Search Results for “rocket and space complex” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 05 Nov 2024 20:32:02 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “rocket and space complex” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 9.1.2024 General-purpose thermostatting module – new approach in development of up-to-date thermostating systems for rocket and space complexes https://journal.yuzhnoye.com/content_2024_1-en/annot_9_1_2024-en/ Mon, 17 Jun 2024 08:48:18 +0000 https://journal.yuzhnoye.com/?page_id=35030
General-purpose thermostating module – new approach in development of up-to-date thermostating systems for rocket and space complexes Authors: Fateev D. One of the main tasks is to create a system that can be mass-produced and used as part of any rocket and space complex. Solving this problem will significantly reduce the cost of creating and operating the thermostatting systems and the whole rocket and space complex. (2024) "General-purpose thermostating module – new approach in development of up-to-date thermostating systems for rocket and space complexes" Космическая техника. "General-purpose thermostating module – new approach in development of up-to-date thermostating systems for rocket and space complexes" Космическая техника. quot;General-purpose thermostating module – new approach in development of up-to-date thermostating systems for rocket and space complexes", Космическая техника.
]]>

9. General-purpose thermostating module – new approach in development of up-to-date thermostating systems for rocket and space complexes

Page: Kosm. teh. Raket. vooruž. 2024, (1); 78-84

DOI: https://doi.org/10.33136/stma2024.01.078

Language: Ukrainian

Annotation: These days when creating any rocket space complex, it is important to ensure its advancement and competitive ability. To create such complex, the technical systems it consists of must be implemented with minimal economic and energy costs. Rocket and space complexes feature the thermostatting system, which ensures the required humidity and temperature conditions in the integrated launch vehicles throughout all the phases of their pre-launch processing. Development of the competitive rocket and space complex also requires the new approach in the development of the thermostatting system. One of the main tasks is to create a system that can be mass-produced and used as part of any rocket and space complex. Solving this problem will significantly reduce the cost of creating and operating the thermostatting systems and the whole rocket and space complex. One of the ways to solve this task is to create a general-purpose thermostatting system. The modular principle for such thermostatting system would be optimal, which means making up a system from separate modules. It simplifies the all-round installation of various system options and simplifies its setup and operation. The paper demonstrates the possibility and prospects of creating modular thermostatting systems, which enable air supply with the required parameters to different consumers. Characteristics and design of the general-purpose thermostatting module are specified, which can be used as the main component without changing anything in the composition of stationary and mobile thermostatting systems.

Key words: rocket and space complex, launch vehicle, technological systems of the ground complex, thermostatting systems, open type system, versatility, modular design.

Bibliography:
  1. . Tsiklon-4M. URL: https://www. yuzhnoye.com.
  2. . KRK «Tsiklon-4M». C4M YZH SPS 090 02 Technicheskoe zadanie na sostavnuyu chast’ OKR «Sistema termostatirovaniya rakety-nositelya i golovnogo bloka» GP «KB «Yuzhnoye». 78 s.
  3. . KRK «Tsiklon-4M». C4M YZH SPS 119 02 Technicheskoe zadanie na sostavnuyu chast OKR «Transportnaya systema termostatirovaniya» GP «KB «Yuzhnoye». 2018. 40 s.
Downloads: 16
Abstract views: 
768
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Buffalo; Buffalo; Buffalo; Chicago; Saint Louis; New York City; Buffalo; Columbus; Portland9
Germany Falkenstein; Limburg an der Lahn; Falkenstein3
France1
Unknown1
China Shenzhen1
Ukraine Kremenchuk1
9.1.2024 General-purpose thermostatting module – new approach in development of up-to-date thermostating systems for rocket and space complexes
9.1.2024 General-purpose thermostatting module – new approach in development of up-to-date thermostating systems for rocket and space complexes
9.1.2024 General-purpose thermostatting module – new approach in development of up-to-date thermostating systems for rocket and space complexes

Keywords cloud

]]>
16.1.2024 EDUCATIONAL TENDENCIES AS AN ELEMENT OF INNOVATIVE PROGRESS IN THE PERSONNEL TRAINING SYSTEM FOR THE STATE-OF-THE-ART ENTERPRISES https://journal.yuzhnoye.com/content_2024_1-en/annot_16_1_2024-en/ Mon, 17 Jun 2024 07:20:20 +0000 https://journal.yuzhnoye.com/?page_id=34966
DOI: https://doi.org/10.33136/stma2024.01.136 Language: Ukrainian Annotation: Yuzhnoye SDO is one of the most state-of-the-art and hi-tech enterprises of the Ukraine’s space and rocket branch. The goal-oriented educational areas represent a complex of actions of several divisions at the enterprise, supervised by the scientific-educational center, which aim to provide the corresponding...
]]>

16. Educational tendencies as an element of innovative progress in the personnel training system for the state-of-the-art enterprises

Автори: Zevako V. S.

Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2024, (1); 136-140.

DOI: https://doi.org/10.33136/stma2024.01.136

Language: Ukrainian

Annotation: Yuzhnoye SDO is one of the most state-of-the-art and hi-tech enterprises of the Ukraine’s space and rocket branch. To maintain its scientific and productive potential, among other things, the enterprise needs to have professional specialists, who are development-orientated and eager to enhance their professional skills. To solve this problem there is personnel training system at the enterprise. Responsibility to provide the Yuzhnoye SDO with the skilled specialists is shared, within their authority, between the staff department and the scientific-educational center of the enterprise, which directly report to the General Director. The goal-oriented educational areas, realized at the enterprise, occupy the special role in these activities. The goal-oriented educational areas represent a complex of actions of several divisions at the enterprise, supervised by the scientific-educational center, which aim to provide the corresponding professional level of the employees busy with fulfilment of current job assignments. Among the most significant are the following areas: training of the executive personnel and its reserve; training in the postgraduate courses of the enterprise; learning computer technologies; preparation of the pre-launch processing personnel and its reserve; activities with intellectual property; involvement of the leading institutes of higher education both for training of young specialists and to obtain particular scientific results etc. All these areas have already been proven and some of them run on continuing basis. Thus it can be concluded that the personnel training system is effective. It proves itself and can serve as an example of introduction at any manufacturing enterprise. Besides, orientation of training process at the individual goal-oriented educational areas involves and unites efforts of several interested enterprise divisions to reach particular and necessary results within certain timetable.

Key words: system of specialist training, goal-oriented educational area, training at the enterprise, professional training.

Bibliography:

1. Upravlenie personalom. Uchebnik dlya vuzov. Pod red. T.Yu. Bazarova, B.L. Yeremina.
2-e izd. peredel. i dop. M., YuNITI. 2002. 560 s.
2. Zevako V. S. Pidgotovka naukovo-pedagogichnykh kadriv dlya naukoemnogo pidpriemstva. Svit naukovykh doslidzhen’. Zbirnyk tez mizhnarodnoi naukovo-praktychnoi internet-conferentsii 24-25 bereznya 2022 r. Vyp. 7. S. 90 – 91.

Downloads: 23
Abstract views: 
523
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Chicago; Chicago; Saint Louis; Los Angeles; Chicago; Chicago; Buffalo; Buffalo; New Haven; Los Angeles; Los Angeles; Los Angeles; San Francisco; Buffalo; Seattle; Portland16
Germany Falkenstein; Falkenstein2
France1
Unknown1
China Shenzhen1
Ukraine Kremenchuk1
Kuwait Kuwait City1
16.1.2024 EDUCATIONAL TENDENCIES AS AN ELEMENT OF INNOVATIVE PROGRESS IN THE PERSONNEL TRAINING SYSTEM FOR THE STATE-OF-THE-ART ENTERPRISES
16.1.2024 EDUCATIONAL TENDENCIES AS AN ELEMENT OF INNOVATIVE PROGRESS IN THE PERSONNEL TRAINING SYSTEM FOR THE STATE-OF-THE-ART ENTERPRISES
16.1.2024 EDUCATIONAL TENDENCIES AS AN ELEMENT OF INNOVATIVE PROGRESS IN THE PERSONNEL TRAINING SYSTEM FOR THE STATE-OF-THE-ART ENTERPRISES

Keywords cloud

]]>
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff https://journal.yuzhnoye.com/content_2020_1-en/annot_3_1_2020-en/ Fri, 29 Sep 2023 18:22:49 +0000 https://journal.yuzhnoye.com/?page_id=32230
Stress and deformation of rocket gas turbine disc under different loads using finite element modeling. Thermal stress analysis of orthotropic plate containing a rectangular hole using complex variable method. Aerospace Science and Technology.
]]>

3. Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 26-33

DOI: https://doi.org/10.33136/stma2020.01.026

Language: Russian

Annotation: The study of thermal strength of the hold-down bay is considered. The hold-down bay is a cylindrical shell with the load-bearing elements as the standing supports. The case of the hold-down bay consists of the following structural elements: four standing supports and the compound cylindrical shell with two frames along the top and bottom joints. The purpose of this study was the development of a general approach for the thermal strength calculation of the hold-down bay. This approach includes two parts. Firstly, the unsteady heat fields on the hold-down bay surface are calculated by means of the semi-empirical method, which is based on the simulated results of the combustion product flow of the main propulsion system. The calculation is provided by using Solid Works software. Then the unsteady stress-strain behavior of the hold-down bay is calculated, taking into consideration the plastoelastic deformations. The material strain bilinear diagram is used. The finiteelement method is applied to the stress-strain behavior calculation by using NASTRAN software. The thermal field is assumed to be constant throughout the shell thickness. As a result of the numerical simulation the following conclusions are made. The entire part of the hold-down bay, which is blown by rocket exhaust jet, is under stress-strain behavior. The stresses of the top frame and the shell are overridden the breaking strength that caused structural failure. The structure of the hold-down bay, which is considered in the paper, is unappropriated to be reusable. The hold-down bay should be reconstructed by reinforcement in order to provide its reusability.

Key words: stress-strain behavior, finite-element method, plastoelastic deformations, breaking strength, reusability

Bibliography:

1. Elhefny A., Liang G. Stress and deformation of rocket gas turbine disc under different loads using finite element modeling. Propulsion and Power Research. 2013. № 2. P. 38–49. https://doi.org/10.1016/j.jppr.2013.01.002
2. Perakis N., Haidn O. J. Inverse heat transfer method applied to capacitively cooled rocket thrust chambers. International Journal of Heat and Mass Transfer. 2019. № 131. P. 150–166. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.048
3. Yilmaz N., Vigil F., Height J., et. al. Rocket motor exhaust thermal environment characterization. Measurement. 2018. № 122. P. 312–319. https://doi.org/10.1016/j.measurement.2018.03.039
4. Jafari M. Thermal stress analysis of orthotropic plate containing a rectangular hole using complex variable method. European Journal of Mechanics A /Solids. 2019. № 73. P. 212–223. https://doi.org/10.1016/j.euromechsol.2018.08.001
5. Song J., Sun B. Thermal-structural analysis of regeneratively cooled thrust chamber wall in reusable LOX / Methane rocket engines. Chinese Journal of Aeronautics. 2017. № 30. P. 1043–1053.
6. Ramanjaneyulu V., Murthy V. B., Mohan R. C., Raju Ch. N. Analysis of composite rocket motor case using finite element method. Materials Today: Proceedings. 2018. № 5. P. 4920–4929.
7. Xu F., Abdelmoula R., Potier-Ferry M. On the buckling and post-buckling of core-shell cylinders under thermal loading. International Journal of Solids and Structures. 2017. № 126–127. P. 17–36.
8. Wang Z., Han Q., Nash D. H., et. al. Thermal buckling of cylindrical shell with temperature-dependent material properties: Conventional theoretical solution and new numerical method. Mechanics Research Communications. 2018. № 92. P. 74–80.
9. Duc N. D. Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear de-formation shell theory. European Journal of Mechanics A /Solids. 2016. № 58. P. 10–30.
10. Trabelsi S., Frikha A., Zghal S., Dammak F. A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Engineering Structures. 2019. № 178. P. 444–459.
11. Trinh M. C., Kim S. E. Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment. Aerospace Science and Technology. 2019. № 84. P. 672–685.
12. Лойцянский Л. Г. Механика жидкости и газа. М., 2003. 840 с.
13. Launder B. E., Sharma B. I. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. International Journal of Heat and Mass Transfer. 1974. № 1. P. 131–138.
14. Михеев М. А., Михеева И. М. Основы теплопередачи. М., 1977. 345 с.
15. Малинин Н. Н. Прикладная теория пластичности и ползучести. М., 1968. 400 с.

Downloads: 47
Abstract views: 
1695
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Boydton; Plano; Miami; Columbus; Columbus; Columbus; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Boardman; Seattle; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore11
Ukraine Dnipro; Kyiv; Dnipro3
Germany;; Falkenstein3
Finland Helsinki1
Great Britain London1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff

Keywords cloud

]]>
21.1.2020 Contemporary approaches to the improvement of methods of space launch system operation for commercial launches of ILV https://journal.yuzhnoye.com/content_2020_1-en/annot_21_1_2020-en/ Wed, 13 Sep 2023 12:05:46 +0000 https://journal.yuzhnoye.com/?page_id=31081
The main task of presented works was approbation of new approaches to improvement of space launch systems operation quality and operation process effectiveness by the example of prospective Cyclone-4M space rocket complex. The topicality of the article is confirmed by the results of practical application of new approaches in main directions of Cyclone-4M space rocket complex operation system improvement, which allowed increasing commercial attractibility of Yuzhnoye SDO-developed systems due to reduction of direct recurring costs and annual expenses. The basis of the article are the organizational-and-technical decisions used herewith and the results obtained for Cyclone-4M space rocket complex. The article is of practical interest for specialists involved in creation of space rocket complexes and other sophisticated systems where the operation system is a multi-level organizational-technical system.
]]>

21. Contemporary approaches to the improvement of methods of space launch system operation for commercial launches of ILV

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 184-192

DOI: https://doi.org/10.33136/stma2020.01.184

Language: Russian

Annotation: The article deals with the problems of applying new approaches to formation and improvement of operation system. Turning of space hardware and services into marketable commodity requires their new qualities that determine competitiveness. The main task of presented works was approbation of new approaches to improvement of space launch systems operation quality and operation process effectiveness by the example of prospective Cyclone-4M space rocket complex. The works to form and improve its operation system were performed using the methods based on general theory of space systems operation and the pocedures based on the results of research work conducted by Yuzhnoye SDO in 2015 for analytical evaluation of launch services costs. The topicality of the article is confirmed by the results of practical application of new approaches in main directions of Cyclone-4M space rocket complex operation system improvement, which allowed increasing commercial attractibility of Yuzhnoye SDO-developed systems due to reduction of direct recurring costs and annual expenses. The article describes the course of development of operation model of a created object; based on investigation of the processes of this model, the object’s performance characteristics are detemined. The basis of the article are the organizational-and-technical decisions used herewith and the results obtained for Cyclone-4M space rocket complex. The article is of practical interest for specialists involved in creation of space rocket complexes and other sophisticated systems where the operation system is a multi-level organizational-technical system.

Key words: space hardware, launch services, performance characteristics, operation model, organizational-and-technical decisions

Bibliography:
1. Analiticheskaia otsenka ob’ema rabot i zatrat na puskovye uslugi i napravleniia rabot dlia ikh snizheniia v perspektivnykh RKK razrabotki GP “KB “Yuzhnoye”: tekhn. otchet / GP “KB “Yuzhnoye”. Dnepropetrovsk, 2015. 344 s.
2. Teoriia i praktika ekspluatatsii ob’ektov kosmicheskoi infrastruktury: monografiia / N. D. Anikeichik i dr. SPb., 2006. Т. 1: Ob’ekty kosmicheskoi infrastruktury. 400 s.
3. Ispytaniia i ekspluatatsiia raketnykh kompleksov: kurs lektsii / А. V. Agarkov i dr.; pod red. А. V. Degtyareva. GP “KB “Yuzhnoye”. Dnipro, 2016. Kn. 1. 505 s.
Downloads: 34
Abstract views: 
919
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore; Boydton; Plano; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Columbus; Seattle; Ashburn; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn20
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Unknown Sidney;2
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
21.1.2020  Contemporary approaches to the improvement of methods of space launch system operation for commercial launches of ILV
21.1.2020  Contemporary approaches to the improvement of methods of space launch system operation for commercial launches of ILV
21.1.2020  Contemporary approaches to the improvement of methods of space launch system operation for commercial launches of ILV

Keywords cloud

]]>
13.1.2020 Mathematical models of hydraulic servomechanisms of space technology https://journal.yuzhnoye.com/content_2020_1-en/annot_13_1_2020-en/ Wed, 13 Sep 2023 10:58:26 +0000 https://journal.yuzhnoye.com/?page_id=31045
Mathematical models of hydraulic servomechanisms of space technologynt Authors: Kozak L. The required accuracy and complexity of mathematical models of hydraulic servo mechanisms are different for different design phases of guided rockets. (2020) "Mathematical models of hydraulic servomechanisms of space technologynt" Космическая техника. Space technology. Space technology.
]]>

13. Mathematical models of hydraulic servomechanisms of space technologynt

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 121-132

DOI: https://doi.org/10.33136/stma2020.01.121

Language: Russian

Annotation: Being a final executive element of rocket control systems, a hydraulic actuator is at the same time the main source of various non-linear dependencies in rocket dynamic design whose availability dramatically com plicates theoretical analysis of their dynamics and control systems synthesis. The required accuracy and complexity of mathematical models of hydraulic servo mechanisms are different for different design phases of guided rockets. The paper deals with the simplest models of hydraulic servo actuators intended to calculate rocket controllability and to define requirements to response and power characteristics of the actuators. To calculate the rocket stability regions and to evaluate own stability of servo actuators, a linearized mathematical model of hydraulic servo actuator is used that takes into account the most important parameters having impact on stability of the servo actuator itself and on that of the rocket: hardness of working fluid, stiffness of elastic suspension of the actuator and control element, slope of mechanical characteristic of the actuator in the area of small control signals, which, as full mathematical model analysis showed, is conditioned only by dimensions of initial axial clearances of slide’s throats. The full mathematical model constructed based on accurate calculations of the balance of fluid flow rate through the slide’s throats allows, as early as at designing phase, determining the values of most important static and dynamic characteristics of a future hydraulic actuator, selecting optimal characteristics of slides based on specified degree of stability and response of servo actuator and conducting final modeling of rocket flight on the integrated control system test benches without using real actuators and loading stands. It is correct and universal for all phases of rockets and their control systems designing and testing. Using this mathematical model, the powerful actuators of a line of intercontinental ballistic missiles with swinging reentry vehicle and the main engines actuators of Zenit launch vehicle first stage were developed. The results of their testing separately and in rockets practically fully comply with the data of theoretical calculations.

Key words: mathematical model, hydraulic actuator, servo actuator, stability, damping, slide

Bibliography:
1. Dinamika gidroprivoda / pod red. V. N. Prokofieva. М., 1972. 292 s.
2. Gamynin N. S. Gidravlicheskii privod system upravleniia. М., 1972. 376 s.
3. Chuprakov Yu. I. Gidroprivod i sredstva gidroavtomatiki. М., 1979. 232 s.
4. Kozak L. R. Geometriia zolotnika i dinamicheskie kharakteristiki gidroprivoda // Visnyk Dnipropetrovskoho universytetu. Vyp. 13, Tom 1. 2009.
Downloads: 32
Abstract views: 
779
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Matawan; Baltimore; Plano; Columbus; Detroit; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn21
Singapore Singapore; Singapore; Singapore; Singapore4
Finland Helsinki1
Unknown1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
13.1.2020  Mathematical models of hydraulic servomechanisms of space technology
13.1.2020  Mathematical models of hydraulic servomechanisms of space technology
13.1.2020  Mathematical models of hydraulic servomechanisms of space technology

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles https://journal.yuzhnoye.com/content_2018_2-en/annot_19_2_2018-en/ Thu, 07 Sep 2023 12:23:58 +0000 https://journal.yuzhnoye.com/?page_id=30801
Flight Tests of Rockets and Spacecraft. Combined Estimation of Complex Systems Characteristics.
]]>

19. Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 157-172

DOI: https://doi.org/10.33136/stma2018.02.157

Language: Russian

Annotation: The measurement errors upon conducting flight tests for launch vehicles are evaluated by considering the interferences and uncertainties in the measurement system procedure. Formal use of this approach can lead to unpredictable consequences. More reliable evaluation of errors upon conducted measurements can be achieved if the measurement process is regarded as a procedure of successive activities for designing, manufacturing, and testing the measurement system and the rocket including measurements and their processing during the after-flight analysis of the received data. The sampling rates of the main controlled parameters are three to ten times higher than the frequency range of their changing. Therefore, it is possible to determine the characteristics of the random error components directly on the basis of registered data. The unrevealed systematic components create the basic uncertainty in the evaluation of the examined parameter’s total measurement error. To evaluate the precision and measurement accuracy of a particular launch, the article suggests specifying the preliminary data on measurement error components determined during prelaunch processing and launch. Basic structures of algorithms for evaluation of precision and measurement accuracy for certain mathematical models that form the measured parameters were considered along with the practical case when static correlation existed among the measured parameters.

Key words: flight tests, sensor, measurement error, mathematical model

Bibliography:
1. Novitsky P. V., Zograf I. A. Evaluation of Measurement Errors. L., 1985. 248 p.
2. Shmutzer E. Relativity Theory. Modern Conception. Way to Unity of Physics. М., 1981. 230 p.
3. Blekhman I. I., Myshkis A. D., Panovenko Y. G. Applied Mathematics: Subject, Logic, Peculiarities of Approaches. К., 1976. 270 p.
4. Moiseyev N. N. Mathematical Problems of System Analysis. М., 1981. 488 p.
5. Bryson A., Ho Yu-Shi. Applied Theory of Optimal Control. М., 1972. 544 p.
6. Yevlanov L. G. Monitoring of Dynamic Systems. М., 1972. 424 p.
7. Sergiyenko A. B. Digital Signal Processing: Collection of publications. 2011. 768 p.
8. Braslavsky D. A., Petrov V. V. Precision of Measuring Devices. М., 1976. 312 p.
9. Glinchenko A. S. Digital Signal Processing: Course of lectures. Krasnoyarsk, 2008. 242 p.
10. Garmanov A. V. Practice of Optimization of Signal-Noise Ratio at ACP Connection in Real Conditions. М., 2002. 9 p.
11. Denosenko V. V., Khalyavko A. N. Interference Protection of Sensors and Connecting Wires of Industrial Automation Systems. SТА. No. 1. 2001. P. 68-75.
12. Garmanov A. V. Connection of Measuring Instruments. Solution of Electric Compatibility and Interference Protection Problems. М., 2003. 41 p.
13. TP ACS Encyclopedia. bookASUTR.ru.
14. Smolyak S. A., Titarenko B. P. Stable Estimation Methods. М., 1980. 208 p.
15. Fomin A. F. et al. Rejection of Abnormal Measurement Results. М., 1985. 200 p.
16. Medich J. Statistically Optimal Linear Estimations and Control. М., 1973. 440 p.
17. Sage E., Mells J. Estimation Theory and its Application in Communication and Control. М., 1976. 496 p.
18. Filtration and Stochastic Control in Dynamic Systems: Collection of articles / Under the editorship of K. T. Leondes. М., 1980. 408 p.
19. Krinetsky E. I. et al. Flight Tests of Rockets and Spacecraft. М., 1979. 464 p.
20. Viduyev N. G., Grigorenko A. G. Mathematical Processing of Geodesic Measurements. К., 1978. 376 p.
21. Aivazyan S. A., Yenyukov I. S., Meshalkin L. D. Applied Statistics. Investigation of Dependencies. М., 1985. 487 p.
22. Sirenko V. N., Il’yenko P. V., Semenenko P. V. Use of Statistic Approaches in Analysis of Gas Dynamic Parameters in LV Vented Bays. Space Technology. Missile Armaments: Collection of scientific-technical articles. Issue 1. P. 43-47.
23. Granovsky V. A., Siraya T. N. Methods of Experimental Data Processing at Measurements. L., 1990. 288 p.
24. Zhovinsky A. N., Zhovinsky V. N. Engineering Express Analysis of Random Processes. М., 1979. 112 p.
25. Anishchenko V. A. Control of Authenticity of Duplicated Measurements in Uncertainty Conditions. University News. Minsk, 2010. No. 2. P. 11-18.
26. Anishchenko V. A. Reliability and Accuracy of Triple Measurements of Analog Technological Variables. University News. Minsk, 2017. No. 2. P. 108-117.
27. Shenk H. Theory of Engineering Experiment. М., 1972. 381 p.
28. Bessonov А. А., Sverdlov L. Z. Methods of Statistic Analysis of Automatic Devices Errors. L., 1974. 144 p.
29. Pugachyov V. N. Combined Methods to Determine Probabilistic Characteristics. М., 1973. 256 p. https://doi.org/10.21122/1029-7448-2017-60-2-108-117
30. Gandin L. S., Kagan R. L. Statistic Methods of Meteorological Data Interpretation. L., 1976. 360 p.
31. Zheleznov I. G., Semyonov G. P. Combined Estimation of Complex Systems Characteristics. М., 1976. 52 p.
32. Vt222М Absolute Pressure Sensor: ТU Vt2.832.075TU. Penza, 1983.
Downloads: 37
Abstract views: 
1045
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Miami; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Portland; San Mateo; Des Moines; Boardman; Ashburn21
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Indonesia Jakarta1
China Shanghai1
Finland Helsinki1
Unknown1
Great Britain London1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Belarus Hrodna1
Ukraine Dnipro1
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
15.2.2018 Topical Issues of Creation of Space Rocket Thermostatic System Mating Points https://journal.yuzhnoye.com/content_2018_2-en/annot_15_2_2018-en/ Thu, 07 Sep 2023 12:09:41 +0000 https://journal.yuzhnoye.com/?page_id=30786
The basic requirements imposed to the joints from the side of space rocket and ground complex are determined and stated. The article is concluded with following: the basic requirements have been formulated for ground complexes thermostating systems joints to ensure space rockets prelaunch processing and launch, in doing so, the topical problems were defined; the scientific principles were proposed to design the thermostating systems joints for comprehensive solution of the topical problems , including potential critical situations; the thermostating systems joints have been developed, manufactured and have successfully passed the ground development tests with simulation of the conditions maximally close to operating ones at static operating air pressures and in off-nominal situations.
]]>

15. Topical Issues of Creation of Space Rocket Thermostatic System Mating Points

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; State Enterprise DINTEM Ukrainian Research Design-Technological Institute of Elastomer Materials and Products2

Page: Kosm. teh. Raket. vooruž. 2018 (2); 132-138

DOI: https://doi.org/10.33136/stma2018.02.132

Language: Russian

Annotation: The problem is defined of designing the space rocket low-pressure air thermostating systems joints. The basic requirements imposed to the joints from the side of space rocket and ground complex are determined and stated. For this purpose, the analysis of operating conditions and possible situations during rocket launches is made. Besides, the methodological principles based on problematic, systematic, and structuralfunctional approach were applied using the theoretical and empirical capabilities, attraction of general scientific and special investigation methods, as well as historical and logical methods. The list of topical issues is reflected for implementation in joint’s design. The ways are proposed to create the joints meeting the requirements imposed. As a result, it was ascertained that the joints can be made of simpler and at the same time failure-free design in the form of combined triune rubber hose fitted with a metal fixation/release unit installed on a sealing flange in a special groove. Of special note is the versatility of the proposed technical solution for use in any of the space launch systems known in the world’s practice. The article is concluded with following: the basic requirements have been formulated for ground complexes thermostating systems joints to ensure space rockets prelaunch processing and launch, in doing so, the topical problems were defined; the scientific principles were proposed to design the thermostating systems joints for comprehensive solution of the topical problems , including potential critical situations; the thermostating systems joints have been developed, manufactured and have successfully passed the ground development tests with simulation of the conditions maximally close to operating ones at static operating air pressures and in off-nominal situations.

Key words: planetary roving vehicle, self-propelled modular platform, generic module, interchangeability

Bibliography:
1. Bigun S. A., Khorolsky M. S et al. Types and Design Features of Thermostating System Mating Points of Launch Vehicle Payload Units and Launch Vehicle and Spacecraft Bays. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2013. Issue 1. 123 p.
2. Bigun S. A., Khorolsky M. S et al. Experimental Investigations of Cyclone-4 ILV Thermostating System Mating Points Test Results. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2016. Issue 2. 105 p.
Downloads: 38
Abstract views: 
570
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Dublin; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Seattle; Tappahannock; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Boardman22
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro;2
Finland Helsinki1
Unknown1
Philippines Mandaluyong City1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
15.2.2018 Topical Issues of Creation of Space Rocket Thermostatic System Mating Points
15.2.2018 Topical Issues of Creation of Space Rocket Thermostatic System Mating Points
15.2.2018 Topical Issues of Creation of Space Rocket Thermostatic System Mating Points

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs https://journal.yuzhnoye.com/content_2018_2-en/annot_12_2_2018-en/ Thu, 07 Sep 2023 11:38:27 +0000 https://journal.yuzhnoye.com/?page_id=30770
Complex Task of Optimization of Space Rocket Basic Design Parameters and Motion Control Programs.
]]>

12. Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2018 (2); 101-116

DOI: https://doi.org/10.33136/stma2018.02.101

Language: Russian

Annotation: The main scientific and methodological propositions for designing single-stage guided missiles with main solid rocket motors that are intended for delivering payload to the given spatial point with required and specified kinematic motion parameters are defined. The aim of the article is to develop methodology for the early design phase to improve the basic characteristics of guided missiles, including formalization of complex problem to optimize design parameters, trajectory parameters and motion control programs for guided missiles capable of flying along the ballistic, aeroballistic or combined trajectories. The task is defined as a problem of the optimal control theory with limitations in form of equality, inequality and differential constraints. An approach to program forming is proposed for motion control in the form of polynomial that brings the problem of the optimal control theory to a simpler problem of nonlinear mathematical programming. When trajectory parameters were calculated the missile was regarded as material point of variable mass and the combined equations for center-of-mass motion of the guided missile with projections on axes of the terrestrial reference system were used. The structure of the mathematical model was given along with the calculation sequence of criterion functional that was used for optimization of design parameters, control programs and basic characteristics of the guided missile. The mathematical model of the guided missile provides adequate accuracy for design study to determine: overall dimensions and mass characteristics of the guided missile in general and its structural components and subsystems; power, thrust and consumption characteristics of the main engine; aerodynamic and ballistic characteristics of the guided missile. The developed methodology was tested by solving design problems. Applications of the developed program were studied to present the research results in a user-friendly form.

Key words: complex problem of the optimal control theory, problem of nonlinear mathematical programming, main solid rocket motor, limitations for motion parameters and basic characteristics of the object

Bibliography:
1. Degtyarev A. V. Rocket Engineering: Problems and Prospects. Selected scientific-technical publications. Dnepropetrovsk, 2014. 420 p.
2. Shcheverov D. N. Designing of Unmanned Aerial Vehicles. М., 1978. 264 p.
3. Sinyukov А. М. et al. Ballistic Solid-Propellant Rocket / Under the editorship of A. M. Sinyukov. М., 1972. 511 p.
4. Varfolomeyev V. I. Designing and Testing of Ballistic Rockets / Under the editorship of V. I. Varfolomeyev, M. I. Kopytov. М., 1970. 392 p.
5. Vinogradov V. A., Grushchansky V. A., Dovgodush S. I. et al. Effectiveness of Complex Systems. Dynamic Models. М., 1989. 285 p.
6. Il’ichyov A. V., Volkov V. D., Grushchansky V. A. Effectiveness of Designed Complex Systems’ Elements. М., 1982. 280 p.
7. Krotov V. F., Gurman V. I. Methods and Problems of Optimal Control. М., 1973. 446 p.
8. Pontryagin L. S. et al. Mathematical Theory of Optimal Processes. М., 1969. 385 p.
9. Tarasov E. V. Algorithms of Flying Vehicles Optimal Designing. М., 1970. 364 p.
10. Alpatov A. P., Sen’kin V. S. Complex Task of Optimization of Space Rocket Basic Design Parameters and Motion Control Programs. Technical Mechanics. 2011. No. 4. P. 98-113.
11. Alpatov A. P., Sen’kin V. S. Methodological Support for Selection of Launch Vehicle Configuration, Optimization of Design Parameters and Flight Control Programs. Technical Mechanics. 2013. No. 4. P. 146-161.
12. Sen’kin V. S. Optimization of Super-Light Launch Vehicle Design Parameters. Technical Mechanics. 2009. No. 1. P. 80-88.
13. Sen’kin V. S. Flight Control Optimization and Thrust Optimization of Controllable Rocket Object Main Propulsion System. Technical Mechanics. 2000. No. 1. P. 46-50.
14. Syutkina-Doronina S. V. On Problem of Optimization of Design Parameters and Control programs of a Rocket Object With Solid Rocket Motor. Aerospace Engineering and Technology. 2017. No. 2 (137). P. 44-59.
15. Lebedev А. А., Gerasyuta N. F. Rocket Ballistics. М., 1970. 244 p.
16. Razumov V. F., Kovalyov B. K. Design Basis of Solid-Propellant Ballistic Missiles. М., 1976. 356 p.
17. Yerokhin B. T. SRM Theoretical Design Basis. М., 1982. 206 p.
18. Abugov D. I., Bobylyov V. M. Theory and Calculation of Solid Rocket Motors. М., 1987. 272 p.
19. Shishkov А. А. Gas Dynamics of Powder Rocket Motors. М., 1974. 156 p.
20. Sen’kin V. S. Complex Task of Optimization of Super-Light Solid-Propellant Launch Vehicle Design Parameters and Control Programs. Technical Mechanics. 2012. No. 2. P. 106-121.
21. Methodological Support to Determine in Initial Designing Phase the Design Parameters, Control Programs, Ballistic, Power, and Mass-Dimensional Characteristics of Controllable Rocket Objects Moving In Aeroballistic Trajectory: R&D Report. ITM of NASU and SSAU, Yuzhnoye SDO. Inv. No. 40-09/2017. 2017. 159 p.
Downloads: 41
Abstract views: 
809
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Matawan; Baltimore; Plano; Miami; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Ashburn; Ashburn23
Unknown; Brisbane;;4
Ukraine Kharkiv; Dnipro; Dnipro; Kyiv4
Singapore Singapore; Singapore; Singapore; Singapore4
Germany Frankfurt am Main; Falkenstein2
Finland Helsinki1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs

Keywords cloud

]]>
16.1.2018 Some Correlation Dependences in Families of Aton and Apollo and Rendezvous Frequency in Main Asteroid Belt https://journal.yuzhnoye.com/content_2018_1-en/annot_16_1_2018-en/ Tue, 05 Sep 2023 07:10:09 +0000 https://journal.yuzhnoye.com/?page_id=30477
Series: Space Rocket Technology. Origin, Evolution and Genetic Links of Solar System Small Bodies and their Complexes: Dissertation of Doctor of Physics and Mathematics.
]]>

16. Some Correlation Dependences in Families of Aton and Apollo and Rendezvous Frequency in Main Asteroid Belt

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (1); 101-117

DOI: https://doi.org/10.33136/stma2018.01.101

Language: Russian

Annotation: The paper presents the a priori probabilities of collision with the Earth for asteroids of Aten and Apollo groups according to Epic and the minimal distances between the orbits of those asteroids and the Earth orbit. The respective regression equations have been derived. For the first thousand of asteroids of the main belt, a number of conclusions are presented concerning genetic relationship between some of them and possibility in principle of close approach (crossing) of their orbits. Some peculiarities are noted of organization and making mass calculations by Halle’s method. The incompleteness of the results obtained is noted.

Key words:

Bibliography:
1. Degtyarev A. V. Rocket Technology. Problems and Prospects: Selected Scientific-Technical Publications. Dnepropetrovsk, 2014. P. 314-322.
2. Catler E. H. On Feasibility of Practical Use of Asteroids that are Near the Earth. Astronomical Bulletin. Vol. 26, No. 4. 1992.
3. Cramer E. N. Comet Radiants and Connection of Meteorite Flows with Comets / News of OGU Astronomical Observatory. К., 1953.
3. Cramer E. N. Comet Radiants and Connection of Meteorite Flows with Comets / News of OGU Astronomical Observatory. К., 1953.
4. Usichenko V. I., Kryukov A. V. On the Problem of Distances between Pairs of Elliptical Orbits / News of Dnipropetrovsk University. Series: Space Rocket Technology. Vol. 22, Issue 17. No. 4. 2014.
5. Shestaka I. S. Origin, Evolution and Genetic Links of Solar System Small Bodies and their Complexes: Dissertation of Doctor of Physics and Mathematics. K., 1993.
6. Usichenko V. I. Selestial-Mechnical Analysis of Unexplained Observations of Years 1768-1865. Dnipropetrovsk, 2011.
7. Litrov I. I. Mysteries of Sky. Saint Petersburg, 1904.
Downloads: 39
Abstract views: 
435
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Columbus; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Columbus; Ashburn; Boardman; Ashburn; Seattle; San Mateo; Des Moines; Boardman; Ashburn21
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Unknown; Hong Kong2
Ukraine Dnipro; Odessa2
India1
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
16.1.2018  Some Correlation Dependences in Families of Aton and Apollo and Rendezvous Frequency in Main Asteroid Belt
16.1.2018  Some Correlation Dependences in Families of Aton and Apollo and Rendezvous Frequency in Main Asteroid Belt
16.1.2018  Some Correlation Dependences in Families of Aton and Apollo and Rendezvous Frequency in Main Asteroid Belt
]]>
15.1.2017 Assessment of Liquid Equipment Neutralization Method Effectiveness https://journal.yuzhnoye.com/content_2017_1/annot_15_1_2017-en/ Wed, 28 Jun 2023 11:45:54 +0000 https://journal.yuzhnoye.com/?page_id=29505
Rockets and Spacecraft Fueling Complex.
]]>

15. Assessment of Liquid Equipment Neutralization Method Effectiveness

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (1); 95-99

Language: Russian

Annotation: The formula is presented to evaluate neutralization process completeness that allows determining the effectiveness of method for specific equipment elements contaminated in specific operating conditions.

Key words:

Bibliography:
1. GOST 12.1.014-84. General Sanitary-Hygienic Requirements to Working Area Air. 7 p.
2. Assessment of Methods and Technologies of SLS GSE Removable Elements Complete Neutralization at SC&PLU PC FS: Technical Report. Cyclone-4.21.17493.101 ОТ. P. 9-11.
3. Kasatkin A. G. Main Processes and Apparatuses of Chemical Technology. М., 1960. 829 p.
4. Timerkeyev R. G., Sapozhnikov V. M. Industrial Cleanliness and Fine Filtration of Flying Vehicle Working Fluids. М., 1986. 152 p.
5. Stepanov M. I. Rockets and Spacecraft Fueling Complex. Saint Petersburg, 2002. P. 247-251.
Downloads: 43
Abstract views: 
382
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore; North Bergen; Plano; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Boardman; Seattle21
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Unknown Melbourne;2
Netherlands Meppel; Amsterdam2
Germany Frankfurt am Main; Falkenstein2
Ukraine Dnipro; Dnipro2
Cambodia Phnom Penh1
Finland Helsinki1
Great Britain London1
Canada Monreale1
Romania Voluntari1
15.1.2017 Assessment of Liquid Equipment Neutralization Method Effectiveness
15.1.2017 Assessment of Liquid Equipment Neutralization Method Effectiveness
15.1.2017 Assessment of Liquid Equipment Neutralization Method Effectiveness
]]>