Search Results for “rod with piston” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 13:02:58 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “rod with piston” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 12.1.2017 Static Performance Prediction of Hot-Gas Flapper-Nozzle Actuator https://journal.yuzhnoye.com/content_2017_1/annot_12_1_2017-en/ Fri, 22 Sep 2023 15:14:35 +0000 https://journal.yuzhnoye.com/?page_id=31702
2017 (1); 78-83 Language: Russian Annotation: The basic mathematical relations are considered to construct static characteristics of nozzle-shutter twostage piston pneumatic drive with the working medium – powder combustion products.
]]>

12. Static Performance Prediction of Hot-Gas Flapper-Nozzle Actuator

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (1); 78-83

Language: Russian

Annotation: The basic mathematical relations are considered to construct static characteristics of nozzle-shutter twostage piston pneumatic drive with the working medium – powder combustion products.

Key words:

Bibliography:
1. Oleinik V. P. et al. Static Characteristics of Gas Drive with Jet Engine / V. P. Oleinik, Y. A. Yelansky, V. N. Kovalenko, L. G. Kaluger, Е. V. Vnukov. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2015. Issue. 1. P. 21-27.
2. Kornilov Y. G. et al. Pneumatic Elements and Systems. К., 1968. 143 p.
3. Hydraulic and Pneumatic Power Control System / Under the editorship of J. Blackborn, H. Reethoff, G. L. Sherer. М., 1962. 614 p.
4. Mertaf S. A. Tutorial on the Theory of Electrohydraulic Servo Mechanism with Acceleration Control Operating in Switchover Mode. Problems of Rocket Engineering. 1961. No. 2. P. 74-95.
5. Banshtyk A. М. Electrohydraulic Servo Mechanisms with Pulse-Width Control. М., 1972. 144 p.
Downloads: 39
Abstract views: 
883
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Dublin; Ashburn; Columbus; Ashburn; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Ashburn; Boardman26
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Canada Toronto; Toronto; Toronto3
Ukraine Dnipro; Dnipro2
Germany Falkenstein1
Romania Voluntari1
12.1.2017 Static Performance Prediction of Hot-Gas Flapper-Nozzle Actuator
12.1.2017 Static Performance Prediction of Hot-Gas Flapper-Nozzle Actuator
12.1.2017 Static Performance Prediction of Hot-Gas Flapper-Nozzle Actuator
]]>
19.1.2020 Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO https://journal.yuzhnoye.com/content_2020_1-en/annot_19_1_2020-en/ Wed, 13 Sep 2023 12:02:02 +0000 https://journal.yuzhnoye.com/?page_id=31074
The above segments a re actuated using a rod with sealing rings and a piston connected to the rod through a rubber gasket; the piston moves under pressure of gases formed during pyro cartridge action.
]]>

19. Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 170-176

DOI: https://doi.org/10.33136/stma2020.01.170

Language: Russian

Annotation: The pyrobolts, or explosive bolts, belong to the pyrotechnical devices with monolithic case consisting o f the cap, as a rule with hexagonal surface, and of cylindrical part with thread. The pyrobolts are separated into parts using the pyrotechnical charge placed inside the case. Owing to the simple design, reliability and short action time, the pyrobolts have found wide application in aerospace engineering for separation of assemblies and bays, in particular, stages, head modules, launching boosters, etc. So, for example, about 400 pyrobolts are used in the Proton launch vehicle. The designs of pyrobolts are markedly different. By method of explosive substance action on case structural elements, the pyrobolts are divided into two types: the pyrobolts using the shock wave formed at detonation of brisant explosive substance for case wall destruction and the pyrobolts using the pressure of gases arising at pyrotechnical charge blasting. By method of separation into parts, they are divided into fragmenting pyrobolts with ridge-cut, with piston, and shear pyrobolts. The paper deals with the design of various types of pyrobolts, their disadvantages are considered. The Yuzhnoye SDO-developed pyrobolt of shear type with segments is presented that uses radial shear forces of segments located in the hole of cylindrical part to separate the case parts. The above segments a re actuated using a rod with sealing rings and a piston connected to the rod through a rubber gasket; the piston moves under pressure of gases formed during pyro cartridge action. The following calculations are presen ted: strength analyses with determination of case load-carrying capacity; power analyses with justification of pyro cartridge selection for pyrobolt actuation. In the developed pyrobolt of shear type with segments, the case parts are separated without considerable shock loads and without high-temperature gases and fragments release into environment, ensuring reliable separation of bays and assemblies without damaging sensitive equipment.

Key words: explosive bolt, shock wave, brisant explosive substance, pyro cartridge, electric igniting fuse, high-temperature gases

Bibliography:
1. Mashinostroenie. Entsiklopediia / А. P. Adzhian i dr.; pod red. V. P. Legostaeva. М., 2012. Т. IV-22. V 2-kh kn. Kn. 1. 925 s.
2. Bement L. J., Schimmel M. L. A Manual for Pyrotechnic Design, Development and Qualification: NASA Technical Memorandum 110172. 1995.
3. Yumashev L. P. Ustroistvo raket-nositelei (vspomagatelnye sistemy): ucheb. posob. Samara, 1999. 190 s.
4. Lee J., Han J.-H., Lee Y., Lee H. Separation characteristics study of ridge-cut explosive bolts. Aerospace Science and Technology. 2014. Vol. 39. Р. 153-168. https://doi.org/10.1016/j.ast.2014.08.016
5. Yanhua L., Jingcheng W., Shihui X., Li C., Yuquan W., Zhiliang L. Numerical Study of Separation Characteristics of Piston-Type Explosive Bolt. Shock and Vibration. https://doi.org/10.1155/2019/2092796
6. Yanhua L., Yuan L., Xiaogan L., Yuquan W., Huina M., Zhiliang L. Identification of Pyrotechnic Shock Sources for Shear Type Explosive Bolt. Shock and Vibration. https://doi.org/10.1155/2017/3846236
Downloads: 64
Abstract views: 
1908
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Columbus; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Ashburn; Seattle; Tappahannock; Portland;; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Ashburn26
Ukraine Kyiv; Kharkiv; Smila; Melitopol; Kyiv; Kyiv; Kyiv; Dnipro8
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Germany;;; Limburg an der Lahn; Falkenstein5
Canada Toronto; Toronto; Monreale3
Romania; Voluntari2
Great Britain London; Newcastle upon Tyne2
Unknown;2
Finland Helsinki1
China Shanghai1
Indonesia1
India1
Japan1
Russia Moscow1
Netherlands Amsterdam1
Serbia Belgrade1
Czech1
19.1.2020  Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO
19.1.2020  Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO
19.1.2020  Pyrobolts: types, design, development. Shear type pyrobolt developed at Yuzhnoye SDO

Keywords cloud

]]>
20.1.2019 Possibilities of Increasing Acting Loads on Hydraulic Actuator Middle Position Lock https://journal.yuzhnoye.com/content_2019_1-en/annot_20_1_2019-en/ Wed, 24 May 2023 16:00:46 +0000 https://journal.yuzhnoye.com/?page_id=27725
The comparative results were obtained in the tests of experimental sample of the lock completed with two rods with piston: the rod with piston manufactured according to DD and the experimental rod with piston that passed carbonization to the depth 0.9-1.3 mm and hardened to HRCэ 56-62. Both rods with piston were tested in the lock’s dummy in the load range: up to 1200 kgf –standard rod with piston and up to 3000 kgf – experimental rod with piston under static and cyclic loading. The dimensions of traces on the experimental rod with piston under the load 3000 kgf inclusive did not exceed the dimensions of traces on the standard rod with piston, which testifies to the increase of contact resistance. Key words: thrust vector control system , main engine , tests , rod with piston Bibliography: Full text (PDF) || thrust vector control system , main engine , tests , rod with piston .
]]>

20. Possibilities of Increasing Acting Loads on Hydraulic Actuator Middle Position Lock

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 139-143

DOI: https://doi.org/10.33136/stma2019.01.139

Language: Russian

Annotation: The results of work are described to determine optimal materials for one of the elements of middle position lock to increase load bearing characteristics and contact resistance of the middle position lock. The results are presented of experimental check of impact of material of rod with hydraulic actuator piston on contact resistance and load capacity of the middle position lock of thrust vector control system two-channel hydraulic actuator. As replacer, the 18ХГТ steel was selected allowing (after carbonization and hardening) obtaining in surface layer of material the HRCэ 56-62 hardness with plastic core, instead of HRCэ 36-42 after hardening of applied 09Х16Н4Б steel. The comparative results were obtained in the tests of experimental sample of the lock completed with two rods with piston: the rod with piston manufactured according to DD and the experimental rod with piston that passed carbonization to the depth 0.9-1.3 mm and hardened to HRCэ 56-62. The rod’s ring groove – one of the elements of lock was subjected to carbonization and hardening. Both rods with piston were tested in the lock’s dummy in the load range: up to 1200 kgf –standard rod with piston and up to 3000 kgf – experimental rod with piston under static and cyclic loading. The test results are positive: the standard rod with piston confirmed its serviceability at the loads up to 1200 kgf inclusive; the experimental rod with piston withstood the loads up to 3000 kgf under static and cyclic loading. The evaluation of contact resistance was made by comparison of dimensions of traces left by the balls on the surface of rod’s grove under lock loading. The dimensions of traces on the experimental rod with piston under the load 3000 kgf inclusive did not exceed the dimensions of traces on the standard rod with piston, which testifies to the increase of contact resistance. We believe that the direction of search for steel brands in combination with advanced methods of thermal treatment is promising in increasing the lock’s load-bearing characteristics.

Key words: thrust vector control system, main engine, tests, rod with piston

Bibliography:
Downloads: 38
Abstract views: 
591
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Dublin; Ashburn; Columbus; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Seattle; Tappahannock; Ashburn; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn23
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Unknown Melbourne;2
Canada Toronto; Toronto2
Indonesia Jakarta1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
20.1.2019 Possibilities of Increasing Acting Loads on Hydraulic Actuator Middle Position Lock
20.1.2019 Possibilities of Increasing Acting Loads on Hydraulic Actuator Middle Position Lock
20.1.2019 Possibilities of Increasing Acting Loads on Hydraulic Actuator Middle Position Lock

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>