Search Results for “tank container” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Thu, 20 Jun 2024 09:40:59 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “tank container” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 9.1.2020 Experimental investigation of a liner-free propellant tank made from polymer composite materials https://journal.yuzhnoye.com/content_2020_1-en/annot_9_1_2020-en/ Wed, 13 Sep 2023 10:43:08 +0000 https://journal.yuzhnoye.com/?page_id=31035
Experimental investigation of a liner-free propellant tank made from polymer composite materials Authors: Sidoruk А. 2020, (1); 90-98 DOI: https://doi.org/10.33136/stma2020.01.090 Language: Russian Annotation: The exploratory and experimental investigations were conducted into design of propellant tank made of composite polymer materials for work in cryogenic environment at operating pressure of 7.5 kgf/cm2 . Composite fuel tank for ILV, Dnipro, Yuzhnoye SDO, 2019.
Not found: container
]]>

9. Experimental investigation of a liner-free propellant tank made from polymer composite materials

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2020, (1); 90-98

DOI: https://doi.org/10.33136/stma2020.01.090

Language: Russian

Annotation: The exploratory and experimental investigations were conducted into design of propellant tank made of composite polymer materials for work in cryogenic environment at operating pressure of 7.5 kgf/cm2 . When determining the configuration of a liner-free composite propellant tank, the main requirement was ensuring its leak-tightness at internal excess pressure and cryogenic temperature effect. The world experience of creating similar designs was analyzed and the requirements were defined imposed on configuration of propellant tank load-bearing shells. Before defining the final configuration, the types of materials, reinforcing patterns, and possible ways to ensure leak-tightness were analyzed, and preliminary tests were conducted of physical and mechanical characteristics of thin-wall samples of composite materials and tubular structures with different reinforcing patterns. The tests of carbon plastic samples were conducted at different curing modes to determine the most effective one from the viewpoint of strength characteristics and the tests for permeability by method of mouthpiece were conducted. The tests of pilot propellant tank showed that the calculated values of deformations and displacements differ from the experimental values by no more than 10 %. Using the parameters measurement results from the tests on liquid nitrogen, the empirical formulas were obtained to calculate linear thermal expansion coefficient of the package of materials of load -bearing shell. The empirical dependences were constructed of relative ring deformations at load-bearing shell middle section on pressure and temperature. The tests confirmed correctness of adopted solutions to ensure strength and leak-tightness of propellant tank load-bearing shell at combined effect on internal excess pressure and cryogenic temperature, particularly at cyclic loading. The materials used and propellant tank manufacturing technologies ensure leak-tightness of load-bearing shell at liquid nitrogen operating pressure of 7.5 kgf/cm2 and strength at excess pressure of 15 kgf/cm2 and allow conducting approbation of prospective stage of the integrated launch vehicle.

Key words: load-bearing shell, permeability, cryogenic propellant, relative deformations, linear thermal expansion coefficient

Bibliography:
1. Frantsevich I. М., Karpinos D. М. Kompozitsionnye materialy voloknistogo stroeniia. K., 1970.
2. TSM YZH ANL 009 00. Composite fuel tank for ILV, Dnipro, Yuzhnoye SDO, 2019.
3. Zheng H., Zeng X., Zhang J., Sun H. The application of carbon fiber composites in cryotank. Solidification. 2018. https://doi.org/10.5772/intechopen.73127
Downloads: 48
Abstract views: 
1968
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Los Angeles; North Bergen; Dublin; Ashburn; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman26
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Canada Toronto; Toronto; Monreale3
Unknown;2
Germany; Falkenstein2
Ukraine Dnipro; Odessa2
Malaysia Kuala Lumpur1
Finland Helsinki1
Ireland Dublin1
Romania Voluntari1
Netherlands Amsterdam1
9.1.2020  Experimental investigation of a liner-free propellant tank made from polymer composite materials
9.1.2020  Experimental investigation of a liner-free propellant tank made from polymer composite materials
9.1.2020  Experimental investigation of a liner-free propellant tank made from polymer composite materials

Keywords cloud

]]>
9.1.2018 On the Peculiarities of High-Temperature Rocket Propellants Drain from Delivery Means to Filling Tank for Closed Drain https://journal.yuzhnoye.com/content_2018_1-en/annot_9_1_2018-en/ Tue, 05 Sep 2023 06:29:31 +0000 https://journal.yuzhnoye.com/?page_id=30460
Selection and Justification of Technology of Rocket Propellants Drain from Tank-Containers into OFS, FFS Tanks: Technical Note Cyclone-4 22.6840.155 СТ.
]]>

9. On the Peculiarities of High-Temperature Rocket Propellants Drain from Delivery Means to Filling Tank for Closed Drain

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (1); 53-57

DOI: https://doi.org/10.33136/stma2018.01.053

Language: Russian

Annotation: The paper presents the variation of parameters of gas-vapor mixture of hypergolic rocket propellant components in a filling tank in the process of rocket propellant components filling into it with “closed drainage” depending on tank filing coefficient and initial parameters of environment in the tank.

Key words:

Bibliography:
1. Cosmodrome / Under the general editorship of A. P. Vol’sky. М., 1977.
2. Berezhkovsky M. I. Storage and Transportation of Chemical Products. М., 1973.
3. Selection and Justification of Technology of Rocket Propellants Drain from Tank-Containers into OFS, FFS Tanks: Technical Note Cyclone-4 22.6840.155 СТ. Yuzhnoye SDO, 2005.
Downloads: 47
Abstract views: 
931
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Ashburn; Columbus; Matawan; Baltimore; North Bergen;; Boydton; Plano; Columbus; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Portland; San Mateo; San Mateo; Ashburn; Columbus; Des Moines; Boardman; Boardman; Ashburn; Seattle25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Canada Toronto; Toronto; Monreale3
Ukraine Kyiv; Dnipro; Odessa3
Belgium Brussels1
Finland Helsinki1
Unknown1
Great Britain London1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
9.1.2018 On the Peculiarities of High-Temperature Rocket Propellants Drain from Delivery Means to Filling Tank for Closed Drain
9.1.2018 On the Peculiarities of High-Temperature Rocket Propellants Drain from Delivery Means to Filling Tank for Closed Drain
9.1.2018 On the Peculiarities of High-Temperature Rocket Propellants Drain from Delivery Means to Filling Tank for Closed Drain
]]>
8.2.2017 Analysis Method of Nitrogen Tetroxide Tanks Generating Pressurization Systems https://journal.yuzhnoye.com/content_2017_2/annot_8_2_2017-en/ Tue, 08 Aug 2023 12:49:21 +0000 https://journal.yuzhnoye.com/?page_id=29763
Analysis Method of Nitrogen Tetroxide Tanks Generating Pressurization Systems Authors: Petrenko R. 2017 (2); 41-48 Language: Russian Annotation: The paper considers the method of calculation of generative pressurization system for a tank with nitrogen tetroxide in which an attempt is made to model the temperature stratification of gas in the tank throughout the height of the tank. The applied physical model takes into account the impact of gas dynamic processes, heat-mass-exchange, and chemical reactions on gas parameters in the tank.
Not found: container
]]>

8. Analysis Method of Nitrogen Tetroxide Tanks Generating Pressurization Systems

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2017 (2); 41-48

Language: Russian

Annotation: The paper considers the method of calculation of generative pressurization system for a tank with nitrogen tetroxide in which an attempt is made to model the temperature stratification of gas in the tank throughout the height of the tank. The applied physical model takes into account the impact of gas dynamic processes, heat-mass-exchange, and chemical reactions on gas parameters in the tank. The satisfactory convergence of the calculation results with the experimental data is shown.

Key words:

Bibliography:
1. Antonov V. A., Logvinenko A. I., Moseiko V. A. et al. Calculation of Long-Range Missiles Fuel (UDMH) Tanks Pressurization with Hot Gases. Defense Engineering. 1967. No. 10.
2. Belyayev N. M. Launch Vehicle Propellant Tanks Pressurization Systems. М., 1974. 336 p.
3. Test Facilities and Development Testing of Liquid Rocket Engines / А. G. Galeyev, K. P. Denisov, V. I. Ishchenko, V. A. Liseikin, G. G. Saydov, А. Y. Cherkashin. М., 2012. 362 p.
4. Thermal Dynamic and Thermal Physical properties of Combustion Products. Vol. 4 / Under the editorship of V. P. Glushko. М., 1974. 263 p.
5. Thermodynamic and Transfer Properties of Chemically Reacting Gas Systems. Part 1 / Under the editorship of A. K. Krasin, B. V. Nesterenko et al. Minsk, 1967. 206 p.
Downloads: 37
Abstract views: 
321
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Plano; Miami; Dublin; Columbus; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Ashburn; Ashburn; Boardman; Tappahannock; Des Moines; Boardman; Ashburn; Boardman; Ashburn20
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Canada Toronto; Toronto; Toronto; Monreale4
Ukraine Dnipro; Dnipro2
Finland Helsinki1
Unknown Hong Kong1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
8.2.2017 Analysis Method of Nitrogen Tetroxide Tanks Generating Pressurization Systems
8.2.2017 Analysis Method of Nitrogen Tetroxide Tanks Generating Pressurization Systems
8.2.2017 Analysis Method of Nitrogen Tetroxide Tanks Generating Pressurization Systems
]]>
7.1.2019 Experience of Development and Use of Generator Pressurization System for Tanks of Launch Vehicles on High-Temperature Propellants https://journal.yuzhnoye.com/content_2019_1-en/annot_7_1_2019-en/ Thu, 25 May 2023 12:09:38 +0000 https://journal.yuzhnoye.com/?page_id=27712
Experience of Development and Use of Generator Pressurization System for Tanks of Launch Vehicles on High-Temperature Propellants Authors: Voloshin M. 2019, (1); 45-53 DOI: https://doi.org/10.33136/stma2019.01.045 Language: Russian Annotation: Long-term experience in development, development testing and use of generating systems of fuel tanks pressurization for rockets powered by nitrogen tetroxide and unsymmetrical dimethylhydrazine is summarized.
Not found: container
]]>

7. Experience of Development and Use of Generator Pressurization System for Tanks of Launch Vehicles on High-Temperature Propellants

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 45-53

DOI: https://doi.org/10.33136/stma2019.01.045

Language: Russian

Annotation: Long-term experience in development, development testing and use of generating systems of fuel tanks pressurization for rockets powered by nitrogen tetroxide and unsymmetrical dimethylhydrazine is summarized. Replacement of gas bottle pressurization systems with generating ones on such launch vehicles as 15A14, 15A15, 11K68 (8K67), 15A18M substantially simplified operation, reduced the pneumohydraulic feed system mass at least twice and its cost – by five times. Typical stages of development and introduction of the pressurization generating systems are shown: development of generators, their development testing, study of the composition and parameters of gas. The important steps were the development of methodology for pressurization system parameters calculation, which enabled achievement of the substantial improvements of their characteristics, appearance of the high-performance hightemperature (up to ~ 1000o C) unsymmetrical dimethylhydrazine tank pressurization system, study of the degree of impact of each of the pressurization system parameters on the tank pressure. Accounting of the correlation between the flow rate and the generator gas temperature improved the output performance, as well as simplified and reduced the amount of development testing of the pressurization system. Important role of the gas sprayer design in pressurization system parametric configuration is described, and the advanced versions are shown taking into account g-loads, changes in temperature, pressure and propellant level inside the tank. Significant phase in the development of the generating pressurization system was the effective use of the high-temperature pressurization of the fuel tank with submerged propulsion system. Besides for the first time the effect of mechanical temperature destratification of the propellant in the tanks was observed, which occurs during the propulsion systems shutdown. Due to this effect, the Dnepr LV payload capability enhanced. Successful engineering solutions in the design of the pressurization system were defended by ~80 copyright certificates and patents of invention, ~40 of which were successfully implemented.

Key words: gas generator, sprayer, propulsion system, tank, gas pressure, gas temperature

Bibliography:

1. Belyaev N. M. Systemy nadduva toplivnykh bakov raket. M.: Mashinostroenie, 1976. 336 p.
2. Logvinenko A. I. Osnovnyie napravlenia sovershenstvovania PGS sovremennykh RN / Dokl. Mezhd. astronavt. kongress. IAA. C4.1 IAC-63. Naples, Italia, 2012.
3. Kozlov A. A., Novikov V. N., Soloviev Ye. V. Systemy pitania i upravlenia zhidkostnykh raketnykh dvigatelnykh ustanovok. M.: Mashinostroenie, 1988. 352 p.
4. Logvinenko A. I. Tendentsii razvitia system nadduva toplivnykh bakov RN// Tez. dokl. Mezhdunar. astronavt. congressa IAC–05–C4.1.10, IAC-56. Fukuoka, Japan, 2005.
5. Logvinenko A. Gas-generation pressurization system experimental development method of the LV propellant tanks / Acta Astronautica. 2009. AA3161. №64. Р. 84-87. https://doi.org/10.1016/j.actaastro.2008.06.008
6. Ivanitskiy G. M., Logvinenko A. I., Tkachev V. A. K voprosu rascheta temperatury gazanadduva v bakakh raket / Systemne proektuvannya aerokosmichnoi techniki. 2001. T. III. P. 44-47.
7. Pat. 72330 Ukraina, MPK (2006) F02K 9/44 (2006.1), F02K 11/00, В64Д 37/00. Sposib vyroblennya zalyshku palyva v rushiniy ustanovtsi riddinoi rakety/ Ivanitskiy G. M., Kubanov S. M., Logvinenko A. I., Yushin G. I.; zayavnil I vlasnyk DP KB “Pivdenne”. №20021210267; zayvl. 18.12.2002; opubl. 15.02.2005, Bul. №2/2005.
8. Voloshin M. L., Kuda S. A., Mikhalchishin R. V. Complex meropriyatiy po povysheniyu energeticheskykh kharakteristic RN// Kosmicheskaya technika. Raketnoye vooruzhenie: Sb. nauch.-techn. st. Dnepr: GP KB «Yuzhnoye». 2017. Vyp. 2. P. 29-34.

Downloads: 44
Abstract views: 
484
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Plano; Ashburn; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; West Lafayette26
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Canada Toronto; Monreale2
Ukraine Dnipro; Dnipro2
Cambodia Phnom Penh1
Finland Helsinki1
Philippines1
Great Britain London1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
7.1.2019 Experience of Development and Use of Generator Pressurization System for Tanks of Launch Vehicles on High-Temperature Propellants
7.1.2019 Experience of Development and Use of Generator Pressurization System for Tanks of Launch Vehicles on High-Temperature Propellants
7.1.2019 Experience of Development and Use of Generator Pressurization System for Tanks of Launch Vehicles on High-Temperature Propellants

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
6.1.2019 Investigation into Peculiarities of Delivery to Launch Base of Rocket Propellant with Specified Gasing https://journal.yuzhnoye.com/content_2019_1-en/annot_6_1_2019-en/ Thu, 25 May 2023 12:09:32 +0000 https://journal.yuzhnoye.com/?page_id=27711
This procedure implies that shipping tank container is pressurized after being fueled with propellants at the manufacturer’s, the pressure is characterized by the value of the known initial deficit or excess of gas in the propellants, following which tank container is delivered to the launch site. During transportation tank container is subjected to various kinds of mechanical actions (vibration, rolling and pitching in the sea, braking, transshipment), therefore intensive mixing of propellants occur. As propellants mix, process of propellant saturation occurs when certain amount of gas transits from tank container’s gas volume into the liquid, therefore certain gas saturation is reached. It has been determined that due to inevitable errors in the measuring of the specified parameters by the tank container, the achievement of the specified gas saturation with high precision is problematic. Key words: oxidizer , fuel , saturation by helium , tank container , transportation Bibliography: 1.
]]>

6. Investigation into Peculiarities of Delivery to Launch Base of Rocket Propellant with Specified Gasing

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 38-44

DOI: https://doi.org/10.33136/stma2019.01.038

Language: Russian

Annotation: This article considers the issue of achievement of the specified value of propellants saturation by helium after their delivery from the manufacturers to the launch site. Knowing the fact that propellants gas saturation or gas separation processes are labour-consuming and costly this issue is of immediate interest. In order to solve this problem number of factors have been considered, which determine the value of gas saturation in the propellants delivered to the launch site and procedure to control the value of gas saturation by the fuel manufacturer has been developed. This procedure implies that shipping tank container is pressurized after being fueled with propellants at the manufacturer’s, the pressure is characterized by the value of the known initial deficit or excess of gas in the propellants, following which tank container is delivered to the launch site. During transportation tank container is subjected to various kinds of mechanical actions (vibration, rolling and pitching in the sea, braking, transshipment), therefore intensive mixing of propellants occur. As propellants mix, process of propellant saturation occurs when certain amount of gas transits from tank container’s gas volume into the liquid, therefore certain gas saturation is reached. Article includes the measuring results of the gas liquid medium parameters inside the tank containers with fuel in the process of fuel transportation to Ukraine from PRC factories and estimations of the measuring results using the developed model which confirmed the quantitative nature of the mass exchange processes, included in the model, going on in the gas liquid medium during transportation of the tank container with fuel equipment. It has been determined that due to inevitable errors in the measuring of the specified parameters by the tank container, the achievement of the specified gas saturation with high precision is problematic. In spite of the fact that this procedure does not provide exact value of the specified gas saturation, its application will accelerate and make cheaper the process of fuel preparation for filling operations at the launch site, which is especially relevant in case of fuel saturation by helium. Based on this fuel saturation by helium procedure, the complex technology is suggested, providing controlled gas saturation during fuel delivery and subsequent adjustment of gas saturation using launch site equipment. Therefore, this article develops and studies the original model of the controlled gas saturation of the fuel during its delivery to the consumer. Alternative of the practical use of the study results is suggested in the form of the complex technology of fuel saturation by helium, delivered in the tank containers from the manufacturer to the launch site.

Key words: oxidizer, fuel, saturation by helium, tank container, transportation

Bibliography:

1. Volskiy A. P. Kosmodrom. M.: Voenizdat, 1977. 311 p.
2. Stepanov A. N., Vorobiev A. M., Grankin B. K. Kompleksy zapravki raket I kosmicheskikh apparatov. SPB:OM-PRESS, 2004. 26 p.
3. Kiriyanova A. N., Matveeva O. P. Opredelenie kolebania davlenia v gazovoy polosti hermetychikh emkostey transportnozapravochnykh containerov dlya raketnykh topliv pri temperaturnykh vozdeistviyakh/ Nauka i innovatsii. 2016. Vyp. 7.
4. Berezhkovskiy M. I. Khranenie i transportirovka khimicheskykh produktov. – M.: Khimia, 1973. – 272 s.
5. Perepelkin K. Ye., Matveev V. S. Gazovye emulsii. L.:Khimia, 1979. 200 p.
6. Issledovanie protsessov degazirovaniya komponentov topliva v conteinere-tsisterne pri dostavke topliva potrebitelyu. Cyclone4M 21.18425.174 OT: Techn. report. Dnepropetrovsk: Yuzhnoye SDO, 2017. 39 p.

Downloads: 43
Abstract views: 
717
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Matawan; Baltimore;; Plano; Columbus; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Ashburn; Seattle; Tappahannock;; San Mateo; San Mateo; San Mateo; San Mateo; Columbus; Des Moines; Boardman; Boardman; Ashburn; Ashburn28
Singapore Singapore; Singapore; Singapore; Singapore4
Germany; Falkenstein2
Canada Toronto; Monreale2
Ukraine Zaporizhia; Dnipro2
Unknown Melbourne1
Finland Helsinki1
Colombia Bogotá1
Romania Voluntari1
Netherlands Amsterdam1
6.1.2019 Investigation into Peculiarities of Delivery to Launch Base of Rocket Propellant with Specified Gasing
6.1.2019 Investigation into Peculiarities of Delivery to Launch Base of Rocket Propellant with Specified Gasing
6.1.2019 Investigation into Peculiarities of Delivery to Launch Base of Rocket Propellant with Specified Gasing

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
5.2.2019 Features of the development testing of the propellants deposition inside the tanks of launch vehicles https://journal.yuzhnoye.com/content_2019_2-en/annot_5_2_2019-en/ Mon, 15 May 2023 15:45:40 +0000 https://journal.yuzhnoye.com/?page_id=27207
Features of the development testing of the propellants deposition inside the tanks of launch vehicles Authors: Sedykh I. As the propellant during pauses between ignitions is in the conditions of practically full absence of gravitation and can freely move over entire tank volume taking practically any spatial position, to ensure main engine guaranteed ignition the necessity arises to move the propellant into pre-start position. Features of the development testing of the propellants deposition inside the tanks of launch vehicles Автори: Sedykh I.
Not found: container
]]>

5. Features of the development testing of the propellants deposition inside the tanks of launch vehicles

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (2); 35-41

DOI: https://doi.org/10.33136/stma2019.02.035

Language: Russian

Annotation: When accomplishing the task of spacecraft orbital injection, the necessity arises of main engine multiple ignitions and consequently, long pauses between the ignitions are possible. As the propellant during pauses between ignitions is in the conditions of practically full absence of gravitation and can freely move over entire tank volume taking practically any spatial position, to ensure main engine guaranteed ignition the necessity arises to move the propellant into pre-start position. The propellant is moved to the supply lines by way of creating longitudinal acceleration which is done using inertial continuity ensuring means (thrusters). The time of full liquid displacement from one position into another is the most important parameter having an impact on propellant amount in the tanks and accordingly, on power characteristics of a stage. The theoretical calculations of hydrodynamic processes are connected with considerable mathematical difficulties caused by complexity of solving hydrodynamic problems of determination of liquid flowing with free surface taking into account surface tension of the liquid and many other geometrical, kinematic, and dynamic factors. Therefore, the most reliable data from solving these problems are currently obtained only on model hydrodynamic stands where it is possible to model liquid behavior in tanks in the conditions of variable gravitation. The paper presents the authors-developed procedure of calculating the full time required for propellant components deposition during rocket’s apogee stage flight and the procedure of selecting the modeling parameters (scale, time, and acсeleration) to ensure development testing in the conditions of limited test stand base. The use of the proposed procedure allows (in initial phase of launch vehicle development) determining the full time required to perform deposition with sufficient accuracy and thus optimizing the propellant mass required for operation of inertial continuity ensuring system, which in its turn, will allow increasing the payload mass to be injected.

Key words: propellant deposition, zero-gravity stand, hydrodynamic similarity, damping and separation

Bibliography:
1. Masica W. J., Petrash D. A. Motion of liquid-vapor interface in response to imposed acceleration. Lewis Research Center. NASA TN D-3005. 1965. 24 р.
2. Masica W. J., Petrash D. A., Otto E. W. Hydrostatic stability of liquid-vapor interface in the gravitational field. Lewis Research Center. NASA TN D-2267. 1964. 18 р.
3. Glyuk D. F., Jill D. P. Hydromechanika podachi topliva v dvigatelnoy systeme kosmicheskogo korablya v sostoyanii nevesomosti. Konstruirovanie i technologiya machinostroeniya. 1965. T. 87. S. 1–10.
4. Birdge G. V., Blackmon J. B. et al. Analiticheskiy podkhod k proektirovaniyusystem povtornoy zapravke na orbite. Sbornik perevodov. GONTI-4. 1970. S. 56–111.
5. Woss D. E., Hattis P. D. Problema upravleniya istecheniem v processe zapravki bakov Space Shuttle zhidkimi komponentami na okolozemnoy orbite. Astronavtika i raketodynamika. 1986. № 7. S. 8–19.
6. Sedykh I. V., Smolenskiy D. E. Eksperimentalnoe podtverzhdenie rabotosposobnosti capillyrnogo zabornogo ustroistva pri otdelenii kosmicheskogo apparata. Mekhanika gyroskopicheskikh system. 2017. № 33. S. 105–114.
7. Sedykh I. V., Smolenskiy D. E., Nazarenko D. S. Eksperimentalnoe podtverzhdenie rabotosposobnosti capillyrnogo zabornogo ustroistva (setchatogo razdelitelya) pri programmnom razvorote. Visn. Dnipr. un-tu. Ser.: Raketno-kosmichna tekhnika. 2018. Vyp. 21. T. 26. S. 112–119.
8. Garkusha V. A., Shevchenko B. A., Rada N. A., Prilukova L. V. Eksperimentalnaya otrabotka sredstv obespecheniya sploshnosti komponentov topliva kosmicheskykh letatelnykh apparatov: Obzor po materialam otkrytoy zarubezhnoy pechati za 1963–1983. Seria UP. № 235. GONTI-3. 1984. 38 s.
Downloads: 46
Abstract views: 
689
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Matawan; Baltimore; Plano; Dublin; Ashburn; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Boardman; Ashburn; Seattle; Tappahannock; San Mateo; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn28
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Ukraine Dnipro; Dnipro2
Philippines1
Finland Helsinki1
Canada Monreale1
France Strasbourg1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
5.2.2019 Features of the development testing of the propellants deposition inside the tanks of launch vehicles
5.2.2019 Features of the development testing of the propellants deposition inside the tanks of launch vehicles
5.2.2019 Features of the development testing of the propellants deposition inside the tanks of launch vehicles

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>