Keywords cloud
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Ukrainian State University of Science and Technologies2
Page: Kosm. teh. Raket. vooruž. 2024, (1); 102-113
DOI: https://doi.org/10.33136/stma2024.01.102
Language: Ukrainian
Key words: ion nitriding, glow discharge, cross-sectional layer structure, hardening, microhardness
1. Loskutova T. V., Pogrebova I. S., Kotlyar S. M., Bobina M. M., Kapliy D. A., Kharchenko N. A., Govorun T. P. Physichni ta tekhnologichni parametry azotuvannya stali Х28 v seredovyschi amiaku. Journal nano-elektronnoi physiki. 2023. №1(15). s. 1-4.
2. Al-Rekaby D. W., Kostyk V., Glotka A., Chechel M. The choice of the optimal temperature and time parameters of gas nitriding of steel. Eastern-European journal of Enterprise Technologies. 2016. V. 3/5(81). P.44-49. https://doi.org/10.15587/1729-4061.2016.69809
3. Yunusov A. I., Yesipov R. S. Vliyanie sostava gazovoy sredy na process ionnogo azotirovaniya martensitnoy stali 15Х16К5НР2МВФАБ-Ш. Vestnik nauki. 2023. №5(62). s. 854-863.
4. Zakalov O. V. Osnovy tertya i znoshuvannya u mashinah: navch. posibnik, vydavnytstvo TNTU im. I. Pulyuya, Ternopil. 2011. 332 s.
5. Kindrachuk M. V., Zagrebelniy V. V., Khizhnyak V. G., Kharchenko N. A. Technologichni aspeckty zabespechennya pratsezdatnosti instrument z shvydkorizalnykh staley. Problemy tertya ta znoshuvannya. 2016. №1 (70). S. 67-78.
6. Skiba M. Ye., Stechishyna N. M., Medvechku N. K., Stechishyn M. S., Lyukhovets’ V. V. Bezvodneve azotuvannya u tliyuchomu rozryadi, yak metod pidvyschennya znosostiykisti konstruktsiynykh staley. Visn. Khmelnitskogo natsionalnogo universitetu. 2019. №5. S. 7-12. https://doi.org/10.23939/law2019.22.012
7. Axenov I. I. Vakkumno-dugovye pokrytiya. Technologiya, materialy, struktura i svoistva. Kharkov, 2015. 379 s.
8. Pastukh I. M., Sokolova G. N., Lukyanyuk N. V. Azotirovanie v tleyuschem razryade: sostoyanie i perspektyvy. Problemy trybologii. 2013. №3. S. 18-22.
9. Pastukh I. M. Teoriya i praktika bezvodorodnogo azotirovanniya v tleuschem razryade: izdatelstvo NNTs KhFTI. Kharkov, 2006. 364 s.
10. Sagalovich O. V., Popov V. V., Sagalovich V. V. Plasmove pretsenziyne azotuvannya AVINIT N detaley iz staley i splaviv. Technologicheskie systemy. 2019. №4. S. 50-56.
11. Kozlov A. A. Nitrogen potential during ion nitriding process in glow-discharge plasma. Science and Technique. 2015. Vol. 1. P. 79-90.
12. Nadtoka V., Kraiev M., Borisenko А., Kraieva V. Multi-component nitrated ion-plasma Ni-Cr coating. Journal of Physics and Electronics. 2021. №29(1). Р. 61–64. DOI 10.15421/332108. https://doi.org/10.15421/332108
13. Nadtoka V., Kraiev M., Borisenko A., Bondar D., Gusarova I. Heat-resistant MoSi2–NbSi2 and Cr–Ni coatings for rocket engine combustion chambers and respective vacuum-arc deposition technology/ 74th International Astronautical Congress (IAC-23-C2.4.2), Baku, Azerbaijan, 2-6 October 2023.
14. Kostik K. O., Kostik V. O. Porivnyalniy analiz vplyvu gazovogo ta ionno-plazmovogo azotuvannya na zminu struktury i vlastyvostey legovannoi stali 30Х3ВА. Visnik NTU «KhPI». 2014. №48(1090). S. 21-41.
15. Axenov I. I., Axenov D. S., Andreev A. A., Belous V. A., Sobol’ O.V. Vakuumno-dugovye pokrytiya: technologia, materialy, struktura, svoistva: VANT NNTs KhFTI, Kharkov. 2015. 380 s.
16. Pidkova V. Ya. Modyfikuvannya poverkhni stali 12Х18Н10Т ionnoyu implantatsieyu azotom. Technology audit and production reserves. 2012. Vol. 3/2(5). P. 51-52. https://doi.org/10.15587/2312-8372.2012.4763
17. Kosarchuk V. V., Kulbovsliy I. I., Agarkov O. V. Suchasni metody zmitsnennya i pidvyschennya znosostiykosti par tertya. Ch. 2. Visn. Natsionalnogo transportnogo universytetu. 2016. Vyp. 1(34). S. 202-210.
18. Budilov V. V., Agzamov R. D., Ramzanov K. N. Issledovanie i razrabotka metodov khimiko-termicheskoy obrabotki na osnove strukturno-fasovogo modifitsirovaniya poverkhnisti detaley silnotochnymi razryadami v vakuume. Vestnik UGATU. Mashinostroenie. 2007. T. 9, №1(19). S. 140-149.
19. Abrorov A., Kuvoncheva M., Mukhammadov M. Ion-plasma nitriding of disc saws of the fiber-extracting machine. Modern Innovation, Systems and Technologies. 2021. Vol. 1(3). P. 30-35. https://doi.org/10.47813/2782-2818-2021-1-3-30-35
20. Smolyakova M. Yu., Vershinin D. S., Tregubov I. M. Issledovaniya vliyaniya nizkotemperaturnogo azotirovanniya na strukturno-fasoviy sostav i svoistva austenitnoy stali. Vzaimodeystvie izlecheniy s tverdym telom: materialy 9-oi Mezhdunarodnoy konferentsii (Minsk, 20-22 sentyabrya 2011 g.). Minsk, 2011. S. 80-82.
21. Adhajani H., Behrangi S. Plasma Nitriding of Steel: Topics in Mining, Metallurgy and Material Engineering by series editor Bergmann C.P. 2017. 186 p. https://doi.org/10.1007/978-3-319-43068-3
22. Fernandes B.B. Mechanical properties of nitrogen-rich surface layers on SS304 treated by plasma immersion ion implantation. Applied Surface Science. 2014. Vol. 310. P. 278-283. https://doi.org/10.1016/j.apsusc.2014.04.142
23. Khusainov Yu. G., Ramazanov K. N., Yesipov R. S., Issyandavletova G. B. Vliyanie vodoroda na process ionnogo azotirovanniya austenitnoy stali 12Х18Н10Т. Vestnik UGATU. 2017. №2(76). S. 24-29.
24. Sobol’ O. V., Andreev A. A., Stolbovoy V. A., Knyazev S. A., Barmin A. Ye., Krivobok N. A. Issledovanie vliyaniya rezhimov ionnogo azotirovanniya na strukturu i tverdost’ stali. Vostochno-Yevropeyskiy journal peredovykh tekhnologiy. 2015. №2(80). S. 63-68. https://doi.org/10.15587/1729-4061.2016.63659
25. Kaplun V. G. Osobennosti formirovanniya diffusionnogo sloya pri ionnom azotirovannii v bezvodorodnykh sredakh. FIP. 2003. T1, №2. S. 145.
Full text (PDF) || Content 2024 (1)
Country | City | Downloads |
---|---|---|
USA | Buffalo; North Bergen; Boydton; Boydton; Chicago; Ashburn; Ashburn; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Dallas; Seattle; Seattle;; North Charleston; Mountain View; Portland; Portland; Portland; San Mateo; San Mateo; Seattle; Seattle | 28 |
China | Pekin; Shenzhen; Pekin; Hangzhou | 4 |
Germany | Falkenstein; Düsseldorf;; Falkenstein | 4 |
Canada | Toronto; Toronto; Toronto; Toronto | 4 |
Unknown | ; Hong Kong | 2 |
Ukraine | Kremenchuk; Kremenchuk | 2 |
Singapore | Singapore | 1 |
Cambodia | Phnom Penh | 1 |
France | 1 | |
Netherlands | Amsterdam | 1 |
Slovakia | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine,1; Kharkiv Aviation Institute, Kharkiv, Ukraine2
Page: Kosm. teh. Raket. vooruž. 2024, (1); 51-60
DOI: https://doi.org/10.33136/stma2024.01.051
Language: English
Key words: space frames, load-carrying members, stress and strain state, loss of stability, prediction of the structural failure.
Full text (PDF) || Content 2024 (1)
Country | City | Downloads |
---|---|---|
USA | Ashburn; Las Vegas; Buffalo; Los Angeles; Washington;; Ashburn; Columbus; Dallas; New Haven; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; San Francisco; Chicago; Los Angeles; Seattle; Mountain View;; Portland; Portland; San Mateo; Ashburn; Ashburn | 29 |
Germany | Falkenstein; Düsseldorf; Falkenstein; Leipzig; Leipzig | 5 |
China | Pekin; Pekin; Shenzhen; Pekin | 4 |
Singapore | Singapore; Singapore; Singapore; Singapore | 4 |
Canada | Toronto; Toronto; Toronto | 3 |
France | 1 | |
Unknown | 1 | |
Netherlands | Amsterdam | 1 |
Ukraine | Kremenchuk | 1 |
DINTEM Ukrainian Research Design-Technological Institute of Elastomer Materials and Products LLC1; FED Joint Stock Company2
Page: Kosm. teh. Raket. vooruž. 2024, (1); 129-135
DOI: https://doi.org/10.33136/stma2024.01.129
Language: Ukrainian
Key words: leaktightness of articles, fluorosiloxane rubber, rubber, temperature of the hot climate, physical-mechanical properties of the rubber, climatic endurance tests, elastic properties, warranty life
Full text (PDF) || Content 2024 (1)
Country | City | Downloads |
---|---|---|
USA | Mountain View; San Jose; Saint Louis; Los Angeles; Los Angeles; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Los Angeles; Chicago; Seattle; Columbus; Ashburn;; Mountain View; Portland; San Mateo; Ashburn; Ashburn; Ashburn; Seattle | 25 |
Canada | Toronto; Toronto; Toronto; Toronto; Toronto; Toronto | 6 |
Germany | Falkenstein; Düsseldorf; Falkenstein; Leipzig; Leipzig | 5 |
China | Pekin; Pekin; Shenzhen; Pekin | 4 |
India | Mumbai | 1 |
Singapore | Singapore | 1 |
France | 1 | |
Thailand | Songkhla | 1 |
The Republic of Korea | Seoul | 1 |
Netherlands | Amsterdam | 1 |
Ukraine | Kremenchuk | 1 |
Page: Kosm. teh. Raket. vooruž. 2024, (1); 29-39
DOI: https://doi.org/10.33136/stma2024.01.029
Language: Ukrainian
Key words: electric drive, servo drive, reducer, stability, mathematical model.
Full text (PDF) || Content 2024 (1)
Country | City | Downloads |
---|---|---|
USA | San Jose; Raleigh; New York City; Columbus; Buffalo; Ashburn; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Seattle; Ashburn; Ashburn; Mountain View; Mountain View; Washington; Portland; San Mateo; Ashburn; Ashburn; Ashburn | 25 |
Germany | Falkenstein; Düsseldorf; Falkenstein; Leipzig; Leipzig | 5 |
China | Pekin; Shenzhen; Pekin; Hangzhou | 4 |
Canada | Toronto; Toronto; Toronto | 3 |
Unknown | ; | 2 |
The Republic of Korea | ; Seoul | 2 |
Ukraine | Kremenchuk; Kremenchuk | 2 |
Singapore | Singapore | 1 |
France | 1 | |
Netherlands | Amsterdam | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine2
Page: Kosm. teh. Raket. vooruž. 2020, (1); 26-33
DOI: https://doi.org/10.33136/stma2020.01.026
Language: Russian
Key words: stress-strain behavior, finite-element method, plastoelastic deformations, breaking strength, reusability
1. Elhefny A., Liang G. Stress and deformation of rocket gas turbine disc under different loads using finite element modeling. Propulsion and Power Research. 2013. № 2. P. 38–49. https://doi.org/10.1016/j.jppr.2013.01.002
2. Perakis N., Haidn O. J. Inverse heat transfer method applied to capacitively cooled rocket thrust chambers. International Journal of Heat and Mass Transfer. 2019. № 131. P. 150–166. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.048
3. Yilmaz N., Vigil F., Height J., et. al. Rocket motor exhaust thermal environment characterization. Measurement. 2018. № 122. P. 312–319. https://doi.org/10.1016/j.measurement.2018.03.039
4. Jafari M. Thermal stress analysis of orthotropic plate containing a rectangular hole using complex variable method. European Journal of Mechanics A /Solids. 2019. № 73. P. 212–223. https://doi.org/10.1016/j.euromechsol.2018.08.001
5. Song J., Sun B. Thermal-structural analysis of regeneratively cooled thrust chamber wall in reusable LOX / Methane rocket engines. Chinese Journal of Aeronautics. 2017. № 30. P. 1043–1053.
6. Ramanjaneyulu V., Murthy V. B., Mohan R. C., Raju Ch. N. Analysis of composite rocket motor case using finite element method. Materials Today: Proceedings. 2018. № 5. P. 4920–4929.
7. Xu F., Abdelmoula R., Potier-Ferry M. On the buckling and post-buckling of core-shell cylinders under thermal loading. International Journal of Solids and Structures. 2017. № 126–127. P. 17–36.
8. Wang Z., Han Q., Nash D. H., et. al. Thermal buckling of cylindrical shell with temperature-dependent material properties: Conventional theoretical solution and new numerical method. Mechanics Research Communications. 2018. № 92. P. 74–80.
9. Duc N. D. Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear de-formation shell theory. European Journal of Mechanics A /Solids. 2016. № 58. P. 10–30.
10. Trabelsi S., Frikha A., Zghal S., Dammak F. A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Engineering Structures. 2019. № 178. P. 444–459.
11. Trinh M. C., Kim S. E. Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment. Aerospace Science and Technology. 2019. № 84. P. 672–685.
12. Лойцянский Л. Г. Механика жидкости и газа. М., 2003. 840 с.
13. Launder B. E., Sharma B. I. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. International Journal of Heat and Mass Transfer. 1974. № 1. P. 131–138.
14. Михеев М. А., Михеева И. М. Основы теплопередачи. М., 1977. 345 с.
15. Малинин Н. Н. Прикладная теория пластичности и ползучести. М., 1968. 400 с.
Full text (PDF) || Content 2020 (1)
Country | City | Downloads |
---|---|---|
USA | Boardman; Matawan; Boydton; Plano; Miami; Columbus; Columbus; Columbus; Detroit; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Houston; Boardman; Mountain View; Mountain View; Seattle; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn; Ashburn; Ashburn; Seattle | 43 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 11 |
Canada | Toronto; Toronto; Toronto; Toronto; Toronto; Toronto; Toronto; Monreale | 8 |
Ukraine | Dnipro; Odessa; Kyiv; Dnipro | 4 |
Germany | ;; Falkenstein | 3 |
Netherlands | Amsterdam; Amsterdam | 2 |
Finland | Helsinki | 1 |
Great Britain | London | 1 |
Unknown | 1 | |
Romania | Voluntari | 1 |
Poland | Gdańsk | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
Page: Kosm. teh. Raket. vooruž. 2020, (1); 121-132
DOI: https://doi.org/10.33136/stma2020.01.121
Language: Russian
Key words: mathematical model, hydraulic actuator, servo actuator, stability, damping, slide
Full text (PDF) || Content 2020 (1)
Country | City | Downloads |
---|---|---|
USA | Boardman; Ashburn; Matawan; Baltimore; North Bergen; Plano; Ashburn; Columbus; Columbus; Detroit; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Ashburn; Ashburn; Ashburn; Mountain View; Mountain View; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Seattle | 38 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore | 5 |
Canada | Toronto; Toronto; Toronto; Toronto; Monreale | 5 |
Netherlands | Amsterdam; Amsterdam | 2 |
India | Bengaluru | 1 |
Finland | Helsinki | 1 |
Unknown | 1 | |
Vietnam | 1 | |
Algeria | 1 | |
Germany | Falkenstein | 1 |
Romania | Voluntari | 1 |
Ukraine | Dnipro | 1 |
Zaporizhzhia National University, Zaporizhzhia, Ukraine
Page: Kosm. teh. Raket. vooruž. 2020, (1); 107-113
DOI: https://doi.org/10.33136/stma2020.01.107
Language: Russian
Key words: numerical and analytical methods, stress-strain state, rocket structures, shell system, reinforcing load-bearing elements, local and general stability, machine learning technology
Full text (PDF) || Content 2020 (1)
Country | City | Downloads |
---|---|---|
USA | Boardman; Ashburn; Matawan; Baltimore;; Boydton; Plano; Dublin; Columbus; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Columbus; Ashburn; Quinton; Mountain View; Seattle; Portland; San Mateo; San Mateo; San Mateo; San Mateo; San Mateo; San Mateo; Columbus; Ashburn; Des Moines; Ashburn; Boardman; Ashburn; Ashburn; Ashburn; Ashburn | 41 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 10 |
Canada | Toronto; Toronto; Toronto; Toronto; Toronto; Monreale | 6 |
Ukraine | Kyiv; Lviv; Lviv; Dnipro; Kyiv | 5 |
Germany | Limburg an der Lahn; Falkenstein | 2 |
Netherlands | Amsterdam; Amsterdam | 2 |
Finland | Helsinki | 1 |
Unknown | 1 | |
Pakistan | Bahawalpur | 1 |
Romania | Voluntari | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3
Page: Kosm. teh. Raket. vooruž. 2020, (1); 44-56
DOI: https://doi.org/10.33136/stma2020.01.044
Language: Russian
Key words: shell structures, stress and strain state, structural and technological inhomogeneity, thermomechanical loads, low-cycle and high-cycle fatigue, lifetime
Full text (PDF) || Content 2020 (1)
Country | City | Downloads |
---|---|---|
USA | Boardman; Ashburn; Ashburn; Columbus; Matawan; Baltimore;; North Bergen; Boydton; Plano; Miami; Dublin; Dublin; Detroit; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Ashburn; Ashburn; Quinton; Ashburn; Mountain View; Portland; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn | 44 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 8 |
Canada | Toronto; Toronto; Toronto; Toronto; Toronto; Toronto; Monreale | 7 |
Ukraine | Dnipro; Odessa; Dnipro | 3 |
Netherlands | Amsterdam; Amsterdam | 2 |
Finland | Helsinki | 1 |
Ethiopia | Addis Ababa | 1 |
Germany | Falkenstein | 1 |
Latvia | Riga | 1 |
Romania | Voluntari | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
Page: Kosm. teh. Raket. vooruž. 2018 (2); 190-206
DOI: https://doi.org/10.33136/stma2018.02.190
Language: Russian
Key words: configuration space, modified method of sections, information and vacuum environment, metric lines, property of space reflection, polarization, scalar information field, vector information field
Full text (PDF) || Content 2018 (2)
Country | City | Downloads |
---|---|---|
USA | Boardman; Matawan; Baltimore; Boydton; Plano; Miami; Ashburn; Ashburn; Columbus; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Columbus; Columbus; Ashburn; Ashburn; Mountain View; Seattle; Seattle; Portland; Portland; San Mateo; Ashburn; Des Moines; Boardman; Ashburn;; Seattle | 38 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 8 |
Canada | Toronto; Toronto; Toronto; Toronto; Monreale | 5 |
Unknown | ; | 2 |
Netherlands | Amsterdam; Amsterdam | 2 |
India | 1 | |
Finland | Helsinki | 1 |
France | 1 | |
Germany | Falkenstein | 1 |
Romania | Voluntari | 1 |
Ukraine | Dnipro | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
Page: Kosm. teh. Raket. vooruž. 2018 (2); 151-156
DOI: https://doi.org/10.33136/stma2018.02.151
Language: Russian
Key words: angular stabilization, spinning, rotation about the longitudinal axis of symmetry, light rocket, drive delay, determination of the angle of roll, aerodynamic control surfaces, algorithm for maneuver determination of the angle of roll
Full text (PDF) || Content 2018 (2)
Country | City | Downloads |
---|---|---|
USA | Boardman; Columbus; Matawan; Baltimore; Boydton; Plano; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Ashburn; Ashburn; Mountain View; Boardman; Ashburn; Seattle; Portland; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; Boardman; Ashburn; Ashburn; Seattle | 40 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 6 |
Canada | Toronto; Toronto; Toronto; Toronto; Monreale | 5 |
Unknown | Brisbane;; | 3 |
Germany | ; Falkenstein | 2 |
Netherlands | Amsterdam; Amsterdam | 2 |
Philippines | 1 | |
Finland | Helsinki | 1 |
Romania | Voluntari | 1 |
Ukraine | Dnipro | 1 |