Search Results for “turbine” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Sat, 11 Oct 2025 20:06:52 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “turbine” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 2.1.2025 Justification of the parameters of a vertical screw conveyor for transporting lunar regolith https://journal.yuzhnoye.com/content_2025_1-en/annot_2_1_2025-en/ Wed, 27 Aug 2025 12:20:10 +0000 https://journal.yuzhnoye.com/?page_id=35479
Development of a sustainable portable Archimedes screw turbine for hydropower generation. Efficiency enhancement in Archimedes screw turbine by varying different input parameters – An experimental study.
]]>

2. Justification of the parameters of a vertical screw conveyor for transporting lunar regolith

Organization:

National Academy of Sciences of Ukraine, M. S. Poliakov Institute of geotechnical mechanics2, Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1

Page: Kosm. teh. Raket. vooruž. 2025 (1); 11-18

DOI: https://doi.org/10.33136/stma2025.01.011

Language: Ukrainian

Annotation: This paper aims to develop a scientifi cally grounded method for determining the key technical parameters of a vertical screw conveyor–specifi cally, throughput and the power requirement of the driving electric motor. These parameters depend on the density and porosity of the transported material, the screw’s geometric characteristics, and the gravitational fi eld at the transportation site. The study also explores potential design constraints when handling lunar regolith. To achieve this objective, the authors applied established equations for screw conveyor parameter calculations, fundamental principles of bulk material mechanics, key electrodynamic equations for asynchronous motors, and specifi c behavioral characteristics of bulk materials during vertical screw transport, which were also investigated experimentally. As a result, a novel method is proposed for calculating the technical specifi cations of a screw conveyor under lunar conditions, based on known geometric parameters, fi lling ratio, and electric motor characteristics. The study further examines the infl uence of the conveyor’s fi lling ratio on performance and identifi es geometric limitations imposed by the operational boundaries of the selected motor. Acceptable values for transport height, screw diameter, other geometric parameters, and achievable fi lling ratios for a given motor are determined. The study substantiates that vertical screw conveyors are the most promising solution for lunar regolith transport. These systems are compact, adaptable, capable of integration within tubes or underground installations, operate continuously, function autonomously, and can be powered by solar energy.

Key words: Moon, regolith, screw conveyor, electric motor, throughput, power

Bibliography:

1. Semеnenko Ye. V., Osadchaia N. V. Traditsionnyie i netraditsionnyie vidy energii, a takzhe kosmicheskiie poleznyie iskopaiemyie v okolozemnom prostranstve.
Nauchno-prakticheskaia konferentsiia «Sovremennyie raschetno-eksperimentalnyie metody opredeleniia kharakteristik raketno-kosmicheskoi techniki». m. Dnipro, 10 12 hrudnia 2019 r. S. 62 – 63. https://doi.org/10.1016/j.repl.2019.01.038

2. Jolliff B. L., Wieczorek M. A., Shearer C. K., Neal C. R. New Views of the Moon. Reviews in mineralogy and geochemistry. 2006. Vol. 60. 721 p. DOI: https://doi.org/10.2138/rmg.2006.60.0

3. Robert E. Grimm. Geophysical constaints on the lunar Procellarum KREEP Terrane. Journal of Geophysical Research: Planets. 2013. Vol. 118, Issue 4. P. 768-778. URL: https://agupubs-onlinelibrary-wiley-com.translate. goog/doi/10.1029/2012JE004114?_x_tr_sl=en&_x_tr_tl=ru&_x_tr_hl=ru&_x_tr_pto=sc
https://doi.org/10.1029/2012JE004114

4. Moon Village Association. URL: https://moon-villageassociation.org/about/

5. GLOBAL MOON VILLAGE. URL: https://space-architect.org/portfolio-item/ global-moon-village

6. Pustovharov А. А., Osynovyy G. G. Kontseptsiia shluzovogo modulia misiachnoi bazy. ХХV Mizhnarodna molodizhna naukovo-praktychna konferentsiia «Ludyna i kosmos».
Zbirnyk tez, NTSAOM, Dnipro, 2023. S. 86 – 87.

7. Berdnik A. I., Kaliapin M. D., Lysenko Yu. A., Bugaienko T. K. Mnogorazovyi lunnyi lender. Kosmichna nauka i technologiia. 2019. T. 25. № 5. S. 3-10.
https://doi.org/10.15407/knit2019.05.003

8. Semenenko P. V. , Groshelev D. G., Osinovyy G. G., Semenenko Ye. V., Osadchaia N. V. Sposoby transportirovki poleznykh iskopaiemykh ot mesta ikh dobychi k mestu pererabotki v lunnykh usloviiakh. XVII konferentsiia molodykh vchenykh «Heotekhnichni problemy rozrobky rodovyshch». m. Dnipro, 24 zhovtnia 2019 r. S 7.

9. Komatsu pobuduie ekskavator dlia roboty na Misiatsi. URL: https://www.autocentre.ua/ua/ news/concept/komatsu-postroit-ekskavator-dlya-raboty-na-lune-1380272.html.

10. Help NASA Design a Robot to Dig on the Moon. URL: https://www.nasa.gov/directorates/ stmd/help-nasa-design-a-robot-to-dig-on-the-moon/

11. Semenenko Ye. V. , Semenenko P. V., Hroshelev D. H. Tekhnolohichni parametry shneka dlia transportuvannia misiachnoho reholitu. Zbirka tez ХХVІ Mizhnarodnoi molodizhnoi naukovo-praktychnoi konferentsii «Ludyna i kosmos», Dnipro, 17 – 19 kvitnia, 2024. S. 132 – 133.

12. Semenenko Ye. V. , Biliaiev M. M., Semenenko P. V. Rozrakhunok parametriv systemy transportuvannia misiachnogo reholitu. Space Technology. Missile Armaments. Zb.
nauk.-tekhn. st. 2024. Vyp. 1. Dnipro: DP «KB «Pivdenne». S. 93 – 101.
https://doi.org/10.33136/stma2024.01.093

13. Bezruchko K. A. Review of potential sources for obtaining energy carriers and mineral raw materials in outer space. Heotekhnichna mekhanika. 2022. № 163. S.140-154. https://doi.org/10.15407/geotm2022.163.140

14. Nouman Khan, Muhammad Kaleem Sarwar, Muhammad Rashid, Hafiz Kamran Jalil Abbasi, Saif Haider, Muhammad Atiq Ur Rehman Tariq, Abdullah Nadeem, Muhammad Ahmad
Zulfiqar, Ali Salem, Nadhir Al-Ansari, Abdelaziz M. Okasha, Ahmed Z. Dewidar&Mohamed A. Mattar. Development of a sustainable portable Archimedes screw turbine for hydropower generation. Scientific Reports. 2025. Vol. 15. Issue 1. DOI
https://doi.org/10.1038/s41598-025-90634-8

15. Kumar Thakur N., Thakur R., Kashyap K., Goel B. Efficiency enhancement in Archimedes screw turbine by varying different input parameters – An experimental study.
Materials Today: Proceedings. 2022. Vol. 52, Part 3. P. 1161-1167.
https://doi.org/10.1016/j.matpr.2021.11.020

16. Kozyn A., Lubitz W. D. A power loss model for Archimedes screw generators. Renewable Energy. 2017, Vol. 108. P. 260-273.
https://doi.org/10.1016/j.renene.2017.02.062

17. Kulykivskii V. L., Paliichuk V. K., Borovskyi V. M. Doslidzhennia travmuvannia zerna hvyntovym konveierom. Konstruiuvannia, vyrobnytstvo ta ekspluatatsia silskohospodarskykh mashyn. 2016. Vyp. 46. S. 160-165.
https://doi.org/10.3233/EPL-46204

18. Lubin M. V., Tokarchuk O. A., Yaropud V. M. Osoblyvosti roboty krutopokhylenykh hvyntovykh transporteriv pry peremishchenni zernovoi produktsii. Tekhnika, enerhetyka, transport. APK. 216. № 3 (95). S. 235-240.

19. Bulkhakov B. M., Adamchuk V. V., Nadykto V. T., Trokhaniak O. M. Teoretychne obgruntuvannia parametriv hnuchkoho hvyntovoho konveiera dlia transportuvannia zernovykh materialiv. Visnyk ahrarnoi nauki. 2023. № 4 (841). S. 59 – 66.

20. Semenenko Ye. V. Nauchnyie osnovy tekhnologii gidromekhanizatsii otkrytoi razrabotki titan-tsyrkonovykh rossypei. Kiev: Naukova dumka, 2011. 232 s.

Downloads: 38
Abstract views: 
552
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Ashburn; Ashburn; Detroit; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; El Monte; Ashburn; San Mateo; San Mateo; San Mateo; San Mateo; Ashburn; Pompano Beach; Lakeside; Lakeside19
Ukraine Kyiv; Kyiv; Kyiv; Kremenchuk; Kremenchuk; Kremenchuk6
Vietnam; Bien Hoa; Hanoi3
Singapore Singapore; Singapore2
Germany Falkenstein; Frankfurt am Main2
Unknown Ryde1
Romania1
France Paris1
China Pekin1
Poland Poznan1
Slovakia1
2.1.2025 Justification of the parameters of a vertical screw conveyor for transporting lunar regolith
2.1.2025 Justification of the parameters of a vertical screw conveyor for transporting lunar regolith
2.1.2025 Justification of the parameters of a vertical screw conveyor for transporting lunar regolith

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff https://journal.yuzhnoye.com/content_2020_1-en/annot_3_1_2020-en/ Fri, 29 Sep 2023 18:22:49 +0000 https://journal.yuzhnoye.com/?page_id=32230
Stress and deformation of rocket gas turbine disc under different loads using finite element modeling.
]]>

3. Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; Pidgorny A. Intsitute of Mechanical Engineering Problems, Kharkiv, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 26-33

DOI: https://doi.org/10.33136/stma2020.01.026

Language: Russian

Annotation: The study of thermal strength of the hold-down bay is considered. The hold-down bay is a cylindrical shell with the load-bearing elements as the standing supports. The case of the hold-down bay consists of the following structural elements: four standing supports and the compound cylindrical shell with two frames along the top and bottom joints. The purpose of this study was the development of a general approach for the thermal strength calculation of the hold-down bay. This approach includes two parts. Firstly, the unsteady heat fields on the hold-down bay surface are calculated by means of the semi-empirical method, which is based on the simulated results of the combustion product flow of the main propulsion system. The calculation is provided by using Solid Works software. Then the unsteady stress-strain behavior of the hold-down bay is calculated, taking into consideration the plastoelastic deformations. The material strain bilinear diagram is used. The finiteelement method is applied to the stress-strain behavior calculation by using NASTRAN software. The thermal field is assumed to be constant throughout the shell thickness. As a result of the numerical simulation the following conclusions are made. The entire part of the hold-down bay, which is blown by rocket exhaust jet, is under stress-strain behavior. The stresses of the top frame and the shell are overridden the breaking strength that caused structural failure. The structure of the hold-down bay, which is considered in the paper, is unappropriated to be reusable. The hold-down bay should be reconstructed by reinforcement in order to provide its reusability.

Key words: stress-strain behavior, finite-element method, plastoelastic deformations, breaking strength, reusability

Bibliography:

1. Elhefny A., Liang G. Stress and deformation of rocket gas turbine disc under different loads using finite element modeling. Propulsion and Power Research. 2013. № 2. P. 38–49. https://doi.org/10.1016/j.jppr.2013.01.002
2. Perakis N., Haidn O. J. Inverse heat transfer method applied to capacitively cooled rocket thrust chambers. International Journal of Heat and Mass Transfer. 2019. № 131. P. 150–166. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.048
3. Yilmaz N., Vigil F., Height J., et. al. Rocket motor exhaust thermal environment characterization. Measurement. 2018. № 122. P. 312–319. https://doi.org/10.1016/j.measurement.2018.03.039
4. Jafari M. Thermal stress analysis of orthotropic plate containing a rectangular hole using complex variable method. European Journal of Mechanics A /Solids. 2019. № 73. P. 212–223. https://doi.org/10.1016/j.euromechsol.2018.08.001
5. Song J., Sun B. Thermal-structural analysis of regeneratively cooled thrust chamber wall in reusable LOX / Methane rocket engines. Chinese Journal of Aeronautics. 2017. № 30. P. 1043–1053.
6. Ramanjaneyulu V., Murthy V. B., Mohan R. C., Raju Ch. N. Analysis of composite rocket motor case using finite element method. Materials Today: Proceedings. 2018. № 5. P. 4920–4929.
7. Xu F., Abdelmoula R., Potier-Ferry M. On the buckling and post-buckling of core-shell cylinders under thermal loading. International Journal of Solids and Structures. 2017. № 126–127. P. 17–36.
8. Wang Z., Han Q., Nash D. H., et. al. Thermal buckling of cylindrical shell with temperature-dependent material properties: Conventional theoretical solution and new numerical method. Mechanics Research Communications. 2018. № 92. P. 74–80.
9. Duc N. D. Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear de-formation shell theory. European Journal of Mechanics A /Solids. 2016. № 58. P. 10–30.
10. Trabelsi S., Frikha A., Zghal S., Dammak F. A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Engineering Structures. 2019. № 178. P. 444–459.
11. Trinh M. C., Kim S. E. Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment. Aerospace Science and Technology. 2019. № 84. P. 672–685.
12. Лойцянский Л. Г. Механика жидкости и газа. М., 2003. 840 с.
13. Launder B. E., Sharma B. I. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. International Journal of Heat and Mass Transfer. 1974. № 1. P. 131–138.
14. Михеев М. А., Михеева И. М. Основы теплопередачи. М., 1977. 345 с.
15. Малинин Н. Н. Прикладная теория пластичности и ползучести. М., 1968. 400 с.

Downloads: 129
Abstract views: 
3008
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Los Angeles; Boydton; Plano; Miami; Ashburn; Columbus; Columbus; Columbus; Detroit; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; El Monte; El Monte; Ashburn; Ashburn; Seattle; Seattle; Seattle; Ashburn; Ashburn; Ashburn; Ashburn; Ashburn; Houston; Houston; Boardman; Mountain View; Mountain View; Seattle; Portland; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn; Ashburn; Ashburn; Ashburn; Ashburn; Pompano Beach; Lakeside; Lakeside; Seattle74
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore18
Canada Toronto; Toronto; Toronto; Toronto; Toronto; Toronto; Toronto; Monreale8
Germany Falkenstein; Falkenstein; Frankfurt am Main;;; Falkenstein6
Ukraine Dnipro; Odessa; Kyiv; Dnipro4
China Shanghai;; Ningbo3
Vietnam; Ho Chi Minh City2
Netherlands Amsterdam; Amsterdam2
Brazil São Paulo; Taubate2
France Paris; Paris2
Unknown Hong Kong;2
Romania Voluntari1
Great Britain London1
Mongolia1
Finland Helsinki1
Slovenia Ljubljana1
Poland Gdańsk1
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff
3.1.2020 Analysis of the unsteady stress-strain behavior of the launch vehicle hold-down bay at liftoff

Keywords cloud

]]>
4.2.2018 Turbopump Units of Rocket Engines Developed by DO-4 https://journal.yuzhnoye.com/content_2018_2-en/annot_4_2_2018-en/ Thu, 07 Sep 2023 10:54:18 +0000 https://journal.yuzhnoye.com/?page_id=30735
Key words: liquid rocket engine , turbopump unit , pump , turbine Bibliography: 1. liquid rocket engine , turbopump unit , pump , turbine .
]]>

4. Turbopump Units of Rocket Engines Developed by DO-4

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 25-33

DOI: https://doi.org/10.33136/stma2018.02.025

Language: Russian

Annotation: The article presents the experience of creating LRE turbopump units by the Rocket Engines Design Office (DO-4) at Yuzhnoye SDO. The best known turbopump units designs developed by DO are described. Both earlier developments of DO and the turbopump unit being now in final testing phase are considered. The design evolution of both separate assemblies and of entire unit is shown. The design evolution allowed increasing the unit’s lifetime dozens times. For example, the lifetime of the first turbopump units developed by DO did not exceed 150 s. Currently, the DO has in stock the engines with lifetime of ~19000 s. The information is presented on the problems that the designers faced in testing the turbopumop unit and the ways to solve them. The unique achievement are presented. At present, there are no analogs of some units in the world. The article presents the information on the latest achievements of DO, such as the face seal on pump vane discs whose use fully excludes unwanted leaks. Having analyzed the data presented, one may conclude that the Rocket Engines Design Office and Yuzhnoye SDO as a whole accumulated sufficient experience and knowledge allowing solving any problems that may arise when developing a new LRE turbopump unit, and successfully operating LRE with turbopump units, including those in the engines with generator gas afterburning created in recent years testify to a great value of accumulated experience.

Key words: liquid rocket engine, turbopump unit, pump, turbine

Bibliography:
1. Centrifugal Pump: Patent 1021816 А, USSR: MPK 7F04D1/00, 7F04D29/04 / Ivanov Y. N., Steblovtsev A. A.; Applicant and patent holder Yuzhnoye State Design Office. No. 3313928/25-06; claimed 06.07.1983, published 07.06.1984.
2. Auger-Centrifugal Pump: Patent 73783, Ukraine: MPK 7F04D29/66 / Ivanov Y. N., Pilipenko V. V., Zadontsev V. A., Drozd V. A.; Applicant and patent holder Yuzhnoye State Design Office. No. 2003021144; claimed 07.02.2003, published 15.09.2005.
3. End Seal. Patent 61082, Ukraine: MPK 7F16J15/34 / Ivanov Y. N., Chetverikova I. M.; Applicant and patent holder Yuzhnoye State Design Office. No. 990311536; claimed 19.03.1999, published 17.11.2003.
4. End Seal of High-Speed Shaft: Patent 48248, Ukraine: MPK F16J15/54, F04D29/10 / Ivanov Y. N., Steblovtsev A. A., Gameberger Y. A., Peredarenko V. M.; Applicant and patent holder Yuzhnoye State Design Office. No. 99031442; claimed 16.03.1999, published 15.08.2002.
5. Centrifugal Pump. Patent 84023, Ukraine: MPK F04D1/00 / Ivanov Y. N., Ivchenko L. F., Deshevykh S. A., Dan’kevich D. S.; Applicant and patent holder Yuzhnoye State Design Office. No. а200601399; claimed 13.02.2006, published 10.09.2008.
Downloads: 127
Abstract views: 
957
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Ashburn; San Antonio; Matawan; Baltimore; North Bergen; Plano; Dublin; Columbus; Columbus; Ashburn; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; El Monte; El Monte; El Monte; Ashburn; Ashburn; Ashburn; Seattle; Ashburn; Ashburn; Ashburn; Quinton; Houston; Houston; Ashburn; Ashburn; Ashburn; Ashburn; Seattle; Seattle; Tappahannock; Portland; Portland; San Mateo; San Mateo; San Mateo; San Mateo; San Mateo; San Mateo; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Boardman; Ashburn; Ashburn; Ashburn; Pompano Beach; Mountain View; Lakeside; Lakeside; Lakeside80
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore12
Canada Toronto; Toronto; Toronto; Toronto; Toronto; Monreale; Monreale7
Unknown; Hong Kong; Hong Kong; Hong Kong;5
China; Yongjiawan; Chongqing; Pekin4
Germany Falkenstein; Falkenstein;; Falkenstein4
Ukraine Dnipro; Dnipro; Odessa3
Netherlands Amsterdam; Amsterdam2
Brazil Juiz de Fora1
Vietnam Haiphong1
The Republic of Korea Daejeon1
Argentina1
Malaysia1
Finland Helsinki1
France1
Latvia Riga1
Romania Voluntari1
Costa Rica1
4.2.2018 Turbopump Units of Rocket Engines Developed by DO-4
4.2.2018 Turbopump Units of Rocket Engines Developed by DO-4
4.2.2018 Turbopump Units of Rocket Engines Developed by DO-4

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>