Search Results for “spinning” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Fri, 26 Apr 2024 09:07:56 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “spinning” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff https://journal.yuzhnoye.com/content_2020_1-en/annot_3_1_2020-en/ Fri, 29 Sep 2023 18:22:49 +0000 https://journal.yuzhnoye.com/?page_id=32230
Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc.
]]>

3. Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 26-33

DOI: https://doi.org/10.33136/stma2020.01.026

Language: Russian

Annotation: The study of thermal strength of the hold-down bay is considered. The hold-down bay is a cylindrical shell with the load-bearing elements as the standing supports. The case of the hold-down bay consists of the following structural elements: four standing supports and the compound cylindrical shell with two frames along the top and bottom joints. The purpose of this study was the development of a general approach for the thermal strength calculation of the hold-down bay. This approach includes two parts. Firstly, the unsteady heat fields on the hold-down bay surface are calculated by means of the semi-empirical method, which is based on the simulated results of the combustion product flow of the main propulsion system. The calculation is provided by using Solid Works software. Then the unsteady stress-strain behavior of the hold-down bay is calculated, taking into consideration the plastoelastic deformations. The material strain bilinear diagram is used. The finiteelement method is applied to the stress-strain behavior calculation by using NASTRAN software. The thermal field is assumed to be constant throughout the shell thickness. As a result of the numerical simulation the following conclusions are made. The entire part of the hold-down bay, which is blown by rocket exhaust jet, is under stress-strain behavior. The stresses of the top frame and the shell are overridden the breaking strength that caused structural failure. The structure of the hold-down bay, which is considered in the paper, is unappropriated to be reusable. The hold-down bay should be reconstructed by reinforcement in order to provide its reusability.

Key words: stress-strain behavior, finite-element method, plastoelastic deformations, breaking strength, reusability

Bibliography:

1. Elhefny A., Liang G. Stress and deformation of rocket gas turbine disc under different loads using finite element modeling. Propulsion and Power Research. 2013. № 2. P. 38–49. https://doi.org/10.1016/j.jppr.2013.01.002
2. Perakis N., Haidn O. J. Inverse heat transfer method applied to capacitively cooled rocket thrust chambers. International Journal of Heat and Mass Transfer. 2019. № 131. P. 150–166. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.048
3. Yilmaz N., Vigil F., Height J., et. al. Rocket motor exhaust thermal environment characterization. Measurement. 2018. № 122. P. 312–319. https://doi.org/10.1016/j.measurement.2018.03.039
4. Jafari M. Thermal stress analysis of orthotropic plate containing a rectangular hole using complex variable method. European Journal of Mechanics A /Solids. 2019. № 73. P. 212–223. https://doi.org/10.1016/j.euromechsol.2018.08.001
5. Song J., Sun B. Thermal-structural analysis of regeneratively cooled thrust chamber wall in reusable LOX / Methane rocket engines. Chinese Journal of Aeronautics. 2017. № 30. P. 1043–1053.
6. Ramanjaneyulu V., Murthy V. B., Mohan R. C., Raju Ch. N. Analysis of composite rocket motor case using finite element method. Materials Today: Proceedings. 2018. № 5. P. 4920–4929.
7. Xu F., Abdelmoula R., Potier-Ferry M. On the buckling and post-buckling of core-shell cylinders under thermal loading. International Journal of Solids and Structures. 2017. № 126–127. P. 17–36.
8. Wang Z., Han Q., Nash D. H., et. al. Thermal buckling of cylindrical shell with temperature-dependent material properties: Conventional theoretical solution and new numerical method. Mechanics Research Communications. 2018. № 92. P. 74–80.
9. Duc N. D. Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear de-formation shell theory. European Journal of Mechanics A /Solids. 2016. № 58. P. 10–30.
10. Trabelsi S., Frikha A., Zghal S., Dammak F. A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Engineering Structures. 2019. № 178. P. 444–459.
11. Trinh M. C., Kim S. E. Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment. Aerospace Science and Technology. 2019. № 84. P. 672–685.
12. Лойцянский Л. Г. Механика жидкости и газа. М., 2003. 840 с.
13. Launder B. E., Sharma B. I. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. International Journal of Heat and Mass Transfer. 1974. № 1. P. 131–138.
14. Михеев М. А., Михеева И. М. Основы теплопередачи. М., 1977. 345 с.
15. Малинин Н. Н. Прикладная теория пластичности и ползучести. М., 1968. 400 с.

Downloads: 52
Abstract views: 
1759
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Boydton; Plano; Miami; Columbus; Columbus; Columbus; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Boardman; Seattle; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn26
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore11
Ukraine Dnipro; Odessa; Kyiv; Dnipro4
Canada Toronto; Toronto; Monreale3
Germany;; Falkenstein3
Finland Helsinki1
Great Britain London1
Romania Voluntari1
Netherlands Amsterdam1
Poland Gdańsk1
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff

Keywords cloud

]]>
4.1.2020 Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing https://journal.yuzhnoye.com/content_2020_1-en/annot_4_1_2020-en/ Wed, 13 Sep 2023 05:51:26 +0000 https://journal.yuzhnoye.com/?page_id=31024
The method is based on the solution to increase the accuracy of hits by spinning the shells around longitudinal axis.
]]>

4. Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 34-43

DOI: https://doi.org/10.33136/stma2020.01.034

Language: Russian

Annotation: High-precision guidance of supersonic flying vehicles maneuvering while descending in the atmosphere with high degree of thermal protection ablation is a well-known problem of space ballistics. The existing methods for calculating the ablation of thermal protection and the subsequent calculation of aerodynamic characteristics lead to scatter of the landing points of a flying vehicle reaching 5 km or more. The functional guidance method, in principle, allows achieving the required guidance accuracy (hundreds of meters), however, it requires a reserve of power of the controls at a level 50% to counter the influence of disturbing factors. The known terminal guidance method, which has recently become widespread, is based on a highly accurate prediction of motion parameters and, in this regard, has little promise. The method has been described in the article that allows 15-20-fold reducing the flight range scatters caused by lack of knowledge (including due to coating ablation) of its current aerodynamic characteristics and ensuring that the accumulated lateral deviation is counteracted in the limit to 1-1.5 km. The method is applicable to the flying vehicles with weight asymmetry (“transverse” displacement of the center of mass), performing maneuvering under conditions of aerodynamic balancing. The method is based on the solution to increase the accuracy of hits by spinning the shells around longitudinal axis. It is proposed that when a flying vehicle moves in the dive mode by means of the onboard CVC, it is regular (at intervals) to calculate its flight path in the (conditionally) autorotation mode. Based on the results of processing single calculations, the corresponding flight ranges of a flying vehicle and the lateral displacement of the touchdown points are determined, the point in time is predicted at which the flight range of the flying vehicle is equal to the specified one and the average lateral deviation is determined. At this moment the angular movement of the flying vehicle is transferred to the autorotation mode. Counteraction of the lateral displacement is introduced by adjusting the half-periods of flying vehicle movement along the angle of the precession. An example of pointing a flying vehicle at a given range, and bringing it to the touchdown point, shifted to the right relative to the original flight path by 1 km. The error of the terminal guidance of a maneuvering while reducing the aircraft using the proposed guidance method is determined.

Key words: angular motion of flying vehicle; touchdown point, methodological error of guidance, guidance of maneuvering supersonic flying vehicle

Bibliography:
1. Eliasberg P. Е. Vvedenie v teoriiu poleta iskusstvennykh sputnikov Zemli. М., 1965. 540 s.
2. Lebedev А. А., Gerasiuta N. F. Ballistika raket. М., 1970. 244 s.
3. Levin A. S., Mashtak I. V., Sheptun А. D. Dinamika manevrirovaniia v atmosphere LA s vesovoi asimmetriei i elementami terminalnogo upravleniia na uchastke razvorota. Kosmicheskaia tekhnika. Raketnoe vooruzhenie: sb. nauch.-tekhn. statei / GP “KB “Yuzhnoye”. Dnipro, 2019. Vyp. 1. S. 4–14. https://doi.org/10.33136/stma2019.01.004
4. Chandler D. C., Smith I. E. Development of the iterative guidance mode with is application to varies vehicles and missions. Journal of Spacecraft and Rockets. 1967. Vol 1.4, №7. P. 898-903. https://doi.org/10.2514/3.28985
Downloads: 39
Abstract views: 
813
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Columbus; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Ashburn; Boardman20
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Unknown;2
Ukraine Dnipro;2
Finland Helsinki1
Pakistan Lahore1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
4.1.2020 Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing
4.1.2020 Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing
4.1.2020 Terminal guidance of the aircraft being maneuvering while descending in the atmosphere under conditions of aerodynamic balancing

Keywords cloud

]]>
18.2.2018 Angular Stabilization of an Object Rapidly Rotating around Longitudial Axis https://journal.yuzhnoye.com/content_2018_2-en/annot_18_2_2018-en/ Thu, 07 Sep 2023 12:20:49 +0000 https://journal.yuzhnoye.com/?page_id=30799
Spinning about the longitudinal axis of symmetry may be one of the ways to improve the light and ultra-light rocket hardware in these trends. Spinning significantly increases stability of a moving object and partially evens out the negative impact of external and internal disturbing factors (skewness and eccentricities of propulsion system and control elements, wind). Hence, rotation of the rocket about the longitudinal axis may be caused by the spinning elements on purpose as well as by disturbing impacts in case of control failure in the roll channel. Key words: angular stabilization , spinning , rotation about the longitudinal axis of symmetry , light rocket , drive delay , determination of the angle of roll , aerodynamic control surfaces , algorithm for maneuver determination of the angle of roll Bibliography: 1. angular stabilization , spinning , rotation about the longitudinal axis of symmetry , light rocket , drive delay , determination of the angle of roll , aerodynamic control surfaces , algorithm for maneuver determination of the angle of roll .
]]>

18. Angular Stabilization of an Object Rapidly Rotating around Longitudial Axis

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 151-156

DOI: https://doi.org/10.33136/stma2018.02.151

Language: Russian

Annotation: Contemporary trends in developing space-rocket hardware indicate the increased demand for light and ultra-light rockets. The first trend in developing the up-to-date light and ultra-light rocket hardware includes improving accuracy of cargo delivery to the specified area; the second trend covers the enhancement of energetic properties and the reduction of production and operational costs. Spinning about the longitudinal axis of symmetry may be one of the ways to improve the light and ultra-light rocket hardware in these trends. Spinning significantly increases stability of a moving object and partially evens out the negative impact of external and internal disturbing factors (skewness and eccentricities of propulsion system and control elements, wind). Refusal to use systems that provide stabilization about the longitudinal axis of symmetry leads to reduction in mass of the control system equipment, thus increasing energetic perfection of the rocket hardware. Hence, rotation of the rocket about the longitudinal axis may be caused by the spinning elements on purpose as well as by disturbing impacts in case of control failure in the roll channel. This article considers suggestions on algorithmic realization of light rocket control methods under conditions of rapid rotation about the longitudinal axis for each of the options mentioned above. This article offers control methods for the rocket, rotating about the longitudinal axis, that provide angular stabilization, improve the transient quality, and determine the angle of roll after program stop of rotation about the longitudinal axis.

Key words: angular stabilization, spinning, rotation about the longitudinal axis of symmetry, light rocket, drive delay, determination of the angle of roll, aerodynamic control surfaces, algorithm for maneuver determination of the angle of roll

Bibliography:
1. Shunkov V. N. Encyclopedia of Rocket Artillery / Under the general editorship of A. E. Taras. Minsk, 2004. 544 p.
2. Igdalov I. M. et al. Rocket as Control Object: Tutorial / Under the editorship of S. N. Konyukhov. Dnepropetrovsk, 2004. 544 p.
3. Pugachyov V. S. et al. Rocket Control Systems and Flight Dynamics. М., 1965. 610 p.
4. Sikharulidze Y. G. Flying Vehicles Dynamics. М., 1982. 352 p.
Downloads: 44
Abstract views: 
1017
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Matawan; Baltimore; Boydton; Plano; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Boardman; Seattle; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Seattle26
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Unknown Brisbane;;3
Germany; Falkenstein2
Canada Toronto; Monreale2
Philippines1
Finland Helsinki1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
18.2.2018 Angular Stabilization of an Object Rapidly Rotating around Longitudial Axis
18.2.2018 Angular Stabilization of an Object Rapidly Rotating around Longitudial Axis
18.2.2018 Angular Stabilization of an Object Rapidly Rotating around Longitudial Axis

Keywords cloud

]]>
22.1.2019 Calculation of Uncertainty of Represented Values of Linear Accelerations during Centrifugal Machines Certification https://journal.yuzhnoye.com/content_2019_1-en/annot_22_1_2019-en/ Wed, 24 May 2023 16:00:54 +0000 https://journal.yuzhnoye.com/?page_id=27727
This article offers the methodology for uncertainty calculation when certificating a centrifugal machine that is used to reproduce precisely the given value of linear acceleration that permanently acts on a tested unit spinning together with a rotor.
]]>

22. Calculation of Uncertainty of Represented Values of Linear Accelerations during Centrifugal Machines Certification

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 149-153

DOI: https://doi.org/10.33136/stma2019.01.149

Language: Russian

Annotation: Applicable documents on metrological assurance regulate the estimation of measurement uncertainty. In Ukraine there is no regulative methodology for uncertainty calculation when certificating test equipment that causes the necessity of its definition. This article offers the methodology for uncertainty calculation when certificating a centrifugal machine that is used to reproduce precisely the given value of linear acceleration that permanently acts on a tested unit spinning together with a rotor. The offered methodology for uncertainty calculation is applicable to centrifugal machines, for which numerical values of reproducible linear acceleration are determined by results of calculations of the centrifugal machine’s rotor angular velocity and radial distance from rotor’s longitudinal axis to the given point of the tested unit. Initial data used were results of observation obtained after multiple reproductions of the given values of linear acceleration as well as numerical values of errors and measurement uncertainties of measuring equipment that was used when monitoring the rotary angular velocity and radial distance considering the contribution of each measurable parameter to a certain value of linear acceleration. The calculation given in the article estimates the limit of linear accelerations that can be attributed with established probability to the given value of linear acceleration reproduced when certificating the centrifugal machine. The design formulae are given to estimate the uncertainty components of the reproducible values of linear accelerations and the recommendations are given to present the uncertainty budget.

Key words: extended uncertainty, standard uncertainty, sensitivity coefficient, measurement uncertainty contribution, frequency meter

Bibliography:
1. GOST 24555. Poryadok attestatsii ispytatelnogo oborudovania. Osnovnye polozheniya. Vved. 27.01.81. M.: Gosstandart, 1982. 12 p.
2. https://www.twirpx.com/file/1791976.
3. Guide to the Expression of Uncertainty in Measurement: ISO. Geneva, 1993. 101 p.
4. Zakon Ukrainy «Pro metrologiu ta metrologychnu diyalnist’»// Vidom. Verkhovnoi Rady (VVR). 2014. № 30. P.1008.
5. Duplischeva O. M. i dr. Experimentalnaya otrabotka agregatov avtomatiki I system letatelnykh apparatov/ Pod obsch. red. d. t. n. A. V. Degtyareva. Dnepropetrovsk: GP KB «Yuzhnoye» im. M. K. Yangelya», 2013. 208 p.
6. Bondar’ M. A. i dr. Metodologia otsenivania neopredelennosti izmerenniy pri provedenii attestatsii sredstv izmeritelnoi techniki//Kosmicheskaya technika. Raketnoe vooruzhenie: Sb. nauch. – techn. st. 2017. Vyp. 1. P. 3–7.
Downloads: 36
Abstract views: 
632
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Baltimore;; Los Angeles; Plano; Columbus; Ashburn; Monroe; Seattle; Columbus; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Boardman22
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Belgium Brussels; Brussels2
Philippines Olongapo City1
Unknown Perth1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
22.1.2019 Calculation of Uncertainty of Represented Values of Linear Accelerations during Centrifugal Machines Certification
22.1.2019 Calculation of Uncertainty of Represented Values of Linear Accelerations during Centrifugal Machines Certification
22.1.2019 Calculation of Uncertainty of Represented Values of Linear Accelerations during Centrifugal Machines Certification

Keywords cloud

]]>