Search Results for “rocket structures” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Fri, 26 Apr 2024 09:07:56 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “rocket structures” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff https://journal.yuzhnoye.com/content_2020_1-en/annot_3_1_2020-en/ Fri, 29 Sep 2023 18:22:49 +0000 https://journal.yuzhnoye.com/?page_id=32230
The entire part of the hold-down bay, which is blown by rocket exhaust jet, is under stress-strain behavior. Stress and deformation of rocket gas turbine disc under different loads using finite element modeling. Inverse heat transfer method applied to capacitively cooled rocket thrust chambers. Rocket motor exhaust thermal environment characterization. Thermal-structural analysis of regeneratively cooled thrust chamber wall in reusable LOX / Methane rocket engines. International Journal of Solids and Structures. Engineering Structures.
]]>

3. Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 26-33

DOI: https://doi.org/10.33136/stma2020.01.026

Language: Russian

Annotation: The study of thermal strength of the hold-down bay is considered. The hold-down bay is a cylindrical shell with the load-bearing elements as the standing supports. The case of the hold-down bay consists of the following structural elements: four standing supports and the compound cylindrical shell with two frames along the top and bottom joints. The purpose of this study was the development of a general approach for the thermal strength calculation of the hold-down bay. This approach includes two parts. Firstly, the unsteady heat fields on the hold-down bay surface are calculated by means of the semi-empirical method, which is based on the simulated results of the combustion product flow of the main propulsion system. The calculation is provided by using Solid Works software. Then the unsteady stress-strain behavior of the hold-down bay is calculated, taking into consideration the plastoelastic deformations. The material strain bilinear diagram is used. The finiteelement method is applied to the stress-strain behavior calculation by using NASTRAN software. The thermal field is assumed to be constant throughout the shell thickness. As a result of the numerical simulation the following conclusions are made. The entire part of the hold-down bay, which is blown by rocket exhaust jet, is under stress-strain behavior. The stresses of the top frame and the shell are overridden the breaking strength that caused structural failure. The structure of the hold-down bay, which is considered in the paper, is unappropriated to be reusable. The hold-down bay should be reconstructed by reinforcement in order to provide its reusability.

Key words: stress-strain behavior, finite-element method, plastoelastic deformations, breaking strength, reusability

Bibliography:

1. Elhefny A., Liang G. Stress and deformation of rocket gas turbine disc under different loads using finite element modeling. Propulsion and Power Research. 2013. № 2. P. 38–49. https://doi.org/10.1016/j.jppr.2013.01.002
2. Perakis N., Haidn O. J. Inverse heat transfer method applied to capacitively cooled rocket thrust chambers. International Journal of Heat and Mass Transfer. 2019. № 131. P. 150–166. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.048
3. Yilmaz N., Vigil F., Height J., et. al. Rocket motor exhaust thermal environment characterization. Measurement. 2018. № 122. P. 312–319. https://doi.org/10.1016/j.measurement.2018.03.039
4. Jafari M. Thermal stress analysis of orthotropic plate containing a rectangular hole using complex variable method. European Journal of Mechanics A /Solids. 2019. № 73. P. 212–223. https://doi.org/10.1016/j.euromechsol.2018.08.001
5. Song J., Sun B. Thermal-structural analysis of regeneratively cooled thrust chamber wall in reusable LOX / Methane rocket engines. Chinese Journal of Aeronautics. 2017. № 30. P. 1043–1053.
6. Ramanjaneyulu V., Murthy V. B., Mohan R. C., Raju Ch. N. Analysis of composite rocket motor case using finite element method. Materials Today: Proceedings. 2018. № 5. P. 4920–4929.
7. Xu F., Abdelmoula R., Potier-Ferry M. On the buckling and post-buckling of core-shell cylinders under thermal loading. International Journal of Solids and Structures. 2017. № 126–127. P. 17–36.
8. Wang Z., Han Q., Nash D. H., et. al. Thermal buckling of cylindrical shell with temperature-dependent material properties: Conventional theoretical solution and new numerical method. Mechanics Research Communications. 2018. № 92. P. 74–80.
9. Duc N. D. Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear de-formation shell theory. European Journal of Mechanics A /Solids. 2016. № 58. P. 10–30.
10. Trabelsi S., Frikha A., Zghal S., Dammak F. A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Engineering Structures. 2019. № 178. P. 444–459.
11. Trinh M. C., Kim S. E. Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment. Aerospace Science and Technology. 2019. № 84. P. 672–685.
12. Лойцянский Л. Г. Механика жидкости и газа. М., 2003. 840 с.
13. Launder B. E., Sharma B. I. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. International Journal of Heat and Mass Transfer. 1974. № 1. P. 131–138.
14. Михеев М. А., Михеева И. М. Основы теплопередачи. М., 1977. 345 с.
15. Малинин Н. Н. Прикладная теория пластичности и ползучести. М., 1968. 400 с.

Downloads: 23
Abstract views: 
833
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Plano; Columbus; Monroe; Ashburn; Ashburn; Boardman; Seattle; Portland; San Mateo; Boardman; Ashburn12
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Ukraine Dnipro; Dnipro2
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff

Keywords cloud

]]>
15.1.2020 Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements https://journal.yuzhnoye.com/content_2020_1-en/annot_15_1_2020-en/ Wed, 13 Sep 2023 11:07:28 +0000 https://journal.yuzhnoye.com/?page_id=31050
The purpose of the work is to take into account the heterogeneities in the materials of the elements of the rocket structures on their functionally-gradient properties, including strength. The purpose of the work is to take into account the heterogeneities in the materials of the elements of the rocket structures on their functionally gradient properties, including strength.
]]>

15. Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements

Organization:

Institute of Mechanical Engineering of Odessa National Polytechnic University, Odessa, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 137-148

DOI: https://doi.org/10.33136/stma2020.01.137

Language: Ukrainian

Annotation: The strength of real solids depends essentially on the defect of the structure. In real materials, there is always a large number of various micro defects, the development of which under the influence of loading leads to the appearance of cracks and their growth in the form of local or complete destruction. In this paper, based on the method of singular integral equations, we present a unified approach to the solution of thermal elasticity problems for bodies weakened by inhomogeneities. The purpose of the work is to take into account the heterogeneities in the materials of the elements of the rocket structures on their functionally-gradient properties, including strength. The choice of the method of investigation of strength and destruction of structural elements depends on the size of the object under study. Micro-research is related to the heterogeneities that are formed in the surface layer at the stage of preparation, the technology of manufacturing structural elements. Defectiveness allows you to adequately consider the mechanism of destruction of objects as a process of development of cracks. In studying the limit state of real elements, weakened by defects and constructing on this basis the theory of their strength and destruction in addition to the deterministic one must consider the probabilistic – statistical approach. In the case of thermal action on structural elements in which there are uniformly scattered, non-interacting randomly distributed defects of the type of cracks, the laws of joint distribution of the length and angle of orientation of which are known, the limiting value of the heat flux for the balanced state of the crack having the length of the “weakest link” is determined. The influence of heterogeneities of technological origin (from the workpiece to the finished product) that occur in the surface layer in the technology of manufacturing structural elements on its destruction is taken into account by the developed model. The strength of real solids depends essentially on the defect of the structure. In real materials, there are always many various micro defects, the development of which under the influence of loading leads to the appearance of cracks and their growth in the form of local or complete destruction. In this paper, based on the method of singular integral equations, we present a unified approach to the solution of thermal elasticity problems for bodies weakened by inhomogeneities. The purpose of the work is to take into account the heterogeneities in the materials of the elements of the rocket structures on their functionally gradient properties, including strength. The choice of the method of investigation of strength and destruction of structural elements depends on the size of the object under study. Micro-research is related to the heterogeneities that are formed in the surface layer at the stage of preparation, the technology of manufacturing structural elements. Defectiveness allows you to adequately consider the mechanism of destruction of objects as a process of development of cracks. In studying the limit state of real elements, weakened by defects and constructing on this basis the theory of their strength and destruction besides the deterministic one must consider the probabilistic – statistical approach. With thermal action on structural elements in which there are uniformly scattered, non-interacting randomly distributed defects of the cracks, the laws of joint distribution of the length and angle of orientation of which are known, the limiting value of the heat flux for the balanced state of the crack having the length of the “weakest link” is determined. The influence of heterogeneities of technological origin (from the workpiece to the finished product) that occur in the surface layer in the technology of manufacturing structural elements on its destruction is taken into account by the developed model. The solution of the singular integral equation with the Cauchy kernel allows one to determine the intensity of stresses around the vertexes of defects of the cracks, and by comparing it with the criterion of fracture toughness for the material of a structural element, one can determine its state. If this criterion is violated, the weak link defect develops into a trunk crack. Also, a criterion correlation of the condition of the equilibrium defect condition with a length of 2l was got, depending on the magnitude of the contact temperature. When the weld is cooled, it develops “hot cracks” that lead to a lack of welding elements of the structures. The results of the simulation using singular integral equations open the possibility to evaluate the influence of thirdparty fillers on the loss of functional properties of inhomogeneous systems. The exact determination of the order and nature of the singularity near the vertices of the acute-angled imperfection in the inhomogeneous medium, presented in the analytical form, is necessary to plan and record the corresponding criterion relations to determine the functional properties of inhomogeneous systems.

Key words: mathematical model, linear systems, singular integral equations, impulse response, defects, criteria for the destruction of stochastically defective bodies, Riemann problem, thermoelastic state

Bibliography:
1. Gakhov F. D. Kraievye zadachi. M.: Nauka,1977. 640 s.
2. Gakhov F. D. Uravneniia tipa svertki. M.: Nauka, 1978.296 s.
3. Litvinchuk G. S. Kraievye zadachi i singuliarnye integralnye uravneniia so sdvigom. M.: Nauka, 1977. 448 s.
4. Muskhelishvili N. I. Singuliarnye integralnye uravneniia. M.: Nauka, 1968. 512 s.
5. Panasiuk V. V. Metod singuliarnykh integralnykh uravnenii v dvukhmernykh zadachakh difraktsii. K.: Nauk. dumka, 1984. 344 s.
6. Siegfried PROSSDORF Einige Klassen singularer Gleichungen.Akademie Verlag Berlin, 1974. 494 s. https://doi.org/10.1007/978-3-0348-5827-4
7. Oborskii G. А. Modelirovanie sistem : monografiia. Odessa: Astroprint, 2013. 664 s.
8. Usov A. V. Matematicheskoe modelirovanie protsessov kontrolia pokrytiia elementov konstruktsii na baze SIU. Problemy mashinostroeniia. 2010. Т.13. №1. s. 98−109.
9. Kunitsyn M. V., Tribocorrosion research of NI-Al2O3/TIO2 composite materials obtained by the method of electrochemical deposition. M.V. Kunitsyn, A.V Usov. Zb. nauk. prats, Suchasni tekhnolohii v mashinobuduvanni. Vyp. 12. Kharkiv: NTU KhPI, 2017. s. 61−70.
10. Savruk M. P. Chislennyi analiz v ploskikh zadachakh teorii tershchin. K.: Nauk. dumka, 1989. 248 s.
11. Usov A. V. Vvedenie v metody optimizatsii i teoriiu tekhnicheskikh sistem. Odessa: Astroprint, 2005. 496 s.
12. Popov G. Ya. Kontsentratsiia uprugikh napriazhenii vozle shtampov, razrezov, tonkikh vkliuchenii i podkreplenii. M.: Nauka, 1982. 344 s.
13. Cherepanov G. P. Mekhanika khrupkogo razrusheniia. M.: Nauka., 1974. 640 s.
14. Stashchuk N. G. Zadachi mekhaniki uprugikh tel s treshchinopodobnymi defectami. K.: Nauk. dumka, 1993. 358 s.
15. Ekobori T. Nauchnye osnovy prochnosti i razrusheniia materialov. Per. s yap. K.: Nauk. dumka, 1978. 352 s.
16. Morozov N. F. Matematicheskie voprosy teorii treshchin. M.: Nauka, 1984. 256 s.
17. Popov G. Ya. Izbrannye trudy. Т. 1, 2. Odessa: VMV, 2007. 896 s.
18. Grigirian G. D., Usov A. V., Chaplia М. Yu. Vliianie shlifovochnykh defektov na prochnost detalei nesushchei sistemy. Vsesoiuzn. konf. Nadezhnost i dolgovechnost mashin i priborov. 1984. s.101−106.
19. Rais Dzh. Matematicheskie metody v mekhanike razrusheniia. Razrushenie. V 2 t. М.: Mir, 1975.Т.2. S. 204−335.
20. Karpenko G. V. Fiziko-khimicheskaia mekhanika konstruktsionnykh materialov: V 2-kh t. K. : Nauk. dumka, 1985. Т. 1 228 s.
21. Kormilitsina Е. А., Salkovskii F. М., Usov A. V., Yakimov А. V. Prichiny poiavliniia defektov pri shlifovanii magnitotverdykh splavov. Tekhnologiia elektrotekhnicheskogo proizvodstva. М.: Energiia. № 4. 1982. s.1−5.
22. Usov A. V. Smeshannaia zadacha termouprugosti dlia kusochno-odnorodnykh tel s vkliucheniiami i treshchinami. IV Vsesoiuzn. konf. Smeshannye zadachi mechaniki deformiruemogo tela: Tez. dokl.-Odessa,1990. s.116.
23. Yakimov А. V., Slobodianyk P. T., Usov A. V. Teplofizika mekhanicheskoi obrabotki. K.: Nauk. dumka,1991. S. 270.
24. Vitvitskii P. M., Popina S. Yu. Prochnost i kriterii khrupkogo razrusheniia stokhaticheski defektnykh tel. K.: Nauk. dumka, 1980. 187 s.
Downloads: 17
Abstract views: 
902
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Columbus; Monroe; Ashburn; Seattle; Portland; San Mateo; Ashburn10
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Odessa; Dnipro2
15.1.2020  Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements
15.1.2020  Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements
15.1.2020  Simulation of thermomechanical processes in functionally-gradient materials of inhomogeneous structure in the manufacturing and operation of rocket structural elements

Keywords cloud

]]>
11.1.2020 Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies https://journal.yuzhnoye.com/content_2020_1-en/annot_11_1_2020-en/ Wed, 13 Sep 2023 10:51:08 +0000 https://journal.yuzhnoye.com/?page_id=31040
Key words: numerical and analytical methods , stress-strain state , rocket structures , shell system , reinforcing load-bearing elements , local and general stability , machine learning technology Bibliography: 1. numerical and analytical methods , stress-strain state , rocket structures , shell system , reinforcing load-bearing elements , local and general stability , machine learning technology .
]]>

11. Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies

Organization:

Zaporizhzhia National University, Zaporizhzhia, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 107-113

DOI: https://doi.org/10.33136/stma2020.01.107

Language: Russian

Annotation: This article analyzes the results of studies, which are based on numerical methods of analysis, of the stress-strain state of thin-walled shell structures. This article also discusses analytical solutions that apply asymptotic approaches and a method of initial parameters in a matrix form for solving a problem of equal stability of reinforced compartments of combined shell systems of the rocket and space technology within the scope of the research being carried out jointly by teams of Yuzhnoye State Design Office and Zaporizhzhya National University. The primary attention is paid to the use of FEM-based direct numerical methods and the research results for which analytical methods can be useful for making a preliminary assessment of the bearing capacity of load-bearing structures, and in some cases for their rational design. This article does not contrast numerical and analytical approaches but about the possibility of using them effectively. The article talks about possible ways of using the up-to-date technique of machine learning (Machine Learning Technology) in the calculation and experimental methods for determining the characteristics of the rocket and space technology.

Key words: numerical and analytical methods, stress-strain state, rocket structures, shell system, reinforcing load-bearing elements, local and general stability, machine learning technology

Bibliography:
1. Jean-Jacques Rousseau. URL: https://www.sdamesse.ru/2019/03/blog-post_14.html.
2. Akimov D. V., Gristchak V. Z., Gomenjuk S. I., Grebenyk S. N., Lisniak А. А., Choporov S. V., Larionov I. F., Klimenko D. V., Sirenko V. N. Matematicheskoe modelirovanie i issledovanie prochnosti silovykh elementov konstruktsij kosmicheskikh letatelnykh apparatov. Visn. Zaporiz’koho nats. un-tu. Fiz.-mat. nauky. 2015. № 3. S. 6–13.
3. Akimov D. V., Gristchak V. Z., Gomenjuk S. I., Larionov I. F., Klimenko D. V., Sirenko V. N. Finite-element analysis and experimental investigation on the strength of a three-layered honeycomb sandwich structure of spacecraft adapter module. Strength of Materials. 2016. № 3. P. 52–57. https://doi.org/10.1007/s11223-016-9775-y
4. Akimov D. V., Larionov I. F., Klimenko D. V., Gristchak V. Z., Gomenjuk S. I. Matematicheskoe modelirovanie i issledovanie napriazhenno-deformirovannogo sostoianiia otsekov raket kosmicheskogo naznacheniia. Kosmicheskaya tekhnika. Raketnoe vooruzhenie: sb. nauch.-tekhn. st. GP «KB «Yuzhnoye». Dnipro, 2019. Vyp. 1. S. 21–27. https://doi.org/10.33136/stma2019.01.021
5. Yarevskii Ye. А. Teoreticheskie osnovy metodov kompiuternogo modelirovaniia: ucheb.-metod. posobie. Sankt-Peterburg, 2010. 83 S.
6. Klovanich S. F. Metod konechnykh elementov v nelineinykh zadachakh inzhenernoi mekhaniki. Zaporozhie, 2009. 394 S.
7. Akimov D. V., Gristchak V. Z., Larionov I. F., Gomenjuk S. I., Klimenko D. V., Choporov S. V., Grebenyk S. N. Matematicheskoe obespechenie analiza prochnosti silovykh elementov raketno-kosmicheskoi techniki. Problemy obchysliuvalnoi mekhaniky i mitsnosti konstruktsii: zb. nayk. prats. 2017. Vyp. 26. S. 5–21.
8. Akimov D. V., Gristchak V. Z., Gomenjuk S. I., Larionov I. F., Klimenko D. V., Sirenko V. N. Eksperimentalnoe issledovanie deformirovannogo sostoianiia i prochnosti mezhstupenchatogo otseka raketonositelia pri staticheskom vneshnem nagruzhenii. Novi materialy i technolohii v metalurhii ta mashynobuduvanni. 2016. №1. S. 82–89.
9. Akimov D. V., Gristchak V. Z., Grebenyk S. N., Gomenjuk S. I. Sravnitelnyi analiz metodik rascheta napriazhenno-deformirovannogo sostoianiia elementov konstruktsii raketonositelia. Novi materialy i technolohii v metalurhii ta mashynobuduvanni. 2016. № 2. S. 116–120.
10. Gristchak V. Z., Gomeniuk S. I., Grebeniuk S. N., Larionov I. F., Degtiarenko P. G., Akimov D. V. An Investigation of a Spacecraft’s Propellant Tanks Shells Bearing Strength. Aviation in XXI-st Century. Safety in Aviation and Space Technologies: Proccedings the Sixth world congress. Kiev, 2014. Vol. 1. Р. 1.14.49–1.14.51.
11. Gristchak V. Z., Manievich А. I. Vliianiie zhestkosti shpangoutov na izgib iz ploskosti na ustoichivost podkreplennoi tsilindricheskoi obolochki. Gidroaeromechanika i teoriia uprugosti. 1972. Vyp. 14. S. 121–130.
12. Gristchak V. Z., Diachenko N. M. Opredelenie oblastei ustoichivosti konicheskoi obolochki pri kombinirovanom nagruzhenii na baze gibridnogo asimptoticheskogo podkhoda. Visn. Zaporiz’koho nats. un-tu. Fiz.-mat. nauky. 2017. №2. S. 32–46. URL: http:// nbuv.gov.ua/UJRN/Vznu_mat_2017_2_6.
13. Dehtiarenko P. H., Gristchak V. Z., Gristchak D. D., Diachenko N. M. K probleme ravnoustojchivosti podkreplenoi obolochechnoi konstruktsii pri kombinirovannom nagruzhenii. Kosmicheskaia nauka I technologiia. 2019. Т. 25, № 6(121). S. 3–14.
14. Kononiuk А. Е. Fundamentalnaia teoriia oblachnykh technologij: v 18 kn. Kyiv, 2018. Kn. 1. 620 s.
15. URL: http://datareview.info/article/vse-modeli-mashinnogo-obucheniya-imeyut-svoi-nedostatki
16. Choporova О. V., Choporov S. V., Lysniak А. О. Vykorystannia mashynnoho navchannia dlia prohnozuvannia napruzheno-deformovannoho stanu kvadratnoi plastyny. Matematychne modeliuvannia fizychnykh I tekhnolohichnykh system. Visnyk KhNTU. 2019. № 2(69). S. 192–201.
Downloads: 18
Abstract views: 
581
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Monroe; Columbus; Ashburn; Seattle; Portland; San Mateo; Ashburn10
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Ukraine Dnipro1
11.1.2020  Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies
11.1.2020  Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies
11.1.2020  Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies

Keywords cloud

]]>
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep https://journal.yuzhnoye.com/content_2020_1-en/annot_5_1_2020-en/ Wed, 13 Sep 2023 06:15:53 +0000 https://journal.yuzhnoye.com/?page_id=31026
2020, (1); 44-56 DOI: https://doi.org/10.33136/stma2020.01.044 Language: Russian Annotation: The shell structures widely used in space rocket hardware feature, along with decided advantage in the form of optimal combination of mass and strength, inhomogeneities of different nature: structural (different thicknesses, availability of reinforcements, cuts-holes et al.) and technological (presence of defects arising in manufacturing process or during storage, transportation and unforseen thermomechanical effects).
]]>

5. Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2020, (1); 44-56

DOI: https://doi.org/10.33136/stma2020.01.044

Language: Russian

Annotation: The shell structures widely used in space rocket hardware feature, along with decided advantage in the form of optimal combination of mass and strength, inhomogeneities of different nature: structural (different thicknesses, availability of reinforcements, cuts-holes et al.) and technological (presence of defects arising in manufacturing process or during storage, transportation and unforseen thermomechanical effects). The above factors are concentrators of stress and strain state and can lead to early destruction of structural elements. Their different parts are deformed according to their program and are characterized by different levels of stress and strain state. Taking into consideration plasticity and creeping of material, to determine stress and strain state, the approach is effective where the calculation is divided into phases; in each phase the parameters are entered that characterize the deformations of plasticity and creeping: additional loads in the equations of equilibrium or in boundary conditions, additional deformations or variable parameters of elasticity (elasticity modulus and Poisson ratio). Then the schemes of successive approximations are constructed: in each phase, the problem of elasticity theory is solved with entering of the above parameters. The problems of determining the lifetime of space launch vehicles and launching facilities should be noted separately, as it is connected with damages that arise at alternating-sign thermomechanical loads of high intensity. The main approach in lifetime determination is one that is based on the theory of low-cycle and high-cycle fatigue. Plasticity and creeping of material are the fundamental factors in lifetime substantiation. The article deals with various aspects of solving the problem of strength and stability of space rocket objects with consideration for the impact of plasticity and creeping deformations.

Key words: shell structures, stress and strain state, structural and technological inhomogeneity, thermomechanical loads, low-cycle and high-cycle fatigue, lifetime

Bibliography:
1. Iliushin A. A. Trudy v 4-kh t. М., 2004. T. 2. Plastichnost. 408 s.
2. Ishlinskii А. Yu., Ivlev D. D. Matematicheskaya teoriia plastichnosti. М., 2001. 700 s.
3. Hutchinson J. W. Plastic buckling. Advances in Appl. Mech. 1974. V. 14. P. 67 – 144. https://doi.org/10.1016/S0065-2156(08)70031-0
4. Hudramovich V. S. Ustoichivost uprugo-plasticheskikh obolochek / otv. red. P. I. Nikitin. Kiev, 1987. 216 s.
5. Parton V. Z., Morozov Е. М. Mekhanika uprugoplastichnogo razrusheniia. М., 1985. 504 s.
6. Tomsen E., Yang Ch., Kobaiashi Sh. Mekhanika plasticheskikh deformatsii pri obrabotke metalla. М., 1968. 504 s.
7. Mossakovsky V. I., Hudramovich V. S., Makeev E. M. Kontaktnye vzaimodeistviia elementov obolochechnykh konstruktsii / otv. red. V. L. Rvachev. Kiev, 1988. 288 s.
8. Hudramovych V. S. Contact mechanics of shell structures under local loading. Int. Appl. Mech. 2009. V. 45, No 7. P. 708 – 729. https://doi.org/10.1007/s10778-009-0224-5
9. Iliushin A. A. Trudy v 4-kh t. М., 2009. Т. 4. Modelirovanie dinamicheskikh protsessov v tverdykh telakh i inzhenernye prilozheniia. 526 s.
10. Hudramovich V. S. Plasticheskoe vypuchivanie tsilindricheskoi obolochki konechnoi dliny pri impulsnom lokalnom nagruzhenii. Teoriia obolochek i plastin: tr. 8-i Vsesoiuzn. konf. Po teorii obolochek i plastin (Rostov-na-Donu, 1971 g.). М., 1973. S. 125 – 130.
11. Nelineinye modeli i zadachi mekhaniki deformiruemogo tverdogo tela. Sb. nauch. tr., posv. 70-letiiu so dnia rozhd. Yu. N. Rabotnova / otv. red. K. V. Frolov. М., 1984. 210 s.
12. Binkevich Е. V., Troshin V. G. Ob odnom sposobe linearizatsii uravnenii teorii obolochek srednego izgiba. Prochnost i dolgovechnost elementov konstruktsii: sb. nauch. tr. / otv. red. V. S. Hudramovich. Kiev, 1983. S. 53 – 58.
13. Rabotnov Yu. N. Problemy mekhaniki deformiruemogo tverdogo tela. Izbrannye Trudy / otv. red. K. V. Frolov. М., 1991. 196 s.
14. Hudramovich V. S. Teoriia polzuchesti i ee prilozheniia k raschetu elementov tonkostennykh konstruktsii. Kiev, 2005. 224 s.
15. Hudramovych V. S., Hart E. L., Ryabokon’ S. A. Plastic deformation of nonhomogeneous plates. J. Math. Eng. 2013. V. 78, Iss. 1. P. 181 – 197. https://doi.org/10.1007/s10665-010-9409-5
16. Hart E. L., Hudramovych V. S. Applications of the projective-iterative versions of FEM in damage problems for engineering structures. Maintenance 2012. Proceedings of 2th Int. Conf. (Zenica, Bosnia and Herzegovina, 2012). Zenica, 2012. P. 157 – 164.
17. Hudramovich V. S., Hart E. L. Konechnoelementnyi analiz protsessa rasseiannogo razrusheniia ploskodeformiruemykh uprugoplasticheskikh sred s lokalnymi kontsentratsiami napriazhenii. Uprugost i neuprugost: materialy Mezhdunar. simp. Po problemam mekhaniki deform. tel, posv. 105-letiiu so dnia rozhd А. А. Iliushina (Moskva, yanv. 2016 g.). М., 2016. S. 158 – 161.
18. Lazarev Т. V., Sirenko V. N., Degtyarev М. А. i dr. Vysokoproizvoditelnaia vychislitelnaia sistema dlia raschetnykh zadach GP KB “Yuzhnoye”. Raketnaia tekhnika. Novyie vozmozhnosti: nauch.-tekhn. sb. / pod red. A. V. Degtyareva. Dnipro, 2019. S. 407 – 419.
19. Sirenko V. N. O vozmozhnosti provedeniia virtualnyks ispytanii pri razrabotke raketno-kosmicheskoi tekhniki s tseliu opredeleniia nesushchikh svoistv. Aktualni problemy mekhaniky sytsilnoho seredovyshcha i mitsnosti konstruktsii: tezy dop. II Mizhnar. nauk.-tekhn. konf. pam’iati akad. NANU V. І. Mossakovskoho (do storichchia vid dnia narodzhennia). (Dnipro, 2019 r.). Dnipro, 2019. S. 43 – 44.
20. Degtyarev А. V. Shestdesiat let v raketostroyenii i kosmonavtike. Dniepropetrovsk, 2014. 540 s.
21. Mak-Ivili А. Dzh. Analiz avariinykh razrushenii. М., 2010. 416 s.
22. Song Z. Test and launch control technology for launch vehicles. Singapore, 2018. 256 p. https://doi.org/10.1007/978-981-10-8712-7
23. Hudramovich V. S., Sirenko V. N., Klimenko D. V., Daniev Ju. F., Hart E. L. Development of the normative framework methodology for justifying the launcher structures resource of launch vehicles. Strength of Materials. 2019. Vol. 51, No 3. P. 333 – 340. https://doi.org/10.1007/s11223-019-00079-4
24. Grigiliuk E. I., Shalashilin V. V. Problemy nelineinogo deformirovaniia. Metod prodolzheniia po parametru v nelineinykh zadachakh mekhaniki deformiruemogo tverdogo tela. М., 1988. 232 s.
25. Hudramovych V. S. Features of nonlinear deformation of shell systems with geometrical imperfections. Int. Appl. Mech. 2006. Vol. 42, Nо 7. Р. 3 – 37. https://doi.org/10.1007/s10778-006-0204-y
26. Hudramovich V. S. Kriticheskoe sostoianie neuprugikh obolochek pri slozhnom nagruzhenii. Ustoichivost v MDTT: materialy Vsesoiuzn. simp. (Kalinin, 1981 g.) / pod red. V. G. Zubchaninova. Kalinin, 1981. S. 61 – 87.
27. Hudramovich V. S. Ustoichivost i nesushchaia sposobnost plasticheskikh obolochek. Prochnost i dolgovechnost konstruktsii: sb. nauch. tr. / otv. red. V. S. Budnik. Kiev, 1980. S. 15 – 32.
28. Hudramovich V. S., Pereverzev E. S. Nesushchaia sposobnost i dolgovechnost elementov konstruktsii / otv. red. V. I. Mossakovsky. Kiev, 1981. 284 s.
29. Hudramovich V. S., Konovalenkov V. S. Deformirovanie i predelnoie sostoianie neuprugikh obolochek s uchetom istorii nagruzheniia. Izv. AN SSSR. Mekhanika tverdogo tela. 1987. №3. S. 157 – 163.
30. Нudramovich V. S. Plastic and creep instability of shells with initial imperfections. Solid mechanics and its applications / Ed. G. M. L. Gladwell V. 64. Dordrecht, Boston, London, 1997. P. 277–289. https://doi.org/10.1007/0-306-46937-5_23
31. Нudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: proceedings Int. Conf. (Helsinki, Finland, 1999) / Ed. P. Makelainen. Amsterdam, Lousanne, New York, Tokyo, 1999. P. 257–263. https://doi.org/10.1016/B978-008043014-0/50133-5
32. Kushnir R. M., Nikolyshyn М. М., Osadchuk V. А. Pruzhnyi ta pruzhnmoplastychnyi hranychnyi stan obolonok z defectamy. Lviv, 2003. 320 s.
33. Hudramovich V. S. Predelnyi analiz – effektivnyi sposob otsenki konstruktsionnoi prochnosti obolochechnykh system. III Mizhnar. konf. «Mekhanika ruinuvannia i mitsnist konstruktsii» (Lviv, 2003) / pid red. V. V. Panasiuka. Lviv, 2003. S.583–588.
34. Herasimov V. P., Hudramovich V. S., Larionov I. F. i dr. Plasticheskoe razrushenie sostavnykh obolochechnykh konstruktsii pri osevom szhatii. Probl. prochnosti. 1979. №11. S. 58 – 61.
35. Hudramovich V. S. Herasimov V. P., Demenkov A. F. Predelnyi analiz elementov konstruktsii / otv. red. V. S. Budnik. Kiev, 1990. 136 s.
36. Druker D. Makroskopicheskie osnovy teorii khrupkogo razrusheniia. Razrushenie. М., 1973. Т. 1. S. 505 – 569.
37. Galkin V. F., Hudramovich V. S., Mossakovsky V. I., Spiridonov I. N. O vliianii predela tekuchesti na ustoichivost tsilindricheskikh obolochek pri osevom szhatii. Izv. AN SSSR. Mekhanika tverdogo tela. 1973. №3. С 180 – 182.
38. Hudramovich V. S., Dziuba A. P., Selivanov Yu. М. Metody golograficheskoi interferometrii v mechanike neodnorodnykh tonkostennykh konstruktsii. Dnipro, 2017. 288 s.
39. Hudramovich V. S., Skalskii V. R., Selivanov Yu. М. Holohrafichne te akustyko-emisiine diahnostuvannia neodnoridnykh konstruktsii i materialiv / vidpovid. red. Z. Т. Nazarchuk. Lviv, 2017. 488 s.
40. Pisarenko G. S., Strizhalo V. А. Eksperimentalnye metody v mekhanike deformiruemogo tverdogo tela. Kiev, 2018. 242 s.
41. Guz’ A. N., Dyshel M. Sh., Kuliev G. G., Milovanova O. B. Razrushenie i lokalnaia poteria ustoichivosti tonkostennykh tel s vyrezami. Prikl. mekhanika. 1981. Т. 17, №8. S. 3 – 24. https://doi.org/10.1007/BF00884086
42. Hudramovich V. S., Diskovskii I. A., Makeev E. M. Tonkostennye element zerkalnykh antenn. Kiev, 1986. 152 s.
43. Hudramovich V. S., Hart E. L., Klimenko D. V., Ryabokon’ S. A. Mutual influence of openings on strength of shell-type structures under plastic deformation. Strength of Materials. 2013. V. 45, Iss. 1. P. 1 – 9. https://doi.org/10.1007/s11223-013-9426-5
44. Hudramovich V. S., Klimenko D. V., Hart E. L. Vliianie vyrezov na prochnost tsilindricheskikh otsekov raket-nositelei pri neuprugom deformirovanii materiala. Kosmichna nauka i tekhnolohiia. 2017. Т. 23, № 6. S. 12 – 20.
45. Hart E. L., Hudramovich V. S. Proektsiino-iteratsiini skhemy realizatsii variatsiino-sitkovykh metodiv u zadachakh pruzhno-plastychnoho deformuvannia neodnoridnykh tonkostinnykh konstruktsii. Matematychni metody I fizyko-mechanichni polia. 2019. Т. 51, № 3. S. 24 – 39.
46. Nikitin P. I., Hudramovich V. S., Larionov I. F. Ustoichivost obolochek v usloviiakh polzuchesti. Polzuchest v konstruktsiakh: tez. dokl. Vsesoiuzn. Simpoziuma (Dniepropetrovsk, 1982 g.). Dniepropetrovsk, 1982. S. 3 – 5.
47. Hudramovich V. S. Ob issledovaniiakh v oblasti teorii polzuchesti v Institute tekhnicheskoi mekhaniki NANU i GKAU. Tekhn. mekhanika. 2016. №4. S. 85 – 89.
48. Hoff N. J., Jahsman W. E., Nachbar W. A. A study of creep collapse of a long circular shells under uniform external pressure. J. Aerospace Sci. 1959. Vol. 26, No 10. P. 663 – 669. https://doi.org/10.2514/8.8243
49. Barmin I. V. Tekhnologicheskiie obiekty nazemnoi infrastruktury raketno-kosmicheskoi tekhniki. V 2-kh kn. M., 2005. Kn. 1. 412 s. М., 2005. Kn. 2. 376 s.
50. Makhutov N. А., Matvienko D. G., Romanov А. N. Problemy prochnosti, tekhnogennoi bezopasnosti i konstruktsionnogo materialovedenia. М., 2018. 720 s.
51. Gokhfeld D. А., Sadakov О. S. Plastichnost i polzuchest elementov konstruktsii pri povtornykg nagruzheniiakh. М., 1984. 256 s.
52. Troshchenko V. Т., Sosnovskii L. А. Soprotivlenie ustalosti metallov i splavov: spravochnik v 2-kh t. Kiev, 1987. Т. 1. 510 s. Kiev, 1987. Т. 2. 825 s.
53. Manson S. S. and Halford G. R. Fatigue and durability of structural materials. ASM International Material Park. Ohio, USA, 2006. 456 p.
Downloads: 19
Abstract views: 
1107
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; North Bergen; Plano; Dublin; Monroe; Ashburn; Ashburn; Portland; San Mateo; Boardman; Ashburn12
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Odessa; Dnipro2
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep
5.1.2020 Strength and stability of inhomogeneous structures of space technology, consid-ering plasticity and creep

Keywords cloud

]]>
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles https://journal.yuzhnoye.com/content_2018_2-en/annot_19_2_2018-en/ Thu, 07 Sep 2023 12:23:58 +0000 https://journal.yuzhnoye.com/?page_id=30801
More reliable evaluation of errors upon conducted measurements can be achieved if the measurement process is regarded as a procedure of successive activities for designing, manufacturing, and testing the measurement system and the rocket including measurements and their processing during the after-flight analysis of the received data. Basic structures of algorithms for evaluation of precision and measurement accuracy for certain mathematical models that form the measured parameters were considered along with the practical case when static correlation existed among the measured parameters. Flight Tests of Rockets and Spacecraft.
]]>

19. Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 157-172

DOI: https://doi.org/10.33136/stma2018.02.157

Language: Russian

Annotation: The measurement errors upon conducting flight tests for launch vehicles are evaluated by considering the interferences and uncertainties in the measurement system procedure. Formal use of this approach can lead to unpredictable consequences. More reliable evaluation of errors upon conducted measurements can be achieved if the measurement process is regarded as a procedure of successive activities for designing, manufacturing, and testing the measurement system and the rocket including measurements and their processing during the after-flight analysis of the received data. The sampling rates of the main controlled parameters are three to ten times higher than the frequency range of their changing. Therefore, it is possible to determine the characteristics of the random error components directly on the basis of registered data. The unrevealed systematic components create the basic uncertainty in the evaluation of the examined parameter’s total measurement error. To evaluate the precision and measurement accuracy of a particular launch, the article suggests specifying the preliminary data on measurement error components determined during prelaunch processing and launch. Basic structures of algorithms for evaluation of precision and measurement accuracy for certain mathematical models that form the measured parameters were considered along with the practical case when static correlation existed among the measured parameters.

Key words: flight tests, sensor, measurement error, mathematical model

Bibliography:
1. Novitsky P. V., Zograf I. A. Evaluation of Measurement Errors. L., 1985. 248 p.
2. Shmutzer E. Relativity Theory. Modern Conception. Way to Unity of Physics. М., 1981. 230 p.
3. Blekhman I. I., Myshkis A. D., Panovenko Y. G. Applied Mathematics: Subject, Logic, Peculiarities of Approaches. К., 1976. 270 p.
4. Moiseyev N. N. Mathematical Problems of System Analysis. М., 1981. 488 p.
5. Bryson A., Ho Yu-Shi. Applied Theory of Optimal Control. М., 1972. 544 p.
6. Yevlanov L. G. Monitoring of Dynamic Systems. М., 1972. 424 p.
7. Sergiyenko A. B. Digital Signal Processing: Collection of publications. 2011. 768 p.
8. Braslavsky D. A., Petrov V. V. Precision of Measuring Devices. М., 1976. 312 p.
9. Glinchenko A. S. Digital Signal Processing: Course of lectures. Krasnoyarsk, 2008. 242 p.
10. Garmanov A. V. Practice of Optimization of Signal-Noise Ratio at ACP Connection in Real Conditions. М., 2002. 9 p.
11. Denosenko V. V., Khalyavko A. N. Interference Protection of Sensors and Connecting Wires of Industrial Automation Systems. SТА. No. 1. 2001. P. 68-75.
12. Garmanov A. V. Connection of Measuring Instruments. Solution of Electric Compatibility and Interference Protection Problems. М., 2003. 41 p.
13. TP ACS Encyclopedia. bookASUTR.ru.
14. Smolyak S. A., Titarenko B. P. Stable Estimation Methods. М., 1980. 208 p.
15. Fomin A. F. et al. Rejection of Abnormal Measurement Results. М., 1985. 200 p.
16. Medich J. Statistically Optimal Linear Estimations and Control. М., 1973. 440 p.
17. Sage E., Mells J. Estimation Theory and its Application in Communication and Control. М., 1976. 496 p.
18. Filtration and Stochastic Control in Dynamic Systems: Collection of articles / Under the editorship of K. T. Leondes. М., 1980. 408 p.
19. Krinetsky E. I. et al. Flight Tests of Rockets and Spacecraft. М., 1979. 464 p.
20. Viduyev N. G., Grigorenko A. G. Mathematical Processing of Geodesic Measurements. К., 1978. 376 p.
21. Aivazyan S. A., Yenyukov I. S., Meshalkin L. D. Applied Statistics. Investigation of Dependencies. М., 1985. 487 p.
22. Sirenko V. N., Il’yenko P. V., Semenenko P. V. Use of Statistic Approaches in Analysis of Gas Dynamic Parameters in LV Vented Bays. Space Technology. Missile Armaments: Collection of scientific-technical articles. Issue 1. P. 43-47.
23. Granovsky V. A., Siraya T. N. Methods of Experimental Data Processing at Measurements. L., 1990. 288 p.
24. Zhovinsky A. N., Zhovinsky V. N. Engineering Express Analysis of Random Processes. М., 1979. 112 p.
25. Anishchenko V. A. Control of Authenticity of Duplicated Measurements in Uncertainty Conditions. University News. Minsk, 2010. No. 2. P. 11-18.
26. Anishchenko V. A. Reliability and Accuracy of Triple Measurements of Analog Technological Variables. University News. Minsk, 2017. No. 2. P. 108-117.
27. Shenk H. Theory of Engineering Experiment. М., 1972. 381 p.
28. Bessonov А. А., Sverdlov L. Z. Methods of Statistic Analysis of Automatic Devices Errors. L., 1974. 144 p.
29. Pugachyov V. N. Combined Methods to Determine Probabilistic Characteristics. М., 1973. 256 p. https://doi.org/10.21122/1029-7448-2017-60-2-108-117
30. Gandin L. S., Kagan R. L. Statistic Methods of Meteorological Data Interpretation. L., 1976. 360 p.
31. Zheleznov I. G., Semyonov G. P. Combined Estimation of Complex Systems Characteristics. М., 1976. 52 p.
32. Vt222М Absolute Pressure Sensor: ТU Vt2.832.075TU. Penza, 1983.
Downloads: 16
Abstract views: 
500
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Monroe; Ashburn; Seattle; Seattle; Portland; San Mateo; Ashburn10
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Dnipro1
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles
19.2.2018 Control of Validity and Assessment of Accuracy of Telemetry Results during Full-Scale Test of Launch Vehicles

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
16.2.2018 Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring https://journal.yuzhnoye.com/content_2018_2-en/annot_16_2_2018-en/ Thu, 07 Sep 2023 12:13:23 +0000 https://journal.yuzhnoye.com/?page_id=30792
The structure was tested in the process of fueling the solid rocket motor casing and during charge polymerization. In order to comply with the specified requirements the cuff functions were identified, the structures previously developed were analyzed, and a new structure was designed and improved after testing. Solid Rocket Motors Design / Under the editorship of L. Solid Rocket Motor Charged Case: Patent 2418187C1 Russian Federation: MPK F02K 9/34 (2006:01) /
]]>

16. Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 139-142

DOI: https://doi.org/10.33136/stma2018.02.139

Language: Russian

Annotation: The structure examined herein aims to keep fuel from entering the space behind the cuff, evacuate the space behind the cuff, reliably fasten the cuff to the thermal protective coating of the bottom in the process of charge forming, easily release the cuff after charge forming, and remove the support structure elements from the casing after charge polymerization when equipping. The structure was tested in the process of fueling the solid rocket motor casing and during charge polymerization. In order to comply with the specified requirements the cuff functions were identified, the structures previously developed were analyzed, and a new structure was designed and improved after testing. The improved structure ensured that fuel did not enter the space behind the cuff; it was removed easily after charge forming. Conclusions proved the suitability of this stricture.

Key words: insert, charge, ring, cuff

Bibliography:
1. Solid Rocket Motors Design / Under the editorship of L. N. Lavrov. М., 1993. 214 p.
2. Solid Rocket Motor Charged Case: Patent 2418187C1 Russian Federation: MPK F02K 9/34 (2006:01) / M. I. Sokolovsky, V. Z. Karimov, Y. B. Nelzin, N. N. Karmanov, B. A. Nesterov; Applicant and patent holder OJSC NPO Iskra. No. 2009146654; claimed 15.12.09; published 10.05.11, Bulletin No. 13.
Downloads: 17
Abstract views: 
562
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Los Angeles; Plano; Columbus; Monroe; Ashburn; Boardman; Seattle; Portland; San Mateo; Ashburn11
Singapore Singapore; Singapore; Singapore; Singapore; Singapore5
Ukraine Dnipro1
16.2.2018 Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring
16.2.2018 Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring
16.2.2018 Design Solutions to Prevent Propellant Ingress into SRM Case Space behind Sealing Ring

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall https://journal.yuzhnoye.com/content_2018_2-en/annot_7_2_2018-en/ Thu, 07 Sep 2023 11:12:23 +0000 https://journal.yuzhnoye.com/?page_id=30754
2018 (2); 57-67 DOI: https://doi.org/10.33136/stma2018.02.057 Language: Russian Annotation: During experimental investigation of the dynamic characteristics of a pneumatic test bench for testing liquid rocket engine high-flowrate automatic units, the effect was detected of 20-35% sound speed increase in the gas flow moving along the channel with corrugated wall (metal hose) which is a part of test bench drain system. Problems of Designing and Manufacturing Flying Vehicle Structures: Collection of scientific works. Refinement of Invariant Method for Calculation of Gas Dynamic Parameters in Rocket Engine Starting Pneumatic System Pipelines.
]]>

7. Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2018 (2); 57-67

DOI: https://doi.org/10.33136/stma2018.02.057

Language: Russian

Annotation: During experimental investigation of the dynamic characteristics of a pneumatic test bench for testing liquid rocket engine high-flowrate automatic units, the effect was detected of 20-35% sound speed increase in the gas flow moving along the channel with corrugated wall (metal hose) which is a part of test bench drain system. The article presents the results of experiments and the task of theoretical justification of the effect is solved. It is indicated that its causes may be two mutually complementary factors – a decrease of gas compressibility at eddy motion and oscillations of metal hose wall. The physical model is considered that describes variation of gas elasticity and density in the conditions of high flow vorticity. It is supposed that in the near-wall layer of the channel, toroidal vortexes (vortex rings) are formed, which move into turbulent core of the flow where their size decreases and the velocity of rotation around the ring axis of torus increases. The spiral shape of the corrugation ensures also axial rotation, which increases vortexes stability. The intensive rotation around the ring axis creates considerable centrifugal forces; as a result, the dependence of pressure on gas density and the sound speed increase. The mathematical model has been developed that describes coupled longitudinal-lateral oscillations of gas and channel’s corrugated shell. It is indicated that in the investigated system, two mutually influencing wave types are present – longitudinal, which mainly transfer gas pressure pulses along the channel and lateral ones, which transfer the shell radial deformation pulses. As a result of modeling, it has been ascertained that because of the lateral oscillations of the wall, the propagation rate of gas pressure longitudinal waves (having the same wave length as in the experiments at test bench) turns out to be higher than adiabatic sound speed.

Key words: rocket engine automatic units, pneumatic test bench, metal hose, corrugated shell, toroidal vortex, longitudinal-lateral oscillations

Bibliography:
1. Shevchenko S. A. Experimental Investigation of Dynamic Characteristics of Gas Pressure Regulator in Multiple Ignition LRE Starting System. Problems of Designing and Manufacturing Flying Vehicle Structures: Collection of scientific works. 2015. Issue 4 (84). P. 49-68.
2. Shevchenko S. A., Valivakhin S. A. Results of Mathematical Modeling of Transient Processes in Gas Pressure Regulator. NTU “KhPI” News. 2014. No. 39 (1082). P. 198-206.
3. Shevchenko S. A., Valivakhin S. A. Mathematical Model of Gas Pressure Regulator. NTU “KhPI” News. 2014. No. 38 (1061). P. 195-209.
4. Shevchenko S. A., Konokh V. I., Makoter A. P. Gas Dynamic Resistance and Sound Speed in Channel with Corrugated Wall. NTU “KhPI” News. 2016. No. 20 (1192). P. 94-101.
5. Flexible Metal Hoses. Catalogue. Ufimsky Aggregate Company “Hydraulics”, 2001.
6. Loytsyansky L.G. Liquid and Gas Mechanics. М., 1978. 736 p.
7. Prisnyakov V. F. et al. Determination of Gas Parameters at Vessel Emptying Taking into Account Compressibility and Manifold Resistance. Problems of High-Temperature Engineering: Collection of scientific works. 1981. P. 86-94.
8. Kirillin V. A., Sychyov V. V., Sheydlin A. E. Technical Thermodynamics. М., 2008. 486 p.
9. Grekhov L. V., Ivashchenko N. A., Markov V. A. Propellant Equipment and Control Systems of Diesels. М., 2004. 344 p.
10. Sychyov V. V., Vasserman A. A., Kozlov A. D. et al. Thermodynamic Properties of Air. М., 1978. 276 p.
11. Shariff K., Leonard A. Vortex rings. Annu. Rev. Fluid Mech. 1992. Vol. 24. P. 235-279. https://doi.org/10.1146/annurev.fl.24.010192.001315
12. Saffman F. Vortex Dynamics. М., 2000. 376 p.
13. Akhmetov D. G. Formation and Basic Parameters of Vortex Rings. Applied Mechanics and Theoretical Physics. 2001. Vol. 42, No 5. P. 70–83.
14. Shevchenko S. A., Grigor’yev A. L., Stepanov M. S. Refinement of Invariant Method for Calculation of Gas Dynamic Parameters in Rocket Engine Starting Pneumatic System Pipelines. NTU “KhPI” News. 2015. No. 6 (1115). P. 156-181.
Downloads: 15
Abstract views: 
609
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Plano; Columbus; Los Angeles; Monroe; Ashburn; Ashburn; Seattle; San Mateo; Boardman10
Singapore Singapore; Singapore; Singapore3
Ukraine Dnipro; Dnipro2
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall
7.2.2018 Theoretical Models of Sound Speed Increase Effects in Gas Duct with Corrugated Wall

Keywords cloud

]]>
5.2.2018 Electromagnetic Valves Developed by Yuzhnoye SDO Liquid Rocket Engines Design Office https://journal.yuzhnoye.com/content_2018_2-en/annot_5_2_2018-en/ Thu, 07 Sep 2023 11:01:49 +0000 https://journal.yuzhnoye.com/?page_id=30749
Electromagnetic Valves Developed by Yuzhnoye SDO Liquid Rocket Engines Design Office Authors: Konokh V. 2018 (2); 34-48 DOI: https://doi.org/10.33136/stma2018.02.034 Language: Russian Annotation: In the pneumohydraulic systems of liquid rocket engines and propulsion systems, electromagnetic valves that allow making the pneumohydraulic systems more simple and ensuring multiple ignition of liquid rocket engines have found wide application. Stabilization of Opening Time of Electric Hydraulic Valve with Boost in Liquid Rocket Engine Hydraulic System. Problems of Designing and Manufacturing Flying Vehicle Structures: Collection of scientific works.
]]>

5. Electromagnetic Valves Developed by Yuzhnoye SDO Liquid Rocket Engines Design Office

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 34-48

DOI: https://doi.org/10.33136/stma2018.02.034

Language: Russian

Annotation: In the pneumohydraulic systems of liquid rocket engines and propulsion systems, electromagnetic valves that allow making the pneumohydraulic systems more simple and ensuring multiple ignition of liquid rocket engines have found wide application. The Yuzhnoye-developed electromagnetic valves are designed according to two schemes – of direct and indirect action. In the direct-action electromagnetic valves, the shutting-off device opens (closes) the throat with the force developed by electric magnet. They have gained acceptance in the pneumohydraulic systems with the working medium pressure of ~8.5 MPa, they are of simple design and have high operating speed (0.001…0.05 s). In the electromagnetic valves with amplification, the electromagnet armature is connected with control valve and the main shutting-off device moves due to the force from working medium pressure drop on it. They are used in the operating pressure range of 0.5…56 MPa, at that, the action time is 0.025…0.15 s. For the European Vega launch vehicle fourth stage main engine assembly that has pressure propellant feeding system, the electrohydraulic valve with amplification and drainage was developed. The dependence of this electrohydraulic valve high speed from the line’s output length is decreased to the maximum due to the installation of Venturi nozzle at the output connecting branch. This electrohydraulic valve is operable at the pressure below 8 MPa, the action time is 0.08…0.12 s. The present-day spacecraft gas-jet orientation and stabilization systems use as propulsion devices the electromagnetic valves with nozzles whose thrust is, as a rule, not more than 30 N and the working medium pressure is up to 24 MPa. Yuzhnoye State Design Office developed for 15B36 gas-jet system the electropneumatic valve with amplification and nozzle, which is operable at the pressure below 45 MPa, ensures the action frequency of up to 10 Hz and is capable of creating the thrust of 100 N on gaseous argon. To solve the task of decreasing the dependence of operability and high speed of electromagnetic valves with drainage and amplification on geometry of lines in which a valve is installed, the electropneumatic valve was developed that has spool elements ensuring reliable and quick action with long input lines of 0.004 m diameter. Its mass is 2…2.5 times lower than the mass of analogs. Recently, Yuzhnoye State Design Office develops the apogee RD840 LRE with 400 N thrust, for the conditions of which the direct-action electrohydraulic valve was developed and tested with the following characteristics: pressure – up to 2.15 MPa, consumed power in operation mode – less than 7.1 W, action time – not more than 0.02 s, mass – 0.19 kg. The presented electromagnetic valves by their technical and operational characteristics meet the highest world requirements and have found wide utility in liquid rocket engines and propulsion systems.

Key words: electrohydraulic valve, electropneumatic valve, pneumohydraulic system, direct-action electric valve, electric valve with amplification, action time

Bibliography:
1. Electric Hydraulic Valve: Patent 89948 Ukraine: MPK F 16K 32/02 / Shnyakin V. M., Konokh V. I., Kotrekhov B. I., Troyak A. B., Boiko V. S.; Applicant and patent holder Yuzhnoye State Design Office. а 2006 02543; claimed 09.03.2006; published 25.03.2010, Bulletin No. 6.
2. Boiko V. S., Konokh V. I. Stabilization of Opening Time of Electric Hydraulic Valve with Boost in Liquid Rocket Engine Hydraulic System. Problems of Designing and Manufacturing Flying Vehicle Structures: Collection of scientific works. 2015. Issue 4 (84). P. 39-48.
3. Electric Valve: Patent 97841, Ukraine: MPK F 16K 32/02 / Shnyakin V. M., Konokh V. I., Kotrekhov B. I., Troyak A. B., Boiko V. S., Ivashura A. V.; Applicant and patent holder Yuzhnoye State Design Office. а 2009 12002; claimed 23.11.2009; published 26.03.2012, Bulletin No. 6.
4. Boiko V. S., Konokh V. I. Increase of Action Stability of Electric Pneumatic Valve with Boost in the System with Increased Inlet Hydraulic Resistance. Aerospace Engineering and Technology: Scientific-Technical Journal. 2013. Issue 3 (100). P. 90-95.
5. Flying Vehicles Pneumatic Systems Units / Lyaskovsky I. F., Shishkov A. I., Romanenko N. T., Romanenko M. T., Chernov M. T., Yemel’yanov V. V. / Under the editorship of N. T. Romanenko. М., 1976. 176 p.
Downloads: 14
Abstract views: 
612
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Plano; Dublin; Monroe; Ashburn; Ashburn; Boardman; Seattle; Portland; Boardman9
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro1
5.2.2018 Electromagnetic Valves Developed by Yuzhnoye SDO Liquid Rocket Engines Design Office
5.2.2018 Electromagnetic Valves Developed by Yuzhnoye SDO Liquid Rocket Engines Design Office
5.2.2018 Electromagnetic Valves Developed by Yuzhnoye SDO Liquid Rocket Engines Design Office

Keywords cloud

]]>
23.2.2017 Optimization Technique for Mass of Locally Loaded Rocket Bays with Wafer Structure https://journal.yuzhnoye.com/content_2017_2/annot_23_2_2017-en/ Wed, 09 Aug 2023 12:39:28 +0000 https://journal.yuzhnoye.com/?page_id=29948
Optimization Technique for Mass of Locally Loaded Rocket Bays with Wafer Structure Authors: Danchenko V. 2017 (2); 131-136 Language: Russian Annotation: The paper addresses a new, authors- developed method of mass optimization of rocket bays of wafer structure bearing during operation on locally disposed parking supports. Designing of Thin-Wall Structures. Space Rockets Manufacturing Technology. (2017) "Optimization Technique for Mass of Locally Loaded Rocket Bays with Wafer Structure" Космическая техника.
]]>

23. Optimization Technique for Mass of Locally Loaded Rocket Bays with Wafer Structure

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (2); 131-136

Language: Russian

Annotation: The paper addresses a new, authors- developed method of mass optimization of rocket bays of wafer structure bearing during operation on locally disposed parking supports. The method allows, due to more rational distribution of materials in the structure in accordance with acting load, decreasing the mass of bays by up to 20%.

Key words:

Bibliography:
1. Linnik A. K. Designing of Liquid Ballistic Missiles Cases. Dnepropetrovsk, 1994. P. 65-66.
2. Lizin V. T., Pyatkin V. A. Designing of Thin-Wall Structures. М., 1985. P. 14, 93.
3. Dzhur E. A., Vdovin S. I. et al. Space Rockets Manufacturing Technology. Dnepropetrovsk, 1992. P. 35, 36.
4. Patent 112339 Ukraine, MPK FD2 K 9/32 (2006.1), FD2 K 9/60 (2006/1), ВG4 G 1/22 (2006.1). Method of Manufacturing Lightweight Prints of Locally Loaded Wafer Structure / V. G. Danchenko, E. I. Shevtsov, V. V. Gusev (Ukraine); Applicant and holder Yuzhnoye SDO. No. а 201408785; Claimed 04.08.2014; Published 25.08.2016, Bulletin No. 16.
Downloads: 18
Abstract views: 
416
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Columbus; Monroe; Ashburn; Seattle; Portland; San Mateo; Boardman; Ashburn; Boardman; Boardman12
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro; Dnipro2
23.2.2017 Optimization Technique for Mass of Locally Loaded Rocket Bays with Wafer Structure
23.2.2017 Optimization Technique for Mass of Locally Loaded Rocket Bays with Wafer Structure
23.2.2017 Optimization Technique for Mass of Locally Loaded Rocket Bays with Wafer Structure
]]>
21.2.2017 Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft https://journal.yuzhnoye.com/content_2017_2/annot_21_2_2017-en/ Wed, 09 Aug 2023 12:32:56 +0000 https://journal.yuzhnoye.com/?page_id=29940
Journal of Spacecraft and Rockets. European Directions for Hypersonic Thermal Protection Systems and Hot Structures. 31st Annual Conference on Composite Materials and Structures (Daytona Beach, FL, January 22, 2007). Problems of Designing and Manufacturing Flying Vehicle Structures.
]]>

21. Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Oles Honchar Dnipro National University, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2017 (2); 121-126

Language: Russian

Annotation: The paper considers the TZS-U design developed by Yuzhnoye SDO specialists for windward part of reusable spacecraft with external metal three-layer panel, U-like joint and tiled thermal protection, in which the problem is solved of compensation of thermal expansions and sealing of gaps; for optimization of structural mass. The specially created dispersion-hardened powder alloy based on nichrome and aluminum with yttrium dioxide with decreased specific mass of 7500 kg/m3 and lighter felt of MKRF brand are used , and honeycomb filler of three-layer panel is replaced by the filler with square cell.

Key words:

Bibliography:
1. Aerothermal performance and structural integrity of a René-41 thermal protection system at Mach 6.6 / W. D. Deveikis, R. Miserentino, I. Weinstein, J. L. Schideler. NASA-TN-D-7943, NASA, Washington DC. 1975. 105 р.
2. Poteet C. C., Blosser M. L. Improving Metallic Thermal-Protection-System Hypervelocity Impact Resistance Through Numerical Simulation. Journal of Spacecraft and Rockets. 2004. Vol. 41, No. 2. Р. 221-232.
3. Advanced metallic thermal protection system development / M. L. Blosser, R. R. Chen, I. H. Schmidt et al. AIAA-2002-0504; AIAA, Washington DC. 2002. 56 р.
4. David E. European Directions for Hypersonic Thermal Protection Systems and Hot Structures. 31st Annual Conference on Composite Materials and Structures (Daytona Beach, FL, January 22, 2007). 44 р.
5. Gusarova I. A. Selection of Scheme of Heat Protection Tile Attachment to Reusable Spacecraft Body. Problems of Designing and Manufacturing Flying Vehicle Structures. 2016. No. 4 (88). P. 105-113.
6. Gusarova I. A. Evaluation of Thermal Resistance of Three-Layer Honeycomb Panel Produced from YuIPM-1200 Alloy by Method of Diffusion Welding in Vacuum / I. A. Gusarova, М. Parko, А. М. Potapov, Y. V. Fal’chenko, L. V. Petrushinets, Т. V. Melnichenko, V. E. Fedorchuk. Automatic Welding. 2016. No. 12 (759). P. 31-35.
7. Patent 108096 Ukraine. Method of Producing Heat-Resistant Alloy Based on Nichrome / V. V. Skorokhod, V. P. Solntsev, G. O. Frolov, Т. O. Solntseva, О. М. Potapov, V. G. Tikhiy, I. A. Gusarova, Y. M. Litvinenko / Application No. а2012 11691; Claimed 04.10.2012; Published 25.03.2015, Bulletin No. 6. 4 p.
Downloads: 14
Abstract views: 
295
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Dublin; Monroe; Ashburn; Ashburn; San Mateo; Boardman; Boardman8
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Dnipro; Dnipro2
21.2.2017 Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft
21.2.2017 Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft
21.2.2017 Mass Parameter Optimization of Thermal Protective Structure for Reusable Spacecraft
]]>