Keywords cloud
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
Page: Kosm. teh. Raket. vooruž. 2024, (1); 61-71
DOI: https://doi.org/10.33136/stma2024.01.061
Language: Ukrainian
Key words: separation system, functional units of separation, «cold separation», «warm separation», pneumatic pusher, spring pusher, SPRE, gas-reactive nozzles, Zenit LV, Dnepr LV, Falcon 9 rocket, Cyclone-4М LV.
Full text (PDF) || Content 2024 (1)
Country | City | Downloads |
---|---|---|
USA | Ashburn; San Jose; Chicago; Chicago; Buffalo; Dublin; Buffalo; Ashburn; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; San Francisco; Los Angeles; Seattle; Ashburn; Ashburn; Mountain View; Portland; Portland; San Mateo; Ashburn; Mountain View | 24 |
China | Pekin; Pekin; Shenzhen; Pekin | 4 |
Germany | Falkenstein; Düsseldorf; Falkenstein; Leipzig | 4 |
Canada | Toronto; Toronto; Toronto; Toronto | 4 |
Ukraine | Berdyans'k; Kremenchuk | 2 |
The Republic of Korea | ; Seoul | 2 |
India | Mumbai | 1 |
Singapore | Singapore | 1 |
France | 1 | |
Unknown | 1 | |
Netherlands | Amsterdam | 1 |
Page: Kosm. teh. Raket. vooruž. 2024, (1); 40-50
DOI: https://doi.org/10.33136/stma2024.01.040
Language: English
Key words: launch vehicle, critical failure, flight accident, zone of toxic damage to people, zone of dangerous impact of the failed launch vehicle, risk of toxic damage to people.
Full text (PDF) || Content 2024 (1)
Country | City | Downloads |
---|---|---|
USA | Ashburn; Buffalo; Buffalo; Las Vegas; San Jose; Chicago; Chicago; Saint Louis; Saint Louis;; New York City; Buffalo; Buffalo; Buffalo; Buffalo; Los Angeles; Chicago; Columbus; Dallas; New Haven; New Haven; Buffalo; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Chicago; San Francisco; Los Angeles; San Francisco; Ashburn; Portland; Portland; Portland; Ashburn | 37 |
Canada | Toronto; Toronto; Toronto; Toronto; Toronto | 5 |
China | Pekin; Shenzhen; Pekin; Hangzhou | 4 |
Germany | Falkenstein; Düsseldorf; Falkenstein; Leipzig | 4 |
Singapore | Singapore; Singapore | 2 |
The Republic of Korea | ; Seoul | 2 |
France | 1 | |
Unknown | 1 | |
Romania | 1 | |
India | 1 | |
Netherlands | Amsterdam | 1 |
Ukraine | Kremenchuk | 1 |
Page: Kosm. teh. Raket. vooruž. 2024, (1); 19-28
DOI: https://doi.org/10.33136/stma2024.01.019
Language: English
Key words: rocket propulsion, hydrogen energy accumulator, inert anodes.
Full text (PDF) || Content 2024 (1)
Country | City | Downloads |
---|---|---|
USA | North Bergen; Buffalo; Buffalo; Los Angeles; Columbus; Columbus; Buffalo; Ashburn; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Ashburn; Ashburn; Mountain View; Ashburn; Portland; San Mateo; Ashburn; Ashburn; Philadelphia | 22 |
China | Pekin;; Shenzhen; Pekin | 4 |
Canada | Toronto; Toronto; Toronto; Toronto | 4 |
Germany | Falkenstein; Düsseldorf; Falkenstein | 3 |
Singapore | Singapore | 1 |
France | 1 | |
Unknown | 1 | |
Netherlands | Amsterdam | 1 |
Ukraine | Kremenchuk | 1 |
Belgium | 1 |
Page: Kosm. teh. Raket. vooruž. 2024, (1); 9-18
DOI: https://doi.org/10.33136/stma2024.01.009
Language: Ukrainian
Key words: LOX-kerosene liquid rocket engines, hypergolic propellant liquid rocket engines, staged combustion cycle, main rocket engine, thrust, specific thrust impulse.
Full text (PDF) || Content 2024 (1)
Country | City | Downloads |
---|---|---|
USA | Buffalo; Buffalo; San Jose; Chicago; Chicago; Chicago; Saint Louis; Saint Louis; Chicago; Dublin; Ashburn; Dallas; Los Angeles; Los Angeles; Ashburn; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Los Angeles; San Francisco; Ashburn; Ashburn; Mountain View; Portland; San Mateo; Ashburn; Ashburn | 29 |
Canada | Toronto; Toronto; Toronto; Toronto; Toronto | 5 |
China | Pekin; Pekin; Shenzhen; Pekin | 4 |
Germany | Falkenstein; Düsseldorf; Falkenstein; Leipzig | 4 |
Ukraine | Kyiv; Kremenchuk; Kremenchuk | 3 |
Singapore | Singapore | 1 |
France | 1 | |
Hungary | Budapest | 1 |
Netherlands | Amsterdam | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine2
Page: Kosm. teh. Raket. vooruž. 2020, (1); 26-33
DOI: https://doi.org/10.33136/stma2020.01.026
Language: Russian
Key words: stress-strain behavior, finite-element method, plastoelastic deformations, breaking strength, reusability
1. Elhefny A., Liang G. Stress and deformation of rocket gas turbine disc under different loads using finite element modeling. Propulsion and Power Research. 2013. № 2. P. 38–49. https://doi.org/10.1016/j.jppr.2013.01.002
2. Perakis N., Haidn O. J. Inverse heat transfer method applied to capacitively cooled rocket thrust chambers. International Journal of Heat and Mass Transfer. 2019. № 131. P. 150–166. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.048
3. Yilmaz N., Vigil F., Height J., et. al. Rocket motor exhaust thermal environment characterization. Measurement. 2018. № 122. P. 312–319. https://doi.org/10.1016/j.measurement.2018.03.039
4. Jafari M. Thermal stress analysis of orthotropic plate containing a rectangular hole using complex variable method. European Journal of Mechanics A /Solids. 2019. № 73. P. 212–223. https://doi.org/10.1016/j.euromechsol.2018.08.001
5. Song J., Sun B. Thermal-structural analysis of regeneratively cooled thrust chamber wall in reusable LOX / Methane rocket engines. Chinese Journal of Aeronautics. 2017. № 30. P. 1043–1053.
6. Ramanjaneyulu V., Murthy V. B., Mohan R. C., Raju Ch. N. Analysis of composite rocket motor case using finite element method. Materials Today: Proceedings. 2018. № 5. P. 4920–4929.
7. Xu F., Abdelmoula R., Potier-Ferry M. On the buckling and post-buckling of core-shell cylinders under thermal loading. International Journal of Solids and Structures. 2017. № 126–127. P. 17–36.
8. Wang Z., Han Q., Nash D. H., et. al. Thermal buckling of cylindrical shell with temperature-dependent material properties: Conventional theoretical solution and new numerical method. Mechanics Research Communications. 2018. № 92. P. 74–80.
9. Duc N. D. Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear de-formation shell theory. European Journal of Mechanics A /Solids. 2016. № 58. P. 10–30.
10. Trabelsi S., Frikha A., Zghal S., Dammak F. A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Engineering Structures. 2019. № 178. P. 444–459.
11. Trinh M. C., Kim S. E. Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment. Aerospace Science and Technology. 2019. № 84. P. 672–685.
12. Лойцянский Л. Г. Механика жидкости и газа. М., 2003. 840 с.
13. Launder B. E., Sharma B. I. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. International Journal of Heat and Mass Transfer. 1974. № 1. P. 131–138.
14. Михеев М. А., Михеева И. М. Основы теплопередачи. М., 1977. 345 с.
15. Малинин Н. Н. Прикладная теория пластичности и ползучести. М., 1968. 400 с.
Full text (PDF) || Content 2020 (1)
Country | City | Downloads |
---|---|---|
USA | Boardman; Matawan; Boydton; Plano; Miami; Columbus; Columbus; Columbus; Detroit; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Boardman; Mountain View; Seattle; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn; Ashburn; Ashburn; Seattle | 39 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 11 |
Canada | Toronto; Toronto; Toronto; Toronto; Toronto; Toronto; Toronto; Monreale | 8 |
Ukraine | Dnipro; Odessa; Kyiv; Dnipro | 4 |
Germany | ;; Falkenstein | 3 |
Netherlands | Amsterdam; Amsterdam | 2 |
Finland | Helsinki | 1 |
Great Britain | London | 1 |
Unknown | 1 | |
Romania | Voluntari | 1 |
Poland | Gdańsk | 1 |
Institute of Hydromechanics of National Academy of Sciences of Ukraine, Kyiv, Ukraine
Page: Kosm. teh. Raket. vooruž. 2020, (1); 155-159
DOI: https://doi.org/10.33136/stma2020.01.155
Language: Russian
Key words: Acoustics of rocket launch, acoustic efficiency of a jet, semi-empirical models of of jet acoustics, numeric-computational methods in aeroacoustics, control of jet-generated acoustic levels
Full text (PDF) || Content 2020 (1)
Country | City | Downloads |
---|---|---|
USA | Matawan; Baltimore; North Bergen; Plano; Columbus; Columbus; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Mountain View; Seattle; Tappahannock; Portland; Portland; San Mateo; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn | 35 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 6 |
Canada | Toronto; Toronto; Toronto; Toronto; Toronto; Monreale | 6 |
Unknown | Sidney; | 2 |
Germany | Suderburg; Falkenstein | 2 |
Netherlands | Amsterdam; Amsterdam | 2 |
Finland | Helsinki | 1 |
Brazil | Joinville | 1 |
Romania | Voluntari | 1 |
Ukraine | Dnipro | 1 |
Iran | Tehran | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
Page: Kosm. teh. Raket. vooruž. 2020, (1); 149-154
DOI: https://doi.org/10.33136/stma2020.01.149
Language: Russian
Key words: liquid rocket engine, combustion products, multicomponent flow, ANSYS Fluent
Full text (PDF) || Content 2020 (1)
Country | City | Downloads |
---|---|---|
USA | Boardman; Ashburn; Matawan; Baltimore; Boydton; Plano; Dublin; Dublin; Columbus; Ashburn; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Ashburn; Ashburn; Ashburn; Portland; San Mateo; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Ashburn; Boardman | 34 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 7 |
Canada | Toronto; Toronto; Toronto; Monreale | 4 |
Ukraine | Dnipro; Kyiv; Dnipro | 3 |
Unknown | ; | 2 |
Germany | ; Falkenstein | 2 |
Netherlands | Amsterdam; Amsterdam | 2 |
Belgium | Brussels | 1 |
Finland | Helsinki | 1 |
France | Paris | 1 |
Romania | Voluntari | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
Page: Kosm. teh. Raket. vooruž. 2018 (2); 151-156
DOI: https://doi.org/10.33136/stma2018.02.151
Language: Russian
Key words: angular stabilization, spinning, rotation about the longitudinal axis of symmetry, light rocket, drive delay, determination of the angle of roll, aerodynamic control surfaces, algorithm for maneuver determination of the angle of roll
Full text (PDF) || Content 2018 (2)
Country | City | Downloads |
---|---|---|
USA | Boardman; Columbus; Matawan; Baltimore; Boydton; Plano; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Ashburn; Ashburn; Boardman; Ashburn; Seattle; Portland; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Boardman; Ashburn; Ashburn; Seattle | 36 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 6 |
Canada | Toronto; Toronto; Toronto; Toronto; Monreale | 5 |
Unknown | Brisbane;; | 3 |
Germany | ; Falkenstein | 2 |
Netherlands | Amsterdam; Amsterdam | 2 |
Philippines | 1 | |
Finland | Helsinki | 1 |
Romania | Voluntari | 1 |
Ukraine | Dnipro | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
Page: Kosm. teh. Raket. vooruž. 2018 (2); 143-150
DOI: https://doi.org/10.33136/stma2018.02.143
Language: Russian
Key words: guided descent, turbojet, kinematic characteristics, tangency point, civil aviation
Full text (PDF) || Content 2018 (2)
Country | City | Downloads |
---|---|---|
USA | Ashburn; Ashburn; Ashburn; Matawan; Baltimore; Cheyenne; Plano; Dublin; Ashburn; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Ashburn; Seattle; Antioch; Tappahannock; Portland; San Mateo; San Mateo; Ashburn; Columbus; Des Moines; Boardman; Ashburn | 36 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 10 |
Canada | Toronto; Toronto; Toronto; Toronto; Monreale | 5 |
Unknown | Brisbane; | 2 |
Great Britain | London; | 2 |
Germany | Frankfurt am Main; Falkenstein | 2 |
Netherlands | Amsterdam; Amsterdam | 2 |
India | Kolkata | 1 |
Belgium | Brussels | 1 |
Finland | Helsinki | 1 |
Romania | Voluntari | 1 |
Ukraine | Dnipro | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2
Page: Kosm. teh. Raket. vooruž. 2018 (2); 101-116
DOI: https://doi.org/10.33136/stma2018.02.101
Language: Russian
Key words: complex problem of the optimal control theory, problem of nonlinear mathematical programming, main solid rocket motor, limitations for motion parameters and basic characteristics of the object
Full text (PDF) || Content 2018 (2)
Country | City | Downloads |
---|---|---|
USA | Boardman; Columbus; Matawan; Baltimore; Plano; Miami; Dublin; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Seattle; Seattle; Tappahannock; Portland; Portland; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Ashburn; Ashburn; Ashburn; Seattle | 36 |
Canada | Toronto; Toronto; Toronto; Toronto; Monreale | 5 |
Unknown | ; Brisbane;; | 4 |
Ukraine | Kharkiv; Dnipro; Dnipro; Kyiv | 4 |
Singapore | Singapore; Singapore; Singapore; Singapore | 4 |
Germany | Frankfurt am Main; Nuremberg; Falkenstein | 3 |
Netherlands | Amsterdam; Amsterdam | 2 |
Finland | Helsinki | 1 |
Romania | Voluntari | 1 |