Search Results for “ship roll” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Thu, 20 Jun 2024 09:40:59 +0000 en-GB hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “ship roll” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 21.2.2018 Ensuring Aiming Accuracy of Ship’s Telemetry Reception Antenna Installation for Small Vessels https://journal.yuzhnoye.com/content_2018_2-en/annot_21_2_2018-en/ Thu, 07 Sep 2023 12:30:29 +0000 https://journal.yuzhnoye.com/?page_id=30807
When the antenna system of such station is placed on shipboard, ship roll and ship drift have the most considerable impact on the antenna guidance accuracy. Numerical simulation of antenna guidance algorithms that provide stable signal receiving under conditions of ship roll was carried out in the visual development environment of Embarcadero RAD Studio XE6. The simulation validated the designed antenna control algorithm and showed that the requirements for the cinematic parameters of the antenna drives were reduced under conditions of ship roll when the axis of reflector inclination angle was introduced; and accelerometer unit or GPS receiver installed in the antenna structure additionally increased the accuracy of target designation of the antenna and improved its guidance accuracy Key words: antenna , guidance algorithm , ship roll , ship drift , simulation Bibliography: 1. antenna , guidance algorithm , ship roll , ship drift , simulation .
]]>

21. Ensuring Aiming Accuracy of Ship’s Telemetry Reception Antenna Installation for Small Vessels

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 178-183

DOI: https://doi.org/10.33136/stma2018.02.178

Language: Russian

Annotation: For monitoring rocket flight and determining accuracy of spacecraft injection into the planned orbit, it is necessary to ensure the reception of telemetry data from the launch vehicle. Telemetry data receiving stations may be located either on land or on shipboard. When the antenna system of such station is placed on shipboard, ship roll and ship drift have the most considerable impact on the antenna guidance accuracy. To ensure the guidance accuracy of the telemetry receiving antenna set, placed on shipboard, the control algorithm was designed. It was offered to use triaxial rotary support with axis of reflector inclination angle to meet the requirements specified. In the article, the connection between kinematic parameters of the antenna rotary support drives and parameters of the space launch vehicle motion were identified, rotation angles of the antenna drives along the three axes were determined, and the law of angular velocity variation along the azimuthal axis, including the maximum feasible angular velocity provided by the azimuthal axis drive, was chosen. Numerical simulation of antenna guidance algorithms that provide stable signal receiving under conditions of ship roll was carried out in the visual development environment of Embarcadero RAD Studio XE6. Several variants for operation of the rotary support drives of the antenna set were chosen for mathematical simulation; disturbing conditions of ship roll and ship drift were analyzed and chosen for ships with small displacement. The simulation validated the designed antenna control algorithm and showed that the requirements for the cinematic parameters of the antenna drives were reduced under conditions of ship roll when the axis of reflector inclination angle was introduced; and accelerometer unit or GPS receiver installed in the antenna structure additionally increased the accuracy of target designation of the antenna and improved its guidance accuracy

Key words: antenna, guidance algorithm, ship roll, ship drift, simulation

Bibliography:
1. Blagoveshchensky S. N., Kholodilin A. N. Guide on Ship’s Statics and Dynamics. Vol. 2. Ship’s Dynamics. L., 1976. 544 p.
2. Sakelari N. Navigation. М., 1936. P. 137.
3. Bezrukov Y. F. Wave Level Variation in the World Ocean. Simferopol, 2001. 50 p.
Downloads: 31
Abstract views: 
760
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Los Angeles; Monroe; Ashburn; Seattle; Seattle; Ashburn; Boardman; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn20
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Unknown Melbourne1
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
21.2.2018 Ensuring Aiming Accuracy of Ship’s Telemetry Reception Antenna Installation for Small Vessels
21.2.2018 Ensuring Aiming Accuracy of Ship’s Telemetry Reception Antenna Installation for Small Vessels
21.2.2018 Ensuring Aiming Accuracy of Ship’s Telemetry Reception Antenna Installation for Small Vessels

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs https://journal.yuzhnoye.com/content_2018_2-en/annot_12_2_2018-en/ Thu, 07 Sep 2023 11:38:27 +0000 https://journal.yuzhnoye.com/?page_id=30770
Ballistic Solid-Propellant Rocket / Under the editorship of A. Designing and Testing of Ballistic Rockets / Under the editorship of V. Flight Control Optimization and Thrust Optimization of Controllable Rocket Object Main Propulsion System. Methodological Support to Determine in Initial Designing Phase the Design Parameters, Control Programs, Ballistic, Power, and Mass-Dimensional Characteristics of Controllable Rocket Objects Moving In Aeroballistic Trajectory: R&D Report.
]]>

12. Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2018 (2); 101-116

DOI: https://doi.org/10.33136/stma2018.02.101

Language: Russian

Annotation: The main scientific and methodological propositions for designing single-stage guided missiles with main solid rocket motors that are intended for delivering payload to the given spatial point with required and specified kinematic motion parameters are defined. The aim of the article is to develop methodology for the early design phase to improve the basic characteristics of guided missiles, including formalization of complex problem to optimize design parameters, trajectory parameters and motion control programs for guided missiles capable of flying along the ballistic, aeroballistic or combined trajectories. The task is defined as a problem of the optimal control theory with limitations in form of equality, inequality and differential constraints. An approach to program forming is proposed for motion control in the form of polynomial that brings the problem of the optimal control theory to a simpler problem of nonlinear mathematical programming. When trajectory parameters were calculated the missile was regarded as material point of variable mass and the combined equations for center-of-mass motion of the guided missile with projections on axes of the terrestrial reference system were used. The structure of the mathematical model was given along with the calculation sequence of criterion functional that was used for optimization of design parameters, control programs and basic characteristics of the guided missile. The mathematical model of the guided missile provides adequate accuracy for design study to determine: overall dimensions and mass characteristics of the guided missile in general and its structural components and subsystems; power, thrust and consumption characteristics of the main engine; aerodynamic and ballistic characteristics of the guided missile. The developed methodology was tested by solving design problems. Applications of the developed program were studied to present the research results in a user-friendly form.

Key words: complex problem of the optimal control theory, problem of nonlinear mathematical programming, main solid rocket motor, limitations for motion parameters and basic characteristics of the object

Bibliography:
1. Degtyarev A. V. Rocket Engineering: Problems and Prospects. Selected scientific-technical publications. Dnepropetrovsk, 2014. 420 p.
2. Shcheverov D. N. Designing of Unmanned Aerial Vehicles. М., 1978. 264 p.
3. Sinyukov А. М. et al. Ballistic Solid-Propellant Rocket / Under the editorship of A. M. Sinyukov. М., 1972. 511 p.
4. Varfolomeyev V. I. Designing and Testing of Ballistic Rockets / Under the editorship of V. I. Varfolomeyev, M. I. Kopytov. М., 1970. 392 p.
5. Vinogradov V. A., Grushchansky V. A., Dovgodush S. I. et al. Effectiveness of Complex Systems. Dynamic Models. М., 1989. 285 p.
6. Il’ichyov A. V., Volkov V. D., Grushchansky V. A. Effectiveness of Designed Complex Systems’ Elements. М., 1982. 280 p.
7. Krotov V. F., Gurman V. I. Methods and Problems of Optimal Control. М., 1973. 446 p.
8. Pontryagin L. S. et al. Mathematical Theory of Optimal Processes. М., 1969. 385 p.
9. Tarasov E. V. Algorithms of Flying Vehicles Optimal Designing. М., 1970. 364 p.
10. Alpatov A. P., Sen’kin V. S. Complex Task of Optimization of Space Rocket Basic Design Parameters and Motion Control Programs. Technical Mechanics. 2011. No. 4. P. 98-113.
11. Alpatov A. P., Sen’kin V. S. Methodological Support for Selection of Launch Vehicle Configuration, Optimization of Design Parameters and Flight Control Programs. Technical Mechanics. 2013. No. 4. P. 146-161.
12. Sen’kin V. S. Optimization of Super-Light Launch Vehicle Design Parameters. Technical Mechanics. 2009. No. 1. P. 80-88.
13. Sen’kin V. S. Flight Control Optimization and Thrust Optimization of Controllable Rocket Object Main Propulsion System. Technical Mechanics. 2000. No. 1. P. 46-50.
14. Syutkina-Doronina S. V. On Problem of Optimization of Design Parameters and Control programs of a Rocket Object With Solid Rocket Motor. Aerospace Engineering and Technology. 2017. No. 2 (137). P. 44-59.
15. Lebedev А. А., Gerasyuta N. F. Rocket Ballistics. М., 1970. 244 p.
16. Razumov V. F., Kovalyov B. K. Design Basis of Solid-Propellant Ballistic Missiles. М., 1976. 356 p.
17. Yerokhin B. T. SRM Theoretical Design Basis. М., 1982. 206 p.
18. Abugov D. I., Bobylyov V. M. Theory and Calculation of Solid Rocket Motors. М., 1987. 272 p.
19. Shishkov А. А. Gas Dynamics of Powder Rocket Motors. М., 1974. 156 p.
20. Sen’kin V. S. Complex Task of Optimization of Super-Light Solid-Propellant Launch Vehicle Design Parameters and Control Programs. Technical Mechanics. 2012. No. 2. P. 106-121.
21. Methodological Support to Determine in Initial Designing Phase the Design Parameters, Control Programs, Ballistic, Power, and Mass-Dimensional Characteristics of Controllable Rocket Objects Moving In Aeroballistic Trajectory: R&D Report. ITM of NASU and SSAU, Yuzhnoye SDO. Inv. No. 40-09/2017. 2017. 159 p.
Downloads: 30
Abstract views: 
686
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Matawan; Baltimore; Plano; Miami; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Ashburn19
Singapore Singapore; Singapore; Singapore; Singapore4
Ukraine Kharkiv; Dnipro; Dnipro3
Unknown Brisbane1
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs

Keywords cloud

]]>
6.1.2019 Investigation into Peculiarities of Delivery to Launch Base of Rocket Propellant with Specified Gasing https://journal.yuzhnoye.com/content_2019_1-en/annot_6_1_2019-en/ Thu, 25 May 2023 12:09:32 +0000 https://journal.yuzhnoye.com/?page_id=27711
During transportation tank container is subjected to various kinds of mechanical actions (vibration, rolling and pitching in the sea, braking, transshipment), therefore intensive mixing of propellants occur.
]]>

6. Investigation into Peculiarities of Delivery to Launch Base of Rocket Propellant with Specified Gasing

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 38-44

DOI: https://doi.org/10.33136/stma2019.01.038

Language: Russian

Annotation: This article considers the issue of achievement of the specified value of propellants saturation by helium after their delivery from the manufacturers to the launch site. Knowing the fact that propellants gas saturation or gas separation processes are labour-consuming and costly this issue is of immediate interest. In order to solve this problem number of factors have been considered, which determine the value of gas saturation in the propellants delivered to the launch site and procedure to control the value of gas saturation by the fuel manufacturer has been developed. This procedure implies that shipping tank container is pressurized after being fueled with propellants at the manufacturer’s, the pressure is characterized by the value of the known initial deficit or excess of gas in the propellants, following which tank container is delivered to the launch site. During transportation tank container is subjected to various kinds of mechanical actions (vibration, rolling and pitching in the sea, braking, transshipment), therefore intensive mixing of propellants occur. As propellants mix, process of propellant saturation occurs when certain amount of gas transits from tank container’s gas volume into the liquid, therefore certain gas saturation is reached. Article includes the measuring results of the gas liquid medium parameters inside the tank containers with fuel in the process of fuel transportation to Ukraine from PRC factories and estimations of the measuring results using the developed model which confirmed the quantitative nature of the mass exchange processes, included in the model, going on in the gas liquid medium during transportation of the tank container with fuel equipment. It has been determined that due to inevitable errors in the measuring of the specified parameters by the tank container, the achievement of the specified gas saturation with high precision is problematic. In spite of the fact that this procedure does not provide exact value of the specified gas saturation, its application will accelerate and make cheaper the process of fuel preparation for filling operations at the launch site, which is especially relevant in case of fuel saturation by helium. Based on this fuel saturation by helium procedure, the complex technology is suggested, providing controlled gas saturation during fuel delivery and subsequent adjustment of gas saturation using launch site equipment. Therefore, this article develops and studies the original model of the controlled gas saturation of the fuel during its delivery to the consumer. Alternative of the practical use of the study results is suggested in the form of the complex technology of fuel saturation by helium, delivered in the tank containers from the manufacturer to the launch site.

Key words: oxidizer, fuel, saturation by helium, tank container, transportation

Bibliography:

1. Volskiy A. P. Kosmodrom. M.: Voenizdat, 1977. 311 p.
2. Stepanov A. N., Vorobiev A. M., Grankin B. K. Kompleksy zapravki raket I kosmicheskikh apparatov. SPB:OM-PRESS, 2004. 26 p.
3. Kiriyanova A. N., Matveeva O. P. Opredelenie kolebania davlenia v gazovoy polosti hermetychikh emkostey transportnozapravochnykh containerov dlya raketnykh topliv pri temperaturnykh vozdeistviyakh/ Nauka i innovatsii. 2016. Vyp. 7.
4. Berezhkovskiy M. I. Khranenie i transportirovka khimicheskykh produktov. – M.: Khimia, 1973. – 272 s.
5. Perepelkin K. Ye., Matveev V. S. Gazovye emulsii. L.:Khimia, 1979. 200 p.
6. Issledovanie protsessov degazirovaniya komponentov topliva v conteinere-tsisterne pri dostavke topliva potrebitelyu. Cyclone4M 21.18425.174 OT: Techn. report. Dnepropetrovsk: Yuzhnoye SDO, 2017. 39 p.

Downloads: 27
Abstract views: 
520
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Columbus; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Tappahannock;; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn19
Singapore Singapore; Singapore; Singapore3
Unknown Melbourne1
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
6.1.2019 Investigation into Peculiarities of Delivery to Launch Base of Rocket Propellant with Specified Gasing
6.1.2019 Investigation into Peculiarities of Delivery to Launch Base of Rocket Propellant with Specified Gasing
6.1.2019 Investigation into Peculiarities of Delivery to Launch Base of Rocket Propellant with Specified Gasing

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>