Search Results for “stress-strain state” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Fri, 26 Apr 2024 09:07:56 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “stress-strain state” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff https://journal.yuzhnoye.com/content_2020_1-en/annot_3_1_2020-en/ Fri, 29 Sep 2023 18:22:49 +0000 https://journal.yuzhnoye.com/?page_id=32230
Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff Authors: Degtiarov М. 2 Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine 1 ; Pidgorny A. Then the unsteady stress-strain behavior of the hold-down bay is calculated, taking into consideration the plastoelastic deformations. The finiteelement method is applied to the stress-strain behavior calculation by using NASTRAN software. The entire part of the hold-down bay, which is blown by rocket exhaust jet, is under stress-strain behavior. Key words: stress-strain behavior , finite-element method , plastoelastic deformations , breaking strength , reusability Bibliography: 1. (2020) "Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff" Космическая техника.
]]>

3. Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 26-33

DOI: https://doi.org/10.33136/stma2020.01.026

Language: Russian

Annotation: The study of thermal strength of the hold-down bay is considered. The hold-down bay is a cylindrical shell with the load-bearing elements as the standing supports. The case of the hold-down bay consists of the following structural elements: four standing supports and the compound cylindrical shell with two frames along the top and bottom joints. The purpose of this study was the development of a general approach for the thermal strength calculation of the hold-down bay. This approach includes two parts. Firstly, the unsteady heat fields on the hold-down bay surface are calculated by means of the semi-empirical method, which is based on the simulated results of the combustion product flow of the main propulsion system. The calculation is provided by using Solid Works software. Then the unsteady stress-strain behavior of the hold-down bay is calculated, taking into consideration the plastoelastic deformations. The material strain bilinear diagram is used. The finiteelement method is applied to the stress-strain behavior calculation by using NASTRAN software. The thermal field is assumed to be constant throughout the shell thickness. As a result of the numerical simulation the following conclusions are made. The entire part of the hold-down bay, which is blown by rocket exhaust jet, is under stress-strain behavior. The stresses of the top frame and the shell are overridden the breaking strength that caused structural failure. The structure of the hold-down bay, which is considered in the paper, is unappropriated to be reusable. The hold-down bay should be reconstructed by reinforcement in order to provide its reusability.

Key words: stress-strain behavior, finite-element method, plastoelastic deformations, breaking strength, reusability

Bibliography:

1. Elhefny A., Liang G. Stress and deformation of rocket gas turbine disc under different loads using finite element modeling. Propulsion and Power Research. 2013. № 2. P. 38–49. https://doi.org/10.1016/j.jppr.2013.01.002
2. Perakis N., Haidn O. J. Inverse heat transfer method applied to capacitively cooled rocket thrust chambers. International Journal of Heat and Mass Transfer. 2019. № 131. P. 150–166. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.048
3. Yilmaz N., Vigil F., Height J., et. al. Rocket motor exhaust thermal environment characterization. Measurement. 2018. № 122. P. 312–319. https://doi.org/10.1016/j.measurement.2018.03.039
4. Jafari M. Thermal stress analysis of orthotropic plate containing a rectangular hole using complex variable method. European Journal of Mechanics A /Solids. 2019. № 73. P. 212–223. https://doi.org/10.1016/j.euromechsol.2018.08.001
5. Song J., Sun B. Thermal-structural analysis of regeneratively cooled thrust chamber wall in reusable LOX / Methane rocket engines. Chinese Journal of Aeronautics. 2017. № 30. P. 1043–1053.
6. Ramanjaneyulu V., Murthy V. B., Mohan R. C., Raju Ch. N. Analysis of composite rocket motor case using finite element method. Materials Today: Proceedings. 2018. № 5. P. 4920–4929.
7. Xu F., Abdelmoula R., Potier-Ferry M. On the buckling and post-buckling of core-shell cylinders under thermal loading. International Journal of Solids and Structures. 2017. № 126–127. P. 17–36.
8. Wang Z., Han Q., Nash D. H., et. al. Thermal buckling of cylindrical shell with temperature-dependent material properties: Conventional theoretical solution and new numerical method. Mechanics Research Communications. 2018. № 92. P. 74–80.
9. Duc N. D. Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear de-formation shell theory. European Journal of Mechanics A /Solids. 2016. № 58. P. 10–30.
10. Trabelsi S., Frikha A., Zghal S., Dammak F. A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Engineering Structures. 2019. № 178. P. 444–459.
11. Trinh M. C., Kim S. E. Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment. Aerospace Science and Technology. 2019. № 84. P. 672–685.
12. Лойцянский Л. Г. Механика жидкости и газа. М., 2003. 840 с.
13. Launder B. E., Sharma B. I. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. International Journal of Heat and Mass Transfer. 1974. № 1. P. 131–138.
14. Михеев М. А., Михеева И. М. Основы теплопередачи. М., 1977. 345 с.
15. Малинин Н. Н. Прикладная теория пластичности и ползучести. М., 1968. 400 с.

Downloads: 52
Abstract views: 
1760
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Boydton; Plano; Miami; Columbus; Columbus; Columbus; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Boardman; Seattle; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn26
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore11
Ukraine Dnipro; Odessa; Kyiv; Dnipro4
Canada Toronto; Toronto; Monreale3
Germany;; Falkenstein3
Finland Helsinki1
Great Britain London1
Romania Voluntari1
Netherlands Amsterdam1
Poland Gdańsk1
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff

Keywords cloud

]]>
11.1.2020 Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies https://journal.yuzhnoye.com/content_2020_1-en/annot_11_1_2020-en/ Wed, 13 Sep 2023 10:51:08 +0000 https://journal.yuzhnoye.com/?page_id=31040
2020, (1); 107-113 DOI: https://doi.org/10.33136/stma2020.01.107 Language: Russian Annotation: This article analyzes the results of studies, which are based on numerical methods of analysis, of the stress-strain state of thin-walled shell structures. Key words: numerical and analytical methods , stress-strain state , rocket structures , shell system , reinforcing load-bearing elements , local and general stability , machine learning technology Bibliography: 1. numerical and analytical methods , stress-strain state , rocket structures , shell system , reinforcing load-bearing elements , local and general stability , machine learning technology .
]]>

11. Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies

Organization:

Zaporizhzhia National University, Zaporizhzhia, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 107-113

DOI: https://doi.org/10.33136/stma2020.01.107

Language: Russian

Annotation: This article analyzes the results of studies, which are based on numerical methods of analysis, of the stress-strain state of thin-walled shell structures. This article also discusses analytical solutions that apply asymptotic approaches and a method of initial parameters in a matrix form for solving a problem of equal stability of reinforced compartments of combined shell systems of the rocket and space technology within the scope of the research being carried out jointly by teams of Yuzhnoye State Design Office and Zaporizhzhya National University. The primary attention is paid to the use of FEM-based direct numerical methods and the research results for which analytical methods can be useful for making a preliminary assessment of the bearing capacity of load-bearing structures, and in some cases for their rational design. This article does not contrast numerical and analytical approaches but about the possibility of using them effectively. The article talks about possible ways of using the up-to-date technique of machine learning (Machine Learning Technology) in the calculation and experimental methods for determining the characteristics of the rocket and space technology.

Key words: numerical and analytical methods, stress-strain state, rocket structures, shell system, reinforcing load-bearing elements, local and general stability, machine learning technology

Bibliography:
1. Jean-Jacques Rousseau. URL: https://www.sdamesse.ru/2019/03/blog-post_14.html.
2. Akimov D. V., Gristchak V. Z., Gomenjuk S. I., Grebenyk S. N., Lisniak А. А., Choporov S. V., Larionov I. F., Klimenko D. V., Sirenko V. N. Matematicheskoe modelirovanie i issledovanie prochnosti silovykh elementov konstruktsij kosmicheskikh letatelnykh apparatov. Visn. Zaporiz’koho nats. un-tu. Fiz.-mat. nauky. 2015. № 3. S. 6–13.
3. Akimov D. V., Gristchak V. Z., Gomenjuk S. I., Larionov I. F., Klimenko D. V., Sirenko V. N. Finite-element analysis and experimental investigation on the strength of a three-layered honeycomb sandwich structure of spacecraft adapter module. Strength of Materials. 2016. № 3. P. 52–57. https://doi.org/10.1007/s11223-016-9775-y
4. Akimov D. V., Larionov I. F., Klimenko D. V., Gristchak V. Z., Gomenjuk S. I. Matematicheskoe modelirovanie i issledovanie napriazhenno-deformirovannogo sostoianiia otsekov raket kosmicheskogo naznacheniia. Kosmicheskaya tekhnika. Raketnoe vooruzhenie: sb. nauch.-tekhn. st. GP «KB «Yuzhnoye». Dnipro, 2019. Vyp. 1. S. 21–27. https://doi.org/10.33136/stma2019.01.021
5. Yarevskii Ye. А. Teoreticheskie osnovy metodov kompiuternogo modelirovaniia: ucheb.-metod. posobie. Sankt-Peterburg, 2010. 83 S.
6. Klovanich S. F. Metod konechnykh elementov v nelineinykh zadachakh inzhenernoi mekhaniki. Zaporozhie, 2009. 394 S.
7. Akimov D. V., Gristchak V. Z., Larionov I. F., Gomenjuk S. I., Klimenko D. V., Choporov S. V., Grebenyk S. N. Matematicheskoe obespechenie analiza prochnosti silovykh elementov raketno-kosmicheskoi techniki. Problemy obchysliuvalnoi mekhaniky i mitsnosti konstruktsii: zb. nayk. prats. 2017. Vyp. 26. S. 5–21.
8. Akimov D. V., Gristchak V. Z., Gomenjuk S. I., Larionov I. F., Klimenko D. V., Sirenko V. N. Eksperimentalnoe issledovanie deformirovannogo sostoianiia i prochnosti mezhstupenchatogo otseka raketonositelia pri staticheskom vneshnem nagruzhenii. Novi materialy i technolohii v metalurhii ta mashynobuduvanni. 2016. №1. S. 82–89.
9. Akimov D. V., Gristchak V. Z., Grebenyk S. N., Gomenjuk S. I. Sravnitelnyi analiz metodik rascheta napriazhenno-deformirovannogo sostoianiia elementov konstruktsii raketonositelia. Novi materialy i technolohii v metalurhii ta mashynobuduvanni. 2016. № 2. S. 116–120.
10. Gristchak V. Z., Gomeniuk S. I., Grebeniuk S. N., Larionov I. F., Degtiarenko P. G., Akimov D. V. An Investigation of a Spacecraft’s Propellant Tanks Shells Bearing Strength. Aviation in XXI-st Century. Safety in Aviation and Space Technologies: Proccedings the Sixth world congress. Kiev, 2014. Vol. 1. Р. 1.14.49–1.14.51.
11. Gristchak V. Z., Manievich А. I. Vliianiie zhestkosti shpangoutov na izgib iz ploskosti na ustoichivost podkreplennoi tsilindricheskoi obolochki. Gidroaeromechanika i teoriia uprugosti. 1972. Vyp. 14. S. 121–130.
12. Gristchak V. Z., Diachenko N. M. Opredelenie oblastei ustoichivosti konicheskoi obolochki pri kombinirovanom nagruzhenii na baze gibridnogo asimptoticheskogo podkhoda. Visn. Zaporiz’koho nats. un-tu. Fiz.-mat. nauky. 2017. №2. S. 32–46. URL: http:// nbuv.gov.ua/UJRN/Vznu_mat_2017_2_6.
13. Dehtiarenko P. H., Gristchak V. Z., Gristchak D. D., Diachenko N. M. K probleme ravnoustojchivosti podkreplenoi obolochechnoi konstruktsii pri kombinirovannom nagruzhenii. Kosmicheskaia nauka I technologiia. 2019. Т. 25, № 6(121). S. 3–14.
14. Kononiuk А. Е. Fundamentalnaia teoriia oblachnykh technologij: v 18 kn. Kyiv, 2018. Kn. 1. 620 s.
15. URL: http://datareview.info/article/vse-modeli-mashinnogo-obucheniya-imeyut-svoi-nedostatki
16. Choporova О. V., Choporov S. V., Lysniak А. О. Vykorystannia mashynnoho navchannia dlia prohnozuvannia napruzheno-deformovannoho stanu kvadratnoi plastyny. Matematychne modeliuvannia fizychnykh I tekhnolohichnykh system. Visnyk KhNTU. 2019. № 2(69). S. 192–201.
Downloads: 44
Abstract views: 
1337
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Dublin; Columbus; Phoenix; Monroe; Ashburn; Columbus; Ashburn; Mountain View; Seattle; Portland; San Mateo; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Ashburn; Boardman; Ashburn; Ashburn25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore10
Ukraine Dnipro; Kyiv2
Finland Helsinki1
Unknown1
Pakistan Bahawalpur1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
11.1.2020  Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies
11.1.2020  Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies
11.1.2020  Some results of strength calculations relying on analytical and FEM approaches. Trends of using contemporary machine learning strategies

Keywords cloud

]]>
8.1.2019 Virtual Tests of Cassette Reentry Vehicle Dash Elements Attachment System during Ground Operation https://journal.yuzhnoye.com/content_2019_1-en/annot_8_1_2019-en/ Thu, 25 May 2023 12:09:45 +0000 https://journal.yuzhnoye.com/?page_id=27713
Moreover, computational models consider all the design and technological features of the airframe: layout of the projectiles attachments, initial stress-strain state of the system after the tightening of the threaded connections, friction between the components of the system and their mutual displacement, temperature dependence of the physical and mechanical characteristics and ultimate stress of materials.
]]>

8. Virtual Tests of Cassette Reentry Vehicle Dash Elements Attachment System during Ground Operation

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine2; National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2019, (1); 54-63

DOI: https://doi.org/10.33136/stma2019.01.054

Language: Russian

Annotation: This paper describes the effective approach for the technology of the rocket airframe development testing, based on the method of numerical modelling, which enables the virtual experimental runs prior to the beginning of the development testing to check the performance of the standard airframes and predict issues of concern. The method is realized based on the computer models developed in the ANSYS Workbench environment. Based on the offered method the complex mechanical system, which attaches the cluster projectiles in the conditions of the temperature exposure and heat cycling, underwent the virtual tests. Computational models, criteria and test procedures necessary for the analysis of the mechanical condition and prediction of the performance of the actual airframe of the warhead were developed. Moreover, computational models consider all the design and technological features of the airframe: layout of the projectiles attachments, initial stress-strain state of the system after the tightening of the threaded connections, friction between the components of the system and their mutual displacement, temperature dependence of the physical and mechanical characteristics and ultimate stress of materials. For the specified loading conditions during the ground operations with the warhead, the most dangerous computational cases are determined which have been implemented during the virtual tests. Test results were used to conduct the static analysis of the mechanical condition, strength and conditions for performance of the actual structure of the attachment under the impact of the operating levels of temperature exposure and heat cycling. Results of the virtual tests confirm the performance of the projectiles attachment system and are introduced into production in the phase of engineering development.

Key words: computer modelling, computational models, ground operations, mechanical condition, performance

Bibliography:

1. Birger I. A., Iosilevich G. B. Rezbovye i flantsevye soedineniya. M.: Mashinostroenie, 1990. 368 p.
2. Kukhling Ch. Spravochnik po phisike. M.: Mir, 1985. 520 p.
3. Nikolskiy B. P., Rabinovich V. A. Spravochnil chimika. T. 6. L.: Chimiya, 1967. 1009 p.
4. Stali I splavy. Marochnik: Sprav. izd. / pod red. V. G. Sorokina, M. A. Gervasieva. M.: Intermet Engineering, 2001. 608 p.
5. Numerical simulation of missile warhead operation / G. Martynenko, M. Chernobryvko, K. Avramov, V. Martynenko, A. Tonkonozhenko, V. Kozharin, D. Klymenko / Advances in Engineering Software. 2018. Vol. 123. P. 93-103. https://doi.org/10.1016/j.advengsoft.2018.07.001

Downloads: 46
Abstract views: 
1032
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Ashburn; Matawan; Baltimore; Plano; Columbus; Phoenix; Phoenix; Monroe; Ashburn; Columbus; Ashburn; Seattle; Seattle; Tappahannock; Ashburn; San Mateo; San Mateo; Columbus; Des Moines; Boardman; Boardman; Ashburn; Ashburn23
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore13
Unknown Brisbane;;3
Philippines1
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
8.1.2019 Virtual Tests of Cassette Reentry Vehicle Dash Elements Attachment System during Ground Operation
8.1.2019 Virtual Tests of Cassette Reentry Vehicle Dash Elements Attachment System during Ground Operation
8.1.2019 Virtual Tests of Cassette Reentry Vehicle Dash Elements Attachment System during Ground Operation

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays https://journal.yuzhnoye.com/content_2019_1-en/annot_4_1_2019-en/ Thu, 25 May 2023 12:09:18 +0000 https://journal.yuzhnoye.com/?page_id=27709
Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays Authors: Akimov D. 2019, (1); 21-27 DOI: https://doi.org/10.33136/stma2019.01.021 Language: Russian Annotation: This paper presents the overview and features of the stress-strain state analysis of the multilayer shell structures widely used in the design of the missile compartments. As a result of analysis of the current situation with the stress-strain state studies of the complex configuration shell structures and mathematical support of the load-bearing capacity calculation of the aerospace structures, the following actual research trends can be singled out: 1) improvement of the methods of analytical estimation of the thin-walled structures’ strength and resistance; 2) improvement of the numerical methods of composite materials mechanical properties analysis; 3) development or application of the existing software packages and ADE-systems, automatizing stress-strain state analysis with visualization of the processes under study.
]]>

4. Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Zaporizhzhia National University, Zaporizhzhia, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2019, (1); 21-27

DOI: https://doi.org/10.33136/stma2019.01.021

Language: Russian

Annotation: This paper presents the overview and features of the stress-strain state analysis of the multilayer shell structures widely used in the design of the missile compartments. As a result of analysis of the current situation with the stress-strain state studies of the complex configuration shell structures and mathematical support of the load-bearing capacity calculation of the aerospace structures, the following actual research trends can be singled out: 1) improvement of the methods of analytical estimation of the thin-walled structures’ strength and resistance; 2) improvement of the numerical methods of composite materials mechanical properties analysis; 3) development or application of the existing software packages and ADE-systems, automatizing stress-strain state analysis with visualization of the processes under study. One of the most important steps of the third research trend is development of the initial data input media (setting the model parameters) and presentation of analysis results with account of the user interface visualization. The description of the mathematical simulation and experimental studies of the stress-strain state of the interstage bay made of carbon fiber sandwich structure is presented and short description of the structure condition after the tests is provided. Based on the analysis it can be concluded that development of the geometric simulation methods, taking into account the manufacturing deviations, is an independent problem from the point of view of practical applications in the aerospace technology.

Key words: sandwich structure, interstage bay, finite-element model, manufacturing deviations, test loads

Bibliography:

1. Vorovich I. I., Shlenev M. A. Plastiny I obolochki // Itogi nauki. Mechanika: Sbornik obzorov. M.: Nauka, 1963. P. 91–176.
2. Grigolyuk E. I., Kogan F. A. Sovremennoe sostoyanie teorii mnogosloynykh obolochek/ Prikladnaya mechanika. 972. T. 8, № 6. P. 3–17.
3. Grigolyuk E. I., Kulikov G.M. Razvitie obschego napravlenia v teorii mnogo – р max=630…651 kg/cm2/ Kosmicheskay technika. Raketnoe vooruzhenie. Space Technology. Missile Armaments. 2019. Vyp. 1 (117) 27 sloinykh obolochek/ Mechanika compositnykh materialov. 1972. T. 8, № 6. P. 3–17.
4. Grigorenko Ya. M., Vasilenko A. T., Pankratova N. D. K otsenke dopuscheniy teorii trekhsloinykh obolochek s zapolnitelem // Prikladnaya mechanika. 1984. T. 20, № 5. P. 19–25.
5. Dudchenko A. A., Lurie S. A., Obraztsov I. F. Anizotropnye mnogosloynye plastiny I obolochki / Itogi nauki I techniki. Mechanika deformiruemogo tverdogo tela. T. 15. M.: VINITI, 1983. P. 3–68.
6. Kurshin L. M. Obzor rabot po raschetu trekhsloynykh plastin I obolochek / Raschet prostranstvennykh konstruktsiy. Vyp. 1. M.: Gosstroyizdat, 1962. P. 163–192.
7. Noor A. K., Burton W. S., Bert C. W. Computational Models for Sandwich Panels and Shells / Applied Mechanics Reviews. 1996. Vol. 49, No 3. P. 155–199.
8. Piskunov V. G., Rasskazov A. O. Razvitie teorii cloistykh plastin I obolochek // Prikladnaya mechanika. 2002. T. 38, № 2. P. 22–56.
9. Grigorenko Ya. M., Budak V. D., Grigorenko O. Ya. Rozvyazannya zadach teorii bolonok na osnovi disrento –continualnykh metodiv: Navch. posib. Mykolaiv: Ilion, 2010. 294 p.
10. Carrera Е., Brischetto S. A Survey With Numerical Assessment of Classical and Refined Theories for the Analysis of Sandwich Plates // Applied Mechanics Reviews. 2009. Vol. 62, No 1. P. 1–17.
11. Grigolyuk E. I. Uravnenia trekhsloinykh obolochek s legkim zapolnitelem // Izv. AN SSSR. Otdelenie tekhnicheskikh nauk. 1957. № 1. P. 77–84.
12. Ambartsumyan S. A. Teoria anizotropnykh plastin: Prochnost’, ustoichivost’ i kolebania. M.: Nauka, 1987. 360 p.
13. Carrera Е. Historical review of Zig-Zag theories for multilayered plates and shells / Applied Mechanics Reviews. 2003. Vol. 56, No 3. P. 287–308.
14. Teichman F. K., Wang C.-T. Finite deflections of Curved Sandwich Cylinders. Sherman M. Fairchild Publ. Fund. Inst. Aero. Sci. Paper FF-4. Institute of the Astronautical Sciences, 1951. P. 14.
15. Teichman F. K., Wang C.-T., Gerard G. Buckling of Sandwich Cylinders under Axial Compression / Journal of the Aeronautical Sciences. 1951. Vol. 18, No 6. P. 398–406.
16. Vinson J. R. Sandwich Structures / Applied Mechanics Reviews. 2001. Vol. 54, No 4. P. 201–214.
17. Lin J., Fei Y., Zhihua W., Longmao Z. A numerical simulation of metallic cylindrical sandwich shells subjected to air blast loading / Latin American Journal of Solids and Structures. 2013. Vol. 10. P. 631–645.
18. Wu J., Pan L. Nonlinear theory of multilayer sandwich shells and its application (I) – general theory // Applied Mathematics and Mechanics. 1997. Vol. 18, No 1. P. 19–27.
19. Xu J., Wang C., Liu R. Nonlinear stability of truncated shallow conical sandwich shell with variable thickness / Applied Mathematics and Mechanics. 2000. Vol. 21, No 9. P. 977–986.
20. Komissarova G. L., Klyuchnikova V. G., Nikitenko V. N. K otsenke predelov primenimosti priblizhennykh teoriy sloistykh plastin// Prikladnaya mechanika. 1979. T. 15, № 6. P. 131–134.
21. Khalili S. M. R., Kheirikhah M. M., Malekzadeh Fard K. Buckling analysis of composite sandwich plates with flexible core using improved high-order theory / Mechanics of Advanced Materials and Structures. 2015. Vol. 22, No 4. P. 233–247.
22. Kien T. N., Tai H. T., Thuc P. V. A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates / Steel and Composite Structures. 2015. Vol. 18, No 1. P. 91–120.
23. Gorshkov A. G., Starovoitov E. I., Yarovaya A. V. Mechanika sloistykh vyazkouprugoplasticheskikh elementov konstruktsiy. М.: Fizmatlit, 2005. 576 p.
24. Chumachenko Ye. N., Polyakova T. V., Aksenov A. S. i dr. Matematicheskoe modelirovanie v nelineinoy mechanike: Obzor programmnykh complexov dlya resheniya zadach modelirovania slozhnykh system, Pr-2155. M.: Institut kosmicheskykh issledovaniy RAN, 2009. 44 p.
25. Opyt i novye tekhnologii inzhenernogo analiza v interesakh kosmosa: press-reliz / I. Novikov / GNKTs im. M. V. Khrunicheva. Rezhim dostupa: www.khrunichev.ru/ main.php?id=18mid=2132.

Downloads: 43
Abstract views: 
1037
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; North Bergen; Plano; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman; Ashburn20
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Unknown Brisbane;;3
Canada; Toronto; Monreale3
Germany Frankfurt am Main; Frankfurt am Main; Falkenstein3
Netherlands Amsterdam; Amsterdam2
Finland Helsinki1
Romania Voluntari1
Ukraine Dnipro1
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays
4.1.2019 Mathematic Modeling and Investigation into Stress-Strain State of Space Rocket Bays

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>