Keywords cloud
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine,1; Kharkiv Aviation Institute, Kharkiv, Ukraine2
Page: Kosm. teh. Raket. vooruž. 2024, (1); 51-60
DOI: https://doi.org/10.33136/stma2024.01.051
Language: English
Key words: space frames, load-carrying members, stress and strain state, loss of stability, prediction of the structural failure.
Full text (PDF) || Content 2024 (1)
Country | City | Downloads |
---|---|---|
USA | Ashburn; Las Vegas; Buffalo; Los Angeles; Washington;; Ashburn; Columbus; Dallas; New Haven; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; San Francisco; Chicago; Los Angeles; Seattle; Ashburn; Mountain View; Mountain View;; Portland; Portland; San Mateo; Ashburn; Ashburn | 31 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore | 5 |
Germany | Falkenstein; Düsseldorf; Falkenstein; Leipzig; Leipzig | 5 |
China | Pekin; Pekin; Shenzhen; Pekin | 4 |
Canada | Toronto; Toronto; Toronto | 3 |
France | 1 | |
Unknown | 1 | |
Netherlands | Amsterdam | 1 |
Ukraine | Kremenchuk | 1 |
DINTEM Ukrainian Research Design-Technological Institute of Elastomer Materials and Products LLC1; FED Joint Stock Company2
Page: Kosm. teh. Raket. vooruž. 2024, (1); 129-135
DOI: https://doi.org/10.33136/stma2024.01.129
Language: Ukrainian
Key words: leaktightness of articles, fluorosiloxane rubber, rubber, temperature of the hot climate, physical-mechanical properties of the rubber, climatic endurance tests, elastic properties, warranty life
Full text (PDF) || Content 2024 (1)
Country | City | Downloads |
---|---|---|
USA | Mountain View; San Jose; Saint Louis; Los Angeles; Los Angeles; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Los Angeles; Chicago; Seattle; Columbus; Ashburn;; Mountain View; Portland; San Mateo; Ashburn; Ashburn; Ashburn; Seattle; Seattle | 26 |
Canada | Toronto; Toronto; Toronto; Toronto; Toronto; Toronto | 6 |
Germany | Falkenstein; Düsseldorf; Falkenstein; Leipzig; Leipzig | 5 |
China | Pekin; Pekin; Shenzhen; Pekin | 4 |
India | Mumbai | 1 |
Singapore | Singapore | 1 |
France | 1 | |
Thailand | Songkhla | 1 |
The Republic of Korea | Seoul | 1 |
Netherlands | Amsterdam | 1 |
Ukraine | Kremenchuk | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine2
Page: Kosm. teh. Raket. vooruž. 2020, (1); 26-33
DOI: https://doi.org/10.33136/stma2020.01.026
Language: Russian
Key words: stress-strain behavior, finite-element method, plastoelastic deformations, breaking strength, reusability
1. Elhefny A., Liang G. Stress and deformation of rocket gas turbine disc under different loads using finite element modeling. Propulsion and Power Research. 2013. № 2. P. 38–49. https://doi.org/10.1016/j.jppr.2013.01.002
2. Perakis N., Haidn O. J. Inverse heat transfer method applied to capacitively cooled rocket thrust chambers. International Journal of Heat and Mass Transfer. 2019. № 131. P. 150–166. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.048
3. Yilmaz N., Vigil F., Height J., et. al. Rocket motor exhaust thermal environment characterization. Measurement. 2018. № 122. P. 312–319. https://doi.org/10.1016/j.measurement.2018.03.039
4. Jafari M. Thermal stress analysis of orthotropic plate containing a rectangular hole using complex variable method. European Journal of Mechanics A /Solids. 2019. № 73. P. 212–223. https://doi.org/10.1016/j.euromechsol.2018.08.001
5. Song J., Sun B. Thermal-structural analysis of regeneratively cooled thrust chamber wall in reusable LOX / Methane rocket engines. Chinese Journal of Aeronautics. 2017. № 30. P. 1043–1053.
6. Ramanjaneyulu V., Murthy V. B., Mohan R. C., Raju Ch. N. Analysis of composite rocket motor case using finite element method. Materials Today: Proceedings. 2018. № 5. P. 4920–4929.
7. Xu F., Abdelmoula R., Potier-Ferry M. On the buckling and post-buckling of core-shell cylinders under thermal loading. International Journal of Solids and Structures. 2017. № 126–127. P. 17–36.
8. Wang Z., Han Q., Nash D. H., et. al. Thermal buckling of cylindrical shell with temperature-dependent material properties: Conventional theoretical solution and new numerical method. Mechanics Research Communications. 2018. № 92. P. 74–80.
9. Duc N. D. Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear de-formation shell theory. European Journal of Mechanics A /Solids. 2016. № 58. P. 10–30.
10. Trabelsi S., Frikha A., Zghal S., Dammak F. A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Engineering Structures. 2019. № 178. P. 444–459.
11. Trinh M. C., Kim S. E. Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment. Aerospace Science and Technology. 2019. № 84. P. 672–685.
12. Лойцянский Л. Г. Механика жидкости и газа. М., 2003. 840 с.
13. Launder B. E., Sharma B. I. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. International Journal of Heat and Mass Transfer. 1974. № 1. P. 131–138.
14. Михеев М. А., Михеева И. М. Основы теплопередачи. М., 1977. 345 с.
15. Малинин Н. Н. Прикладная теория пластичности и ползучести. М., 1968. 400 с.
Full text (PDF) || Content 2020 (1)
Country | City | Downloads |
---|---|---|
USA | Boardman; Matawan; Boydton; Plano; Miami; Columbus; Columbus; Columbus; Detroit; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Ashburn; Houston; Boardman; Mountain View; Mountain View; Seattle; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn; Ashburn; Ashburn; Seattle | 45 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 11 |
Canada | Toronto; Toronto; Toronto; Toronto; Toronto; Toronto; Toronto; Monreale | 8 |
Ukraine | Dnipro; Odessa; Kyiv; Dnipro | 4 |
Germany | ;; Falkenstein | 3 |
Netherlands | Amsterdam; Amsterdam | 2 |
Finland | Helsinki | 1 |
Great Britain | London | 1 |
Unknown | 1 | |
Romania | Voluntari | 1 |
Poland | Gdańsk | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
Page: Kosm. teh. Raket. vooruž. 2019, (2); 3-10
DOI: https://doi.org/10.33136/stma2019.02.003
Language: Russian
Key words: anti-aircraft missile, optimization, angle of attack program, trajectory
Full text (PDF) || Content 2019 (2)
Country | City | Downloads |
---|---|---|
USA | Boardman; Ashburn; Matawan; Baltimore;;; Boydton; Plano; Dublin; Ashburn; Columbus; Ashburn; Los Angeles; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Ashburn; Boardman; Ashburn; Mountain View; Mountain View; Mountain View; Seattle; Seattle; Portland; Portland; San Mateo; San Mateo; San Mateo; Columbus; Columbus; Des Moines; Des Moines; Boardman; Boardman; Ashburn; Ashburn | 50 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 12 |
Canada | Toronto; Toronto; Toronto; Monreale | 4 |
Ukraine | Odessa; Dnipro | 2 |
Netherlands | Amsterdam; Amsterdam | 2 |
Finland | Helsinki | 1 |
Unknown | Hong Kong | 1 |
Türkiye | Istanbul | 1 |
Germany | Falkenstein | 1 |
Romania | Voluntari | 1 |
Institute of Mechanical Engineering of Odessa National Polytechnic University, Odessa, Ukraine
Page: Kosm. teh. Raket. vooruž. 2020, (1); 137-148
DOI: https://doi.org/10.33136/stma2020.01.137
Language: Ukrainian
Key words: mathematical model, linear systems, singular integral equations, impulse response, defects, criteria for the destruction of stochastically defective bodies, Riemann problem, thermoelastic state
Full text (PDF) || Content 2020 (1)
Country | City | Downloads |
---|---|---|
USA | Boardman; Ashburn; Matawan; Baltimore;;; Plano; Miami; Columbus; Columbus; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Ashburn; Monroe; Ashburn; Ashburn; Seattle; Ashburn; Ashburn; Ashburn; Seattle; Quinton; Houston; Ashburn; Ashburn; Mountain View; Seattle; Tappahannock; Portland; Portland; San Mateo; San Mateo; San Mateo; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Ashburn; West Palm Beach | 48 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 8 |
Canada | Toronto; Toronto; Toronto; Toronto; Monreale | 5 |
Ukraine | Odessa; Dnipro; Kyiv | 3 |
Germany | ;; Falkenstein | 3 |
Netherlands | Amsterdam; Amsterdam | 2 |
Cambodia | Phnom Penh | 1 |
Finland | Helsinki | 1 |
Romania | Voluntari | 1 |
Zaporizhzhia National University, Zaporizhzhia, Ukraine
Page: Kosm. teh. Raket. vooruž. 2020, (1); 107-113
DOI: https://doi.org/10.33136/stma2020.01.107
Language: Russian
Key words: numerical and analytical methods, stress-strain state, rocket structures, shell system, reinforcing load-bearing elements, local and general stability, machine learning technology
Full text (PDF) || Content 2020 (1)
Country | City | Downloads |
---|---|---|
USA | Boardman; Ashburn; Matawan; Baltimore;; Boydton; Plano; Dublin; Columbus; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Columbus; Ashburn; Quinton; Mountain View; Seattle; Portland; San Mateo; San Mateo; San Mateo; San Mateo; San Mateo; San Mateo; Ashburn; Columbus; Ashburn; Des Moines; Ashburn; Boardman; Ashburn; Ashburn; Ashburn; Ashburn | 42 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 11 |
Canada | Toronto; Toronto; Toronto; Toronto; Toronto; Monreale | 6 |
Ukraine | Kyiv; Lviv; Lviv; Dnipro; Kyiv | 5 |
Germany | Limburg an der Lahn; Falkenstein | 2 |
Netherlands | Amsterdam; Amsterdam | 2 |
Finland | Helsinki | 1 |
Unknown | 1 | |
Pakistan | Bahawalpur | 1 |
Romania | Voluntari | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3
Page: Kosm. teh. Raket. vooruž. 2020, (1); 44-56
DOI: https://doi.org/10.33136/stma2020.01.044
Language: Russian
Key words: shell structures, stress and strain state, structural and technological inhomogeneity, thermomechanical loads, low-cycle and high-cycle fatigue, lifetime
Full text (PDF) || Content 2020 (1)
Country | City | Downloads |
---|---|---|
USA | Boardman; Ashburn; Ashburn; Columbus; Matawan; Baltimore;; North Bergen; Boydton; Plano; Miami; Dublin; Dublin; Detroit; Ashburn; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Ashburn; Ashburn; Quinton; Ashburn; Mountain View; Portland; San Mateo; San Mateo; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn | 46 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 8 |
Canada | Toronto; Toronto; Toronto; Toronto; Toronto; Toronto; Monreale | 7 |
Ukraine | Dnipro; Odessa; Dnipro | 3 |
Netherlands | Amsterdam; Amsterdam | 2 |
Finland | Helsinki | 1 |
Ethiopia | Addis Ababa | 1 |
Germany | Falkenstein | 1 |
Latvia | Riga | 1 |
Romania | Voluntari | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Oles Honchar Dnipro National University, Dnipro, Ukraine2.
Page: Kosm. teh. Raket. vooruž. 2017 (2); 127-130
Language: Russian
Key words:
Full text (PDF) || Content 2017 (2)
Country | City | Downloads |
---|---|---|
USA | Boardman; Boerne; Matawan; Baltimore; Miami; Columbus; Columbus; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Ashburn; Seattle; Ashburn; Ashburn; Quinton; Houston; North Charleston; Ashburn; Boardman; Mountain View; Tappahannock; Ashburn; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Boardman; Ashburn; Ashburn | 43 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 8 |
Germany | ; Frankfurt am Main; Falkenstein; Falkenstein | 4 |
Canada | Toronto; Toronto; Monreale | 3 |
Ukraine | Dnipro; Dnipro | 2 |
Netherlands | Amsterdam; Amsterdam | 2 |
China | Shanghai | 1 |
Finland | Helsinki | 1 |
Romania | Voluntari | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
Page: Kosm. teh. Raket. vooruž. 2017 (1); 8-17
Language: Russian
Key words:
Full text (PDF) || Content 2017 (1)
Country | City | Downloads |
---|---|---|
USA | Boardman; Columbus; Columbus; Ashburn; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Ashburn; Seattle; Columbus; Ashburn; Ashburn; Mountain View; Houston; Boardman; North Charleston; Tappahannock; Portland; Portland; San Mateo; San Mateo; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Boardman; Ashburn; Seattle | 37 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 7 |
Canada | Toronto; Toronto; Toronto; Toronto | 4 |
Unknown | Melbourne; | 2 |
Ukraine | Dnipro; Dnipro | 2 |
Netherlands | Amsterdam; Amsterdam | 2 |
France | 1 | |
Germany | Falkenstein | 1 |
Romania | Voluntari | 1 |
Austria | Vienna | 1 |
Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine2; National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine3
Page: Kosm. teh. Raket. vooruž. 2019, (1); 54-63
DOI: https://doi.org/10.33136/stma2019.01.054
Language: Russian
Key words: computer modelling, computational models, ground operations, mechanical condition, performance
1. Birger I. A., Iosilevich G. B. Rezbovye i flantsevye soedineniya. M.: Mashinostroenie, 1990. 368 p.
2. Kukhling Ch. Spravochnik po phisike. M.: Mir, 1985. 520 p.
3. Nikolskiy B. P., Rabinovich V. A. Spravochnil chimika. T. 6. L.: Chimiya, 1967. 1009 p.
4. Stali I splavy. Marochnik: Sprav. izd. / pod red. V. G. Sorokina, M. A. Gervasieva. M.: Intermet Engineering, 2001. 608 p.
5. Numerical simulation of missile warhead operation / G. Martynenko, M. Chernobryvko, K. Avramov, V. Martynenko, A. Tonkonozhenko, V. Kozharin, D. Klymenko / Advances in Engineering Software. 2018. Vol. 123. P. 93-103. https://doi.org/10.1016/j.advengsoft.2018.07.001
Full text (PDF) || Content 2019 (1)
Country | City | Downloads |
---|---|---|
USA | Ashburn; Ashburn; Matawan; Baltimore; Plano; Columbus; Columbus; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Columbus; Ashburn; Ashburn; Houston; Ashburn; Seattle; Seattle; Tappahannock; Ashburn; Portland; San Mateo; San Mateo; Columbus; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn | 41 |
Singapore | Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore | 17 |
Canada | Toronto; Toronto; Toronto; Monreale | 4 |
Unknown | Brisbane;; | 3 |
Netherlands | Amsterdam; Amsterdam | 2 |
Ukraine | Dnipro; Novomoskovsk | 2 |
Philippines | 1 | |
Finland | Helsinki | 1 |
Germany | Falkenstein | 1 |
Romania | Voluntari | 1 |