scheme for measuring test results are presented. Depth of cumulative jet penetration into the obstacle was measured in 60 points along the cut line of the samples under study. A statistical analysis of the experimental results was carried out, in particular, the average penetration depth was determined. An improved formula is proposed for the practical calculation of the penetration depth of a cumulative jet for a linear shaped charge with a semi-cylindrical cumulative part, using an additional correction factor. It is noted that the depth of penetration of a cumulative jet into an obstacle is significantly influenced by technological aspects. Taking into account this influence, the lower limit of the one-sided tolerance interval was determined. Recommendations are provided to improve future experimental procedures. Based on the obtained results, it was established that the linear shaped charges under study are operational and meet the requirements for linear shaped charges, installed on launch vehicle separation systems.

Key words: cumulative effect, shaped charge, linear shaped charge, separation systems, pyrotechnic separation devices, linear shaped charge parameters.

Bibliography:
  1. Petushkov V. G. Pod red. B.Ye.Patona, Priminenie vzryva v svarochnoy technike, K.: Nauk. dumka, 2005, 754 s.
  2. Physika vzryva. Izd. tretie, t. ІІ. Pod red. L. P. Orlenko. Nauka, 2004, 644 s.
  3. Baum F. A., Stanyukovich K. P., Shekhter B. I. Physika vzryva. Gos. izd. FM lit. M. 1959, 800 s.
  4. Kolesnikov K. S., Kozlov V. I., Kokushkin V. V. Dynamika razdeleniya stupeney letatelnykh apparatov. M.: Mashinostroenie. 1977, 224 s.
  5. Kumulyativniy efect ta iogo vykorystannya dlya rozdilennya raketno-kosmichnykh elementiv za dopomogou pyrotechnichnykh prystroiv. Ye. S. Bolyubash. Materialy XVII naukovykh chytan’ «Dniprovska orbita – 2022» (26–28 zhovtnya). Dnipro, 2022. 263 s.
  6. ISO 16269-6:2003 Statistical interpretation of data – Part 6: Determination of statistical tolerance intervals (IDT).
  7. Kobzar A. N. Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov. M.: Phizmatlit, 2006, 816 s.
Downloads: 14
Abstract views: 
651
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Phoenix; Ashburn; Seattle; Des Moines; Boardman; Ashburn7
Ukraine Dnipro; Dnipro; Dnipro3
Singapore Singapore; Singapore2
Finland Helsinki1
Netherlands Amsterdam1
14.1.2024 EXPERIMENTAL STUDIES OF THE PERFORMANCE OF PYROTECHNIC DEVICES INSTALLED ON THE LAUNCH VEHICLE SEPARATION SYSTEMS
14.1.2024 EXPERIMENTAL STUDIES OF THE PERFORMANCE OF PYROTECHNIC DEVICES INSTALLED ON THE LAUNCH VEHICLE SEPARATION SYSTEMS
14.1.2024 EXPERIMENTAL STUDIES OF THE PERFORMANCE OF PYROTECHNIC DEVICES INSTALLED ON THE LAUNCH VEHICLE SEPARATION SYSTEMS

Keywords cloud

]]>
5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight https://journal.yuzhnoye.com/content_2024_1-en/annot_5_1_2024-en/ Thu, 13 Jun 2024 06:00:42 +0000 https://journal.yuzhnoye.com/?page_id=34981
This allows using a known procedure to identify risks. Procedure for evaluation of flight safety of launch vehicles, which uses geometric representation of object lesion zone in the form of a polygon.
]]>

5. Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight

Page: Kosm. teh. Raket. vooruž. 2024, (1); 40-50

Language: English

Annotation: Despite stringent environmental requirements, modern launch vehicles/integrated launch vehicles (LV/ILV) burn toxic propellants such as NTO and UDMH. Typically, such propellants are used in the LV/ILV upper stages, where a small amount of propellant is contained; however, some LV/ILV still use such fuel in all sustainer propulsion stages. For launch vehicles containing toxic rocket propellants, flight accidents may result in the failed launch vehicle falling to the Earth’s surface, forming large zones of chemical damage to people (the zones may exceed blast and fire zones). This is typical for accidents occurring in the first stage flight segment, when an intact launch vehicle or its components (usually individual stages) with rocket propellants will reach the Earth’s surface. An explosion and fire following such an impact will most likely lead to a massive release of toxicant and contamination of the surface air. An accident during the flight segment of the LV/ILV first stage with toxic rocket propellants, equipped with a flight termination system that implements emergency engine shutdown in case of detection of an emergency situation, has been considered. To assess the risk of toxic damage to a person located at a certain point, it is necessary to mathematically describe the zone within which a potential impact of the failed LV/ILV will entail toxic damage to the person (the so-called zone of dangerous impact of the failed LV/ILV). The complexity of this lies in the need to take into account the characteristics of the atmosphere, primarily the wind. Using the zone of toxic damage to people during the fall of the failed launch vehicle, which is proposed to be represented by a combination of two figures: a semicircle and a half-ellipse, the corresponding zone of dangerous impact of the failed LV/ILV is constructed. Taking into account the difficulties of writing the analytical expressions for these figures during the transition to the launch coordinate system and further integration when identifying the risk, in practical calculations we propose to approximate the zone of dangerous impact of the failed LV/ILV using a polygon. This allows using a known procedure to identify risks. A generalization of the developed model for identifying the risk of toxic damage to people involves taking into account various types of critical failures that can lead to the fall of the failed LV/ILV, and blocking emergency engine shutdown during the initial flight phase. A zone dangerous for people was constructed using the proposed model for the case of the failure of the Dnepr launch vehicle, where the risks of toxic damage exceed the permissible level (10–6). The resulting danger zone significantly exceeds the danger zone caused by the damaging effect of the blast wave. Directions for further improvement of the model are shown, related to taking into account the real distribution of the toxicant in the atmosphere and a person’s exposure to a certain toxic dose.

Key words: launch vehicle, critical failure, flight accident, zone of toxic damage to people, zone of dangerous impact of the failed launch vehicle, risk of toxic damage to people.

Bibliography:
  1. Hladkiy E. H. Protsedura otsenky poletnoy bezopasnosti raket-nositeley, ispolzuyuschaya geometricheskoe predstavlenie zony porazheniya obiekta v vide mnogougolnika. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2015. Vyp. 3. S. 50 – 56. [Hladkyi E. Procedure for evaluation of flight safety of launch vehicles, which uses geometric representation of object lesion zone in the form of a polygon. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2015. Issue 3. Р. 50 – 56. (in Russian)].
  2. Hladkiy E. H., Perlik V. I. Vybor interval vremeni blokirovki avariynogo vyklucheniya dvigatelya na nachalnom uchastke poleta pervoy stupeni. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-tech. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2011. Vyp. 2. s. 266 – 280. [Hladkyi E., Perlik V. Selection of time interval for blocking of emergency engine cut off in the initial flight leg of first stage. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2011. Issue 2. Р. 266 – 280. (in Russian)].
  3. Hladkiy E. H., Perlik V. I. Matematicheskie modeli otsenki riska dlya nazemnykh obiektov pri puskakh raket-nositeley. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2010. Vyp. 2. S. 3 – 19. [Hladkyi E., Perlik V. Mathematic models for evaluation of risk for ground objects during launches of launch-vehicles. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2010. Issue 2. P. 3 – 19. (in Russian)].
  4. NPAOP 0.00-1.66-13. Pravila bezpeki pid chas povodzhennya z vybukhovymy materialamy promyslovogo pryznachennya. Nabrav chynnosti 13.08.2013. 184 s [Safety rules for handling explosive substances for industrial purposes. Consummated 13.08.2013. 184 p.
    (in Ukranian)].
  5. AFSCPMAN 91-710 RangeSafetyUserRequirements. Vol. 1. 2016 [Internet resource]. Link : http://static.e-publishing.af.mil/production/1/afspc/publicating/
    afspcman91-710v1/afspcman91-710. V. 1. pdf.
  6. 14 CFR. Chapter III. Commercial space transportation, Federal aviation administration, Department of transportation, Subchapter C – Licensing, part 417 – Launch Safety, 2023 [Internet resource]. Link: http://law.cornell.edu/cfr/text/14/part-417.
  7. 14 CFR. Chapter III. Commercial space transportation, Federal aviation administration, Department of transportation, Subchapter C – Licensing, part 420 License to Operate a Launch Site. 2022 [Internet resource]. Link: http://law.cornell.edu/cfr/text/14/part-420.
  8. ISO 14620-1:2018 Space systems – Safety requirements. Part 1: System safety.
  9. 9 GOST 12.1.005-88. Systema standartov bezopasnosti truda. Obschie sanitarno-gigienicheskie trebovaniya k vozdukhu rabochei zony. [GOST 12.1.005-88. Labor safety standards system. General sanitary and hygienic requirements to air of working zone].
  10. 10 Rukovodyaschiy material po likvidatsii avarijnykh bolshykh prolivov okislitelya АТ (АК) i goruchego NDMG. L.:GIPKh, 1981, 172 s. [Guidelines on elimination of large spillages of oxidizer NTO and fuel UDMH. L.:GIPH, 1981, 172 p. (in Russian)].
  11. 11 Kolichestvennaya otsenka riska chimicheskykh avariy. Kolodkin V. M., Murin A. V., Petrov A. K., Gorskiy V. G. Pod red. Kolodkina V. M. Izhevsk: Izdatelskiy dom «Udmurtskiy universitet», 2001. 228 s. [Quantitative risk assessment of accident at chemical plant. Kolodkin V., Murin A., Petrov A., Gorskiy V. Edited by Kolodkin V. Izhevsk: Udmurtsk’s University. Publish house, 2001. 228 p. (in Russian)].
Downloads: 14
Abstract views: 
553
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Phoenix; Buffalo; Ashburn; Tappahannock; Des Moines; Boardman7
Singapore Singapore; Singapore2
Ukraine Dnipro; Dnipro2
Finland Helsinki1
France1
Netherlands Amsterdam1
5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight
5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight
5.1.2024 Assessment of risk of toxic damage to people in case of a launch vehicle accident at flight

Keywords cloud

]]>
2.2.2019 Mathematical models for assessment of safety in the impact area of cluster ammunition of the warhead during missile complex testing https://journal.yuzhnoye.com/content_2019_2-en/annot_2_2_2019-en/ Sat, 16 Sep 2023 21:22:50 +0000 https://journal.yuzhnoye.com/?page_id=27204
Practical application of both models requires the use of numerical procedures.
]]>

2. Mathematical models for assessment of safety in the impact area of cluster ammunition of the warhead during missile complex testing

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019 (2); 11-17

DOI: https://doi.org/10.33136/stma2019.02.011

Language: Russian

Annotation: One of the main types of arming of modern tactical and short-range missiles are cassette warheads based on nonguided blast-fragmentation submunitions that are widely used to kill group targets. The fullscale testing (flight tests) is an integral part of their creation. In the process of flight tests of tactical and shortrange missiles with cassette warheads, the safety issues are topical. Based on the capabilities of existing test ranges, it is planned to conduct such tests for the tactical and short-range missiles, being under development in Ukraine, in the Black sea water area where the cassette warheads with nonguided blastfragmentation submunitions (or their equivalents) will pose major hazard for ships. In the paper, two mathematical models are proposed to assess probability of killing (risk) a ship that may be present in the impact area of submunitions (submunitions equivalents) of cassette warhead. The first model was constructed in the assumption that the coverage area of cassette warhead and group dispersion of submunitions are known. Such model may be used to determine safety in the initial phases of cassette warheads development. The second model assumes that the configuration of cassette warhead and the scheme of submunitions firing were finalized, and accordingly, the nominal impact points of submunitions and their group and ind ividual dispersion are considered to be known. Practical application of both models requires the use of numerical procedures.

Key words: flight safety, flight tests, cassette warheards

Bibliography:
1. Balaganskiy I. A., Merzhievskiy L. A. Deistvie sredstv porazheniya i boepripasov: ucheb. Novosibirsk, 2004. 408 s.
2 Gradstein I. S., Ryzhik I. M. Tablitsy integralov, summ, ryadov i proizvedeniy. M., 1963. 1100 s.
Downloads: 31
Abstract views: 
988
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Burke; Matawan; Baltimore; Boydton; Plano; Columbus; Detroit; Phoenix; Los Angeles; Ashburn; Seattle; Ashburn; Seattle; Portland; Des Moines; Des Moines; Boardman; Boardman; Ashburn; Boardman20
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro; Dnipro2
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
2.2.2019 Mathematical models for assessment of safety in the impact area of cluster ammunition of the warhead during missile complex testing
2.2.2019 Mathematical models for assessment of safety in the impact area of cluster ammunition of the warhead during missile complex testing
2.2.2019 Mathematical models for assessment of safety in the impact area of cluster ammunition of the warhead during missile complex testing

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
12.1.2020 Modification of technology as the main course in the military transport aircraft development https://journal.yuzhnoye.com/content_2020_1-en/annot_12_1_2020-en/ Wed, 13 Sep 2023 10:54:55 +0000 https://journal.yuzhnoye.com/?page_id=31043
All leading aircraft manufacturing companies in the world use modification procedures as the way to most quickly meet constantly changing requirements for military transport aircraft.
]]>

12. Modification of technology as the main course in the military transport aircraft development

Authors:

Los’ O. V.

Organization:

Antоnov Company, Kyiv, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 114-120

DOI: https://doi.org/10.33136/stma2020.01.114

Language: Russian

Annotation: The process of creating modifications of aircraft in the transport category is a very relevant and widespread phenomenon in modern aircraft construction. A separate group of military transport aircraft has been distinguished in connection with the specific character of their mission: – the need to formulate the characteristics “cargo – range” for light, medium, operational tactical and strategic military transport aircraft, since it is precisely according to this characteristic that they are positioned by their purpose; –specific requirements are imposed on military transport aircraft cargo compartment not only with respect to its geometrical dimensions and usable volume, but also with respect to the possibility of simultaneous accommodation of military equipment and people, as well as the placement of a stretcher with t he wounded during their evacuation from the war zone; – the possibility of airborne landing of military equipment and paratroopers, which requires specific hatches and means of maintaining weight balance in flight; – the possibility of basing on poorly prepared sites with a runway length of less than 800 m in the short take-off and landing (STL) mode, especially for operational tactical military-technical vehicles, which significantly expands their use in combat zones; – the possibility of conversion into a civilian aircraft: for the delivery of goods to areas of the far north, when fighting fires, when evacuating victims from disaster zones, etc. The article shows that creation of modifications of expensive military transport aircraft is the main direction of their development. All leading aircraft manufacturing companies in the world use modification procedures as the way to most quickly meet constantly changing requirements for military transport aircraft. Along with the traditional methods of designing the modifications, the domestic school proposed a new methodology for determining the necessary parameters for “deep” modifications in wing geometry and propulsion system. The methodology is based on the use of three principles: – ensuring growth of carrying capacity and the required range of modifications of military transport aircraft of various purposes; – geometric re-arrangement of wing and system of carrying surfaces “wing + tail units” according to the criterion of minimum inductive resistance when lifting forces are equal to basic version; – coordination of modifications in wing with the required parameters of propulsion system as a condition for ensuring the required fuel efficiency.

Key words: military transport aircraft, hallmarks of military transport aircraft modifications, principles of designing military transport aircraft modifications

Bibliography:
1. Krivov G. А. Mirovaia aviatsiia na rubezhe ХХ – ХХI stoletii. Promyshlennost, rynki. Kiev, 2003. 295 s.
2. Andrienko Yu. G. Metod formirovaniia sovokupnosti tekhniko-ekonomicheskikh kharakteristik v protsedure vybora proektnykh reshenii pri razrabotke transportnykh samoletov. Otkrytye informatsionnye i kompiuternye tekhnologii: sb. nauch. tr. NAU im. N. Е. Zhukovskogo “KhAI”. Kharkiv, 2002. Vyp. 12. С. 125–138.
3. Sheinin V. М. Rol’ modifikatsii v razvitii aviatsionnoi tekhniki. 1983. 226 s.
4. Babenko Yu. V. Metodika stoimostnoi otsenki modifikatsii blizhnemagistralnykh passazhirskikh samoletov. Aviatsionno-kosmicheskaia tekhnika i tekhnologiia: sb. nauch. tr. NAU im. N. Е. Zhukovskogo “KhAI”. Kharkiv, 2015. Vyp. 7(126). S. 145–149.
5. Los’ А. V. Poniatie koeffitsienta elliptichnosti trapetsievidnogo kryla i metod ego otsenki. Aviatsionno-kosmicheskaia tekhnika i tekhnologiia: sb. nauch. tr. NAU im. N. Е. Zhukovskogo “KhAI”. Kharkiv, 2019. Vyp. 9. S. 9–15.
Downloads: 30
Abstract views: 
817
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Boydton; Plano; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn19
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Cambodia Phnom Penh1
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
12.1.2020  Modification of technology as the main course in the military transport aircraft development
12.1.2020  Modification of technology as the main course in the military transport aircraft development
12.1.2020  Modification of technology as the main course in the military transport aircraft development

Keywords cloud

]]>
22.2.2018 Uncertainty Calculation Procedure during Measuring Instrumentation Calibration https://journal.yuzhnoye.com/content_2018_2-en/annot_22_2_2018-en/ Thu, 07 Sep 2023 12:34:07 +0000 https://journal.yuzhnoye.com/?page_id=30810
Uncertainty Calculation Procedure during Measuring Instrumentation Calibration Authors: Voloshina M. In Ukraine, there is no regulated procedure of uncertainty calculation during measuring instrumentation calibration, which causes the necessity of developing such procedure. This article proposes the measurement uncertainty calculation procedure during measuring instrumentation calibration, according to which the following calculations shall be made: a) of standard uncertainty of A type for corrected observation results obtained during calibration; b) of standard uncertainties of B type caused by error or uncertainty of working standard applied, calculation discreteness or calibrated measuring instrument division value, variation of calibrated measuring instrument indications; c) of total standard measurement uncertainty; d) of augmented measurement uncertainty. (2018) "Uncertainty Calculation Procedure during Measuring Instrumentation Calibration" Космическая техника.
]]>

22. Uncertainty Calculation Procedure during Measuring Instrumentation Calibration

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 184-189

DOI: https://doi.org/10.33136/stma2018.02.184

Language: Russian

Annotation: The effective documents in the field of metrological support require evaluating measurement uncertainty during measuring instrumentation calibration. In Ukraine, there is no regulated procedure of uncertainty calculation during measuring instrumentation calibration, which causes the necessity of developing such procedure. This article proposes the measurement uncertainty calculation procedure during measuring instrumentation calibration, according to which the following calculations shall be made: a) of standard uncertainty of A type for corrected observation results obtained during calibration; b) of standard uncertainties of B type caused by error or uncertainty of working standard applied, calculation discreteness or calibrated measuring instrument division value, variation of calibrated measuring instrument indications; c) of total standard measurement uncertainty; d) of augmented measurement uncertainty. As an example, the results of calculation of augmented measurement uncertainty during calibration are presented: – for 795M107B vibrometer in complete set with AC102-1A accelerometer; – for alternating voltage measurement channel of a measuring and computing complex of MIC type; – for a manometer of MT type. The obtained results of measurement uncertainty calculation are presented in the form of tables of measurement uncertainty budget, which shall be entered in the measuring instrument calibration certificate together with the observation results obtained during calibration. The proposed uncertainty calculation procedure is applicable for the given types of measuring instruments whose calibration is performed by method of direct measurement of known measurement values represented or controlled by working standards.

Key words: augmented measurement uncertainty, multiple measurements, measurement uncertainty budget, vibrometer, manometer of MT type, computing complex of MIC type

Bibliography:
1. The Law of Ukraine “On Metrology and Metrological Activity”. Supreme Rada News (SRN). 2014. No. 30. P. 1008.
2. General Requirements to Competence of Testing and Calibration Laboratories (ISO/IEC17025:2005, IDT): DSTU ISO/IEC17025:2006. К., 2007. 26 p.
3. Guide to the Expression of Uncertainty in Measurement. Geneva: ISO, 1993. 101 p.
4. Evaluation of the Uncertainty of Measurement in Calibration: ЕА–4/02 М:2013. European Association for Accreditation, 2013. 75 p.
5. Bondar’ M. A et al. Methodology of Measurement Uncertainty Evaluation during Measuring Instrumentation Certification. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2017. Issue 1. P. 3-7.
Downloads: 30
Abstract views: 
1441
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore; Plano; Columbus; Detroit; Phoenix; Monroe; Ashburn; Ashburn; Boardman; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn18
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
22.2.2018 Uncertainty Calculation Procedure during Measuring Instrumentation Calibration
22.2.2018 Uncertainty Calculation Procedure during Measuring Instrumentation Calibration
22.2.2018 Uncertainty Calculation Procedure during Measuring Instrumentation Calibration

Keywords cloud

]]>
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles https://journal.yuzhnoye.com/content_2018_2-en/annot_19_2_2018-en/ Thu, 07 Sep 2023 12:23:58 +0000 https://journal.yuzhnoye.com/?page_id=30801
2018 (2); 157-172 DOI: https://doi.org/10.33136/stma2018.02.157 Language: Russian Annotation: The measurement errors upon conducting flight tests for launch vehicles are evaluated by considering the interferences and uncertainties in the measurement system procedure. More reliable evaluation of errors upon conducted measurements can be achieved if the measurement process is regarded as a procedure of successive activities for designing, manufacturing, and testing the measurement system and the rocket including measurements and their processing during the after-flight analysis of the received data.
]]>

19. Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 157-172

DOI: https://doi.org/10.33136/stma2018.02.157

Language: Russian

Annotation: The measurement errors upon conducting flight tests for launch vehicles are evaluated by considering the interferences and uncertainties in the measurement system procedure. Formal use of this approach can lead to unpredictable consequences. More reliable evaluation of errors upon conducted measurements can be achieved if the measurement process is regarded as a procedure of successive activities for designing, manufacturing, and testing the measurement system and the rocket including measurements and their processing during the after-flight analysis of the received data. The sampling rates of the main controlled parameters are three to ten times higher than the frequency range of their changing. Therefore, it is possible to determine the characteristics of the random error components directly on the basis of registered data. The unrevealed systematic components create the basic uncertainty in the evaluation of the examined parameter’s total measurement error. To evaluate the precision and measurement accuracy of a particular launch, the article suggests specifying the preliminary data on measurement error components determined during prelaunch processing and launch. Basic structures of algorithms for evaluation of precision and measurement accuracy for certain mathematical models that form the measured parameters were considered along with the practical case when static correlation existed among the measured parameters.

Key words: flight tests, sensor, measurement error, mathematical model

Bibliography:
1. Novitsky P. V., Zograf I. A. Evaluation of Measurement Errors. L., 1985. 248 p.
2. Shmutzer E. Relativity Theory. Modern Conception. Way to Unity of Physics. М., 1981. 230 p.
3. Blekhman I. I., Myshkis A. D., Panovenko Y. G. Applied Mathematics: Subject, Logic, Peculiarities of Approaches. К., 1976. 270 p.
4. Moiseyev N. N. Mathematical Problems of System Analysis. М., 1981. 488 p.
5. Bryson A., Ho Yu-Shi. Applied Theory of Optimal Control. М., 1972. 544 p.
6. Yevlanov L. G. Monitoring of Dynamic Systems. М., 1972. 424 p.
7. Sergiyenko A. B. Digital Signal Processing: Collection of publications. 2011. 768 p.
8. Braslavsky D. A., Petrov V. V. Precision of Measuring Devices. М., 1976. 312 p.
9. Glinchenko A. S. Digital Signal Processing: Course of lectures. Krasnoyarsk, 2008. 242 p.
10. Garmanov A. V. Practice of Optimization of Signal-Noise Ratio at ACP Connection in Real Conditions. М., 2002. 9 p.
11. Denosenko V. V., Khalyavko A. N. Interference Protection of Sensors and Connecting Wires of Industrial Automation Systems. SТА. No. 1. 2001. P. 68-75.
12. Garmanov A. V. Connection of Measuring Instruments. Solution of Electric Compatibility and Interference Protection Problems. М., 2003. 41 p.
13. TP ACS Encyclopedia. bookASUTR.ru.
14. Smolyak S. A., Titarenko B. P. Stable Estimation Methods. М., 1980. 208 p.
15. Fomin A. F. et al. Rejection of Abnormal Measurement Results. М., 1985. 200 p.
16. Medich J. Statistically Optimal Linear Estimations and Control. М., 1973. 440 p.
17. Sage E., Mells J. Estimation Theory and its Application in Communication and Control. М., 1976. 496 p.
18. Filtration and Stochastic Control in Dynamic Systems: Collection of articles / Under the editorship of K. T. Leondes. М., 1980. 408 p.
19. Krinetsky E. I. et al. Flight Tests of Rockets and Spacecraft. М., 1979. 464 p.
20. Viduyev N. G., Grigorenko A. G. Mathematical Processing of Geodesic Measurements. К., 1978. 376 p.
21. Aivazyan S. A., Yenyukov I. S., Meshalkin L. D. Applied Statistics. Investigation of Dependencies. М., 1985. 487 p.
22. Sirenko V. N., Il’yenko P. V., Semenenko P. V. Use of Statistic Approaches in Analysis of Gas Dynamic Parameters in LV Vented Bays. Space Technology. Missile Armaments: Collection of scientific-technical articles. Issue 1. P. 43-47.
23. Granovsky V. A., Siraya T. N. Methods of Experimental Data Processing at Measurements. L., 1990. 288 p.
24. Zhovinsky A. N., Zhovinsky V. N. Engineering Express Analysis of Random Processes. М., 1979. 112 p.
25. Anishchenko V. A. Control of Authenticity of Duplicated Measurements in Uncertainty Conditions. University News. Minsk, 2010. No. 2. P. 11-18.
26. Anishchenko V. A. Reliability and Accuracy of Triple Measurements of Analog Technological Variables. University News. Minsk, 2017. No. 2. P. 108-117.
27. Shenk H. Theory of Engineering Experiment. М., 1972. 381 p.
28. Bessonov А. А., Sverdlov L. Z. Methods of Statistic Analysis of Automatic Devices Errors. L., 1974. 144 p.
29. Pugachyov V. N. Combined Methods to Determine Probabilistic Characteristics. М., 1973. 256 p. https://doi.org/10.21122/1029-7448-2017-60-2-108-117
30. Gandin L. S., Kagan R. L. Statistic Methods of Meteorological Data Interpretation. L., 1976. 360 p.
31. Zheleznov I. G., Semyonov G. P. Combined Estimation of Complex Systems Characteristics. М., 1976. 52 p.
32. Vt222М Absolute Pressure Sensor: ТU Vt2.832.075TU. Penza, 1983.
Downloads: 27
Abstract views: 
867
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Phoenix; Monroe; Ashburn; Seattle; Seattle; Seattle; Portland; San Mateo; Des Moines; Boardman; Ashburn16
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
China Shanghai1
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
Belarus Hrodna1
Ukraine Dnipro1
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
8.2.2018 Development of Nozzle Blocks New Manufacturing Technology without Blazing https://journal.yuzhnoye.com/content_2018_2-en/annot_8_2_2018-en/ Thu, 07 Sep 2023 11:21:51 +0000 https://journal.yuzhnoye.com/?page_id=30757
The step-by-step sequence and procedure of research work to develop and test a new technology of cooled nozzle block manufacturing are described.
]]>

8. Development of Nozzle Blocks New Manufacturing Technology without Blazing

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; STC «Paton Welding Institute», Kiev, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2018 (2); 68-75

DOI: https://doi.org/10.33136/stma2018.02.068

Language: Russian

Annotation: The article describes the problems of manufacturing large-size nozzle blocks by classical for Ukrainian space industry method of high-temperature brazing. The Yuzhnoye SDO-selected way of solving this problem and the first strides on the way to organization of new production using innovative technologies of laser welding and surfacing are presented. The step-by-step sequence and procedure of research work to develop and test a new technology of cooled nozzle block manufacturing are described. Four phases are identified, out of which the first two phases have already been successfully performed. The laser welding and surfacing technology will allow avoiding the use of costly and unique equipment and will allow reducing and optimizing the technological manufacturing cycle rejecting the long –term and energy-consuming technological operations. The scientific-and-technological works performed showed the principle feasibility of making connection between the external jacket and internal wall of a nozzle block using laser welding. The test samples manufactured confirmed the high strength characteristics, which had been preliminary obtained by the theoretical calculation methods. The sections obtained by surfacing demonstrate good metallurgical connection between the layers. On the test samples, the technique was tried-out allowing repairing defect areas in a welded seam obtained by laser welding method. This is especially important from the technological and economic viewpoints, as the technology of high-temperature brazing applied currently does not allow making guaranteed repair of brazed joints.

Key words: liquid rocket engine nozzles, laser, laser welding, laser surfacing

Bibliography:
Downloads: 26
Abstract views: 
816
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Phoenix; Monroe; Ashburn; Columbus; Ashburn; Seattle; Tappahannock; Portland; Des Moines; Boardman; Ashburn15
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Finland Helsinki1
Mongolia1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
8.2.2018 Development of Nozzle Blocks New Manufacturing Technology without Blazing
8.2.2018 Development of Nozzle Blocks New Manufacturing Technology without Blazing
8.2.2018 Development of Nozzle Blocks New Manufacturing Technology without Blazing

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
15.1.2018 The Results of Using Automated Methods to Solve Standardization Tasks in Yuzhnoye SDO Practice https://journal.yuzhnoye.com/content_2018_1-en/annot_15_1_2018-en/ Tue, 05 Sep 2023 07:04:10 +0000 https://journal.yuzhnoye.com/?page_id=30474
Results of Using the Procedure of Terminological Monitoring for the Purpose of Normalization of Terms of International Standards in Space Sphere.
]]>

15. The Results of Using Automated Methods to Solve Standardization Tasks in Yuzhnoye SDO Practice

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (1); 91-100

DOI: https://doi.org/10.33136/stma2018.01.091

Language: Russian

Annotation: The article presents the main results obtained when solving the standardization tasks in Yuzhnoye SDO practice. The specific ways are presented of reducing the periods of work performance and increasing the accuracy of results due to the use of automated methods. The article also presents the recommendations in respect of sequence and methods of creating the standard data arrays, which allows optimizing the work process performance.

Key words:

Bibliography:
1. Matus G. V., Rud’ko K. V. Normalization of Terms of International Standards in Space Sphere. Standardization, Certification, Quality. 2013. No. 5. P. 19-24.
2. Shipko O. F., Matus G. V. Results of Using the Procedure of Terminological Monitoring for the Purpose of Normalization of Terms of International Standards in Space Sphere. Standardization, Certification, Quality. 2016. No. 3. P. 23-28.
3. ISO 10795:2011. Space Systems: Programme Management and Quality: Vocabulary. First edition 2011-08-15. Published in Switzerland: ISO, 2011. 37 p.
4. Classifier of Professions: DK 003:2010. (Effective from 2010-11-01). K., 2010. 746 p. (National Classifier of Ukraine).
5. Unified System of Design Documentation. Basic Provisions: Guide in Ukrainian and Russian / Under the general editorship of V. L. Ivanov. Lviv, 2001. 272 p. (Series “Normative Base of Enterprise”).
6. Streltsov E. V., Kolesnik N. Y. Method of Automated Monitoring of the State of Enterprise’s Normative Documentation Collection. Space Technology. Missile Armaments: Collection of scientific-technical articles / Yuzhnoye SDO. Dnepropetrovsk, 2015. No. 3. P. 99-102.
7. Fesenko E. Y., Kremena E. V. Design Documentation: Method of Automated Monitoring of Normative Documents Designations. Standardization, Certification, Quality. 2016. No. 2. P. 29-31.
8. The Law of Ukraine “On Standardization” dated 05.06.2014 No 1315-VII / News of Supreme Rada of Ukraine. 2014. No. 31. 1058 p. (With changes introduced as per Laws dated 15.01.2015 No. 124-VIII / News of Supreme Rada of Ukraine. 2015. No. 14. 96 p.).
9. Ukrainian Classifier of Normative Documents (ICS:2005, MOD): DK 004:2008. (Effective from 2009-04-01). К.: (Derzhspozhivstandard) State Consumption Standard of Ukraine, 2009. 97 p. (National Classifier of Ukraine).
10. Classification of Economic Activity Types: DK 009:2010. (Effective from 2012-01-01). К.: (Derzhspozhivstandard) State Consumption Standard of Ukraine, 2010. 42 p. (National Classifier of Ukraine).
11. State Classifier of Products and Services: DK 016:2010: [in 8 books]. (Effective from 2012-01-01). К.: (Derzhspozhivstandard) State Consumption Standard of Ukraine, 2010. (National Classifier of Ukraine). Book 1. 2011. 200 p. Book 2. 2011. 194 p. Book 3. 2011. 343 p. Book 4. 2011. 359 p. Book 5. 2011. 317 p. Book 6. 2011. 345 p. Book 7. 2011. 262 p. Book 8. 2011. 291 p.
12. Shipko A. F., Matus G. V. Methods to Improve Standardization Activity in Space Sphere. Space Technology. Missile Armaments: Collection of scientific-technical articles / Yuzhnoye SDO. Dnepropetrovsk, 2015. No. 3. P. 92-98.
Downloads: 28
Abstract views: 
694
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Dublin; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn16
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro; Dnipro2
Unknown Canberra1
Romania Voluntari1
Netherlands Amsterdam1
15.1.2018 The Results of Using Automated Methods to Solve Standardization Tasks in Yuzhnoye SDO Practice
15.1.2018 The Results of Using Automated Methods to Solve Standardization Tasks in Yuzhnoye SDO Practice
15.1.2018 The Results of Using Automated Methods to Solve Standardization Tasks in Yuzhnoye SDO Practice
]]>