Search Results for “vector” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Fri, 19 Apr 2024 06:44:26 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “vector” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 23.2.2018 On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body https://journal.yuzhnoye.com/content_2018_2-en/annot_23_2_2018-en/ Thu, 07 Sep 2023 12:35:25 +0000 https://journal.yuzhnoye.com/?page_id=30813
Under the accelerated motion of the body reflection gains the acceleration vector dt d а   In this case reflection manifests itself in the initiation of the beam of polarization vector under study   Value of the polarization vector equals the value of acceleration vector with negative sign. As a result metric lines of the configuration space under conditions of beam acceleration become polarized lines, generating vector information inertia field. And polarization vector is directed to the center of the Earth and equals acceleration vector of the free fall with the same sign. Interaction of the body with specific mass with the vector information field of the Earth generates the physical force field of gravity. Key words: configuration space , modified method of sections , information and vacuum environment , metric lines , property of space reflection , polarization , scalar information field , vector information field Bibliography: 1.
]]>

23. On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 190-206

DOI: https://doi.org/10.33136/stma2018.02.190

Language: Russian

Annotation: Presented is the theoretical justification of the phenomenon of the inertia initiation under accelerated motion of the body, and gravity origin in the circumterrestrial space. There is no description of the physical nature of the inertia and gravity in the scientific publications. In the phenomenological approach under study, allowing for reflection properties of the space, earlier unknown interdependent information-physical link of the body and its mechanical particles with space under the accelerated motion was determined in the state of rest of the gravitation field as well as in the state of weightlessness. Alongside with the environment, eigenspace, i.e. configuration space of the body and corresponding metric lines of the space are considered. Idea of metric lines agrees with the concept of F. Wilczek, the American physicist, Nobel-Prize laureate, on the existence of the unobservable metric field in the real space. Solution of the problem rests on the example of the cantilever beam and mathematical model of the information reflection process, which for the first time takes into consideration previously unknown property of space reflection. Under the accelerated motion of the body reflection gains the acceleration vector dt d а     . In this case reflection manifests itself in the initiation of the beam of polarization vector under study   ~ in every point of the configuration space and is expressed as     ~ а . Value of the polarization vector equals the value of acceleration vector with negative sign. As a result metric lines of the configuration space under conditions of beam acceleration become polarized lines, generating vector information inertia field. Interaction of mechanical particles with the information inertia field in the configuration space generates physical inertia field of force, providing the real inertia under accelerated motion of the beam. (Relatively slow motion of bodies is studied as compared to the speed of light). According to the set forth unconventional approach the nature of the earth gravity is conditioned by the polarization of the radial metric lines of the circumterrestrial space. And polarization vector is directed to the center of the Earth and equals acceleration vector of the free fall with the same sign. Interaction of the body with specific mass with the vector information field of the Earth generates the physical force field of gravity. Article deals with the fundamental issues of theoretical physics and other fields of natural science. Materials of the conducted research are regarded as a potential scientific discovery.

Key words: configuration space, modified method of sections, information and vacuum environment, metric lines, property of space reflection, polarization, scalar information field, vector information field

Bibliography:
1. Vilchek F. Fine Physics. Mass, Ester and Unification of World Forces. Collection of publications, 2018. 336 p.
2. Sivukhin D. V. General Course of Physics. Vol. 1. М., 1989. 576 p.
3. Logunov А. А. Lectures on Relativity Theory and Gravitation. Modern Analysis of Problem. М., 1987. 272 p.
4. Feinman R., Layton R., Sands M. Feinman Lectures in Physics. Vol. 1. Modern Natural Science. The Laws of Mechanics. Vol. 2. Space. Time. Motion / Translation from English. М., 1976. 439 p.
5. Mulyar Y. M. On Stability of Compressed Rod. Technical mechanics. Dnepropetrovsk, 2000. No. 2. P. 51-57.
6. Mulyar Y. M., Perlik V. I. On Mathematical Model Representation of Information Field in Loaded Deformed System. Information and Telecommunication Technologies. М., 2012. No. 15. P. 61-74.
7. Vernadsky V. I. Reflections of Natural Scientist. Space and Time in Inanimate and Animate Nature. М., 1975. 173 p.
8. Ursul A. D. Reflection and Information. М., 1973. 231 p.
9. Vladimirov Y. S. Metaphysics. М., 2002. 550 p.
10. Author’s Certificate 181066 USSR. Energy Absorber / А. М. Buyanovsky, Y. М. Mulyar. Discoveries. Inventions. 1993. No. 15. P. 101.
11. Cacku M. Physics of Impossible / Translation from English. М., 2016. 456 p.
12. Proceedings of the International Scientific Conference “Problems of Ideality in Science”. М., 2001. 352 p.
13. Mulyar Y. M., Fyodorov V. M., Tryasuchev L. M. On the Impact of Initial Imperfections on Rod Stability Loss in Conditions of Axial Compression. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2017. Issue 1 (113). P. 48-58.
14. Dyomin A.I. Paradigm of Dualism. Space – Time, information – energy. М., 2007. 320 p.
15. Lisin A.I. Paradigm of Dualism. Ide: Reality of ideality. Part 1. М., 1999. 382 p.
Downloads: 38
Abstract views: 
1281
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore; Boydton; Plano; Miami; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Columbus; Columbus; Ashburn; Seattle; Seattle; Portland; San Mateo; Des Moines; Boardman; Ashburn; Seattle22
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Unknown;2
India1
Finland Helsinki1
France1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
23.2.2018 On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body
23.2.2018 On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body
23.2.2018 On the Role of Space in Origination of Inertia Force Field, Earth Gravity Force Field and Zero Gravity of Material Body

Keywords cloud

]]>
10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests https://journal.yuzhnoye.com/content_2018_2-en/annot_10_2_2018-en/ Thu, 07 Sep 2023 11:29:45 +0000 https://journal.yuzhnoye.com/?page_id=30766
Thrust-Vectoring Nozzle Performance Mode-ling.
]]>

10. Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 83-93

DOI: https://doi.org/10.33136/stma2018.02.083

Language: Russian

Annotation: At Yuzhnoye State Design Office, the Cyclone-4 launch vehicle 3rd stage engine has been developed and is under testing. For adjustment of the engine and test bench systems, in the first firing tests the radiation-cooled nozzle extension was replaced with a steel water-cooled one. It was planned to start the engine with water-cooled nozzle extension without vacuumizing and without gad dynamic pipe, which conditioned operation with flow separation at the output edge of water-cooled nozzle extension. Therefore, the calculation of flow in the nozzle with water-cooled extension, flow separation place, and thermal load on watercooled nozzle extension during operation in ground conditions is an important task. Selection of turbulent flow model has a noticeable impact on prediction of flow characteristics. The gas dynamic analysis of the nozzle with water-cooled extension showed the importance of using the turbulent flow model k-ω SST for the flows with internal separation of boundary layer and with flow separation at nozzle section. The use the flow model k-ω SST for calculation of nozzle with flow separation or with internal transitional layer allows adequately describing the flow pattern, though, as the comparison with experimental data showed, this model predicts later flow separation from the wall than that obtained in the tests. The calculation allows obtaining a temperature profile of the wall and providing the recommendations for selection of pressure measurement place in the nozzle extension for the purpose of reducing sensors indication error. With consideration for the special nature of the nozzle extension wall temperature field, the cooling mode was selected. The tests of RD861K engine nozzle with water-cooled extension allow speaking about its successful use as a required element for testing engine start and operation in ground conditions without additional test bench equipment.

Key words: turbulent flow, flow separation, cooling, technological extension

Bibliography:
1. Massiet P., Rocheque E. Experimental Investigation of Exhaust Diffusors for Rocket Engines. Investigation of Liquid Rocket Engines. М., 1964. P. 96-109.
2. Mezhevov A. V., Skoromnov V. I., Kozlov A. V. et al. Introduction of Radiation Cooling Nozzle Head of Made of Carbon-Carbon Composite Material on DM-SL Upper Stage 11D58M Main Engine. News of Samara Aerospace University. No. 2 (10). 2006. P. 260-264.
3. Fluent. Software Package, Ver. 6.2.16, Fluent Inc., Lebanon, NH, 2004.
4. Wilcox D. C. Turbulence Modeling for CFD. DCW Industries, Inc. La Canada, California, 1998. 460 р.
5. Andersen D., Tannehill J., Platcher R. Computational Hydromechanics and Heat Exchange: in 2 volumes М., 1990. 384 p.
6. Rodriguez C. G., Culter, A. D. Numerical Analysis of the SCHOLAR Supersonic Combustor, NASA-CR-2003-212689. 2003. 36 р.
7. Rajasekaran A., Babu V. Numerical Simulation of Three-dimensional Reacting Flow in a Model Supersonic Combustor. Journal of Propulsion and Power. Vol. 22. No. 4. 2006. Р. 820-827. https://doi.org/10.2514/1.14952
8. Spalart P., Allmaras S. A one-equation turbulence model for aerodynamic flows: Technical Report. American Institute of Aero-nautics and Astronautics. AIAA-92-0439. 1992. Р. 5-21. https://doi.org/10.2514/6.1992-439
9. Launder B. E., Spalding D. B. Lectures in Mathematical Models of Turbulence. London, 1972. Р. 157-162.
10. Rajasekaran A., Babu V. Numerical Simulation of Three-dimensional Reacting Flow in a Model Supersonic Combustor. Journal of Propulsion and Power. Vol. 22. No. 4. 2006. Р. 820-827. https://doi.org/10.2514/1.14952
11. Ten-See Wang. Multidimensional Unstructured Grid Liquid Rocket-Engine Nozzle Performance and Heat Transfer Analysis. Journal of Propulsion and Power. Vol. 22. No. 1. 2006. 21 р. https://doi.org/10.2514/1.14699
12. Hyun Ko, Woong-Sup Yoon. Performance Analysis of Secondary Gas Injection into a Conical Rocket Nozzle. Journal of Propulsion and Power. Vol. 18, No. 3. 2002. Р. 585-591. https://doi.org/10.2514/2.5972
13. Wilson E. A., Adler D., Bar-Yoseph P. Thrust-Vectoring Nozzle Performance Mode-ling. Journal of Propulsion and Power. Vol. 19, No. 1. 2003. Р. 39-47. https://doi.org/10.2514/2.6100
14. Gross A., Weiland C. Numerical Simulation of Hot Gas Nozzle Flows. Journal of Propulsion and Power. Vol. 20, No. 5. 2004. Р. 879-891. https://doi.org/10.2514/1.5001
15. Gross A., Weiland C. Numerical Simulation of Separated Cold Gas Nozzle Flows. Journal of Propulsion and Power. Vol. 20, No. 3. 2004. Р. 509-519. https://doi.org/10.2514/1.2714
16. Deck S., Guillen P. Numerical Simulation of Side Loads in an Ideal Truncated Nozzle. Journal of Propulsion and Power. Vol. 18, No. 2. 2002. Р. 261-269. https://doi.org/10.2514/2.5965
17. Östlund J., Damgaard T., Frey M. Side-Load Phenomena in Highly Overexpanded Rocket Nozzle. Journal of Propulsion and Power. Vol. 20, No. 4. 2004. Р. 695-704. https://doi.org/10.2514/1.3059
18. Goldberg U. C. Separated Flow Treatment with a New Turbulence Model. AIAA Journal. Vol. 24, No. 10. 1986. Р. 1711-1713. https://doi.org/10.2514/3.9509
19. Golovin V.S., Kolchugin B.A., Labuntsov D.A. Experimental Investigation of Heat Exchange and Critical Heat Loads at Water Boiling in Free Motion Conditions. 1963. Vol. 6, No 2. p. 3-7.
20. Mikheyev М. А., Mikheyeva I. M. Heat-Transfer Principles. 2nd edition stereotyped. М., 1977. 343 p.
21. Kutateladze S. S., Leontyev A. I. Heat-Mass Exchange and Friction in Turbulent Boundary Layer. М., 1972. 341 p.
Downloads: 38
Abstract views: 
1256
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Matawan; Baltimore; North Bergen; Plano; Phoenix; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Columbus; Columbus; Ashburn; Seattle; Tappahannock; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn23
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Belgium Brussels1
Finland Helsinki1
Unknown1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests
10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests
10.2.2018 Calculation of Gas Flow in High-Altitude Engine Nozzle and Experience of Using Water-Cooled Nozzle Head during Tests

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
1.2.2018 Design Office of Liquid Rocket Engines is 60 https://journal.yuzhnoye.com/content_2018_2-en/annot_1_2_2018-en/ Thu, 07 Sep 2023 08:19:39 +0000 https://journal.yuzhnoye.com/?page_id=30723
Among them we should mention the RD858 and RD859 engines for the soviet lunar take-off-and –landing module of Block E, the unique RD857 and RD862 engines with afterburning of reducing generator gas and gas dynamic method of thrust vector control, the RD866 multifunctional engine of space tug ensuring multiple ignition in flight, and many others.
]]>

1. Design Office of Liquid Rocket Engines is 60

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (2); 3-7

DOI: https://doi.org/10.33136/stma2018.02.003

Language: Russian

Annotation: During 60 years of existence of specialized Liquid Rocket Engines Design Office – DO-4 as a part of Yuzhnoye Design Office, extensive experience was accumulated in development of liquid rocket engines of various purpose on storable and cryogenic propellant components. The required test benches and production base were created. When developing the engines, the DO-4 specialists widely use the experience accumulated during manufacturing and testing of the engines developed by the other design offices for Yuzhnoye SDO LVs that were manufactured by SE PA Yuzhny Machine-Building Plant and tested at Yuzhnoye SDO’s and Plant’s test benches. Along with the conventional ones, new original engine designs were developed to achieve high energy-mass characteristics, reliability and quality. Among them we should mention the RD858 and RD859 engines for the soviet lunar take-off-and –landing module of Block E, the unique RD857 and RD862 engines with afterburning of reducing generator gas and gas dynamic method of thrust vector control, the RD866 multifunctional engine of space tug ensuring multiple ignition in flight, and many others. At present, Yuzhnoye SDO jointly with SE PA Yuzhny Machine-Building Plant deliver the engine for the European Vega LV forth stage propulsion system under the contract with Avio company (Italy). Based on Yuzhnoye SDO–created engines, propulsions systems for ballistic missiles and space rockets that are unique by their characteristics and scope of functions, the engines, propulsions systems for spacecraft, LV upper stages and transfer orbit stages can be developed in short terms and at minimal costs.

Key words: liquid rocket engine, developed engines, testing, Yuzhnoye SDO, accumulated experience

Bibliography:
1. Liquid Rocket Engines, Propulsion Systems, Onboard Power Sources Developed by Propulsion Systems Design Office of Yuzhnoye SDO / Under scientific editorship of S. N. Konyukhov, Academician of NAS of Ukraine, V. N. Shnyakin, Candidate of Engineering Science. Dnepropetrovsk, 2008. 466 p.
2. Shnyakin V. N., Shulga V. A., Dibrivny A. V. Possibilities of Creating New LRE Based on Mature Technologies. Space Technology. Missile Armaments: Collection of scientific-technical articles. 2011. Issue 2. P. 61-71.
Downloads: 43
Abstract views: 
287
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Matawan; Baltimore; Plano; Columbus; Detroit; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Seattle; Tappahannock; Portland; San Mateo; Des Moines; Boardman; Boardman; Ashburn24
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore7
Unknown;2
Morocco Casablanca1
Indonesia Medan1
Cambodia Phnom Penh1
China Pekin1
Finland Helsinki1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
1.2.2018 Design Office of Liquid Rocket Engines is 60
1.2.2018 Design Office of Liquid Rocket Engines is 60
1.2.2018 Design Office of Liquid Rocket Engines is 60

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
6.1.2018 On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction https://journal.yuzhnoye.com/content_2018_1-en/annot_6_1_2018-en/ Tue, 05 Sep 2023 06:19:12 +0000 https://journal.yuzhnoye.com/?page_id=30454
The analysis is given of measurement vector error due to incompleteness of the sensitive elements set.
]]>

6. On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (1); 31-38

DOI: https://doi.org/10.33136/stma2018.01.031

Language: Russian

Annotation: The paper deals with the options of solving the task of constructing an inertial navigation system in the conditions of considerable g-load and angular velocity in identified direction by method of setting the sensitive elements at some angle to the identified direction, which allows making measurements in it without loss of measurement quality in the other directions. The paper describes the technique of calculating the angle of sensitive elements setting to the identified direction. The scheme of constructing an inertial navigation system with incomplete set of sensitive elements is considered for the cases when in entire operation leg, rotation around the identified direction is executed. The analysis is given of measurement vector error due to incompleteness of the sensitive elements set.

Key words:

Bibliography:
1. Shunkov V. N. Encyclopedia of Rocket Artillery / Under the general editorship of A. E. Taras. Minsk, 2004. 544 p.
2. Shirokorad A. B. Encyclopedia of National Artillery / Under the general editorship of A. E. Taras. Minsk: Harvest, 2000. 1156 p.
3. Pugachyov V. S. et al. Rocket Control System and Flight Dynamics / V. S. Pugachyov, I. E. Kazakov, D. I. Gladkov, L. G. Yevlanov, A. F. Mishakov, V. D. Sedov. М., 1965. 610 p.
4. Branets V. N., Shmyglevsky I. P. Use of Quaternions in Solid Body Orientation Problems. М., 1973. 320 p.
5. Borisova A. Y., Smal’ A. V. Analysis of Developments of Gimballess Inertial Navigation Systems. Engineering News. N. E. Bauman MGTU. No. 05. 2017.
Downloads: 40
Abstract views: 
720
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore;; Plano; Miami; Dublin; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn21
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore10
China Pekin1
Finland Helsinki1
Great Britain London1
France1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
6.1.2018 On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction
6.1.2018 On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction
6.1.2018 On Building of Inertial Navigation System in the Condition of Presence of Considerable g-Load and Angular Velocity in Preferential Direction
]]>
5.1.2018 Experimental Determination of Lateral Force Caused by SRM Thrust Vector Eccentricity and Skew https://journal.yuzhnoye.com/content_2018_1-en/annot_5_1_2018-en/ Tue, 05 Sep 2023 06:16:22 +0000 https://journal.yuzhnoye.com/?page_id=30421
Experimental Determination of Lateral Force Caused by SRM Thrust Vector Eccentricity and Skew Authors: Bezkrovny І. 2018 (1); 27-30 DOI: https://doi.org/10.33136/stma2018.01.027 Language: Ukrainian Annotation: The paper gives reasons for conducting experimental works to determine lateral force caused by eccentricity and skew of SRM thrust vector, considers the configuration of fixed test stand for respective experimental works with vertical position of motor axis and describes the fixed test stand operation principle. (2018) "Experimental Determination of Lateral Force Caused by SRM Thrust Vector Eccentricity and Skew" Космическая техника. "Experimental Determination of Lateral Force Caused by SRM Thrust Vector Eccentricity and Skew" Космическая техника. quot;Experimental Determination of Lateral Force Caused by SRM Thrust Vector Eccentricity and Skew", Космическая техника.
]]>

5. Experimental Determination of Lateral Force Caused by SRM Thrust Vector Eccentricity and Skew

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (1); 27-30

DOI: https://doi.org/10.33136/stma2018.01.027

Language: Ukrainian

Annotation: The paper gives reasons for conducting experimental works to determine lateral force caused by eccentricity and skew of SRM thrust vector, considers the configuration of fixed test stand for respective experimental works with vertical position of motor axis and describes the fixed test stand operation principle.

Key words:

Bibliography:
1. Volkov V. T., Yagodnikov D. A. Investigations and Bench Testing of Solid Rocket Motors. М., 2007. 296 p.
2. Beskrovny I. B., Kirichenko A. S., Balitsky I. P. et al. The Company’s Experience in Designing and Operation of SRM Test Rigs. Space Technology. Missile Armaments: Collected book of scientific-technical articles / Yuzhnoye SDO. Dnepropetrovsk, 2008. Issue 1. P. 119-127.
Downloads: 45
Abstract views: 
1094
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore; Plano; Columbus; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Boardman; Seattle; Seattle; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn23
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore13
Ukraine Dnipro; Odessa2
Finland Helsinki1
Unknown1
India1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
5.1.2018 Experimental Determination of Lateral Force Caused by SRM Thrust Vector Eccentricity and Skew
5.1.2018 Experimental Determination of Lateral Force Caused by SRM Thrust Vector Eccentricity and Skew
5.1.2018 Experimental Determination of Lateral Force Caused by SRM Thrust Vector Eccentricity and Skew
]]>
3.1.2019 Analysis of Spacecraft Control Issues In Early Design Phases https://journal.yuzhnoye.com/content_2019_1-en/annot_3_1_2019-en/ Thu, 25 May 2023 12:09:10 +0000 https://journal.yuzhnoye.com/?page_id=27708
Key words: vector , matrix , dynamic regulator , observability , controllability , stability Bibliography: 1. vector , matrix , dynamic regulator , observability , controllability , stability .
]]>

3. Analysis of Spacecraft Control Issues In Early Design Phases

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 15-20

DOI: https://doi.org/10.33136/stma2019.01.015

Language: Russian

Annotation: Mission control of the orbital space plane is one of the actual and complicated applied problems of the theory of mobile objects control. Dynamic configuration of this plane as an object of control is described by the system of non-linear differential equations of higher order. Research of stability of such system is a difficult problem. However, thanks to known theorems of Lyapunov, often stability of the real system can be estimated by the roots of the characteristic equation of the linearized system. Thereupon the stability analysis in the linear setting is the necessary link in the process of orbital space plane control system development. Among the methods of synthesis of the automatic control linear systems developed to date one can emphasize the trend, which has become widely-spread in the engineering area. According to this trend the issues of synthesis of the dynamic regulator, observability and controllability for the orbital space plane are considered. Procedure of selection of the dynamic regulator parameters at the early phase of development of the control system for the orbital space plane motion about the center of mass is suggested. Observability and controllability of the orbital space plane are considered. It is shown that the considered control system of the orbital space plane is observable and controllable, i.e. it is possible to develop the stable dynamic regulator, which provides the required speed and accuracy of the angular position of the orbital space plane during the orbital flight. Factors selection procedure is offered for the factors being the part of the control laws for the control system actuators.

Key words: vector, matrix, dynamic regulator, observability, controllability, stability

Bibliography:

1. Isenberg Ya. Ye., Sukhorebriy V. G. Proektirovanie sistem stabilizatsii nositeley kosmicheskikh apparatov. M.: Mashinostroenie, 1986. 220 p.
2. Kuzovkov N. T. Modalnoe upravlenie i nabludauschie ustroistva. M.: Mashinostroenie, 1976. 184 p.
3. Krasovskiy N. N. Teoria upravlenia dvizheniem. M.: Nauka, 1968. 475 p.
4. Larson Wiley J. and Wertz James R. (editors). Space mission analysis and design. Published Jointly by Microcosm, Inc. (Torrance, California) Kluwer Academic Publishers (Dordrecht / Boston / London), 1992. 865 p.
5. Sidi Marcel J. Spececraft Dynamics and Control. A Practical Engineering Approach. Israel Aircraft Industries Ltd. and Tel Aviv University. Cambridge University press, 1997. 409 p.

Downloads: 47
Abstract views: 
590
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Matawan; Baltimore; Redmond; Plano; Columbus; Ashburn; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Seattle; Tappahannock; Portland;; San Mateo; Boydton; Boydton; Boydton; Boydton; Boydton; Boydton; Des Moines; Boardman; Boardman; Ashburn28
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore8
Unknown Sidney;2
Romania; Voluntari2
Belgium Brussels1
Finland Helsinki1
France1
Canada Monreale1
Germany Falkenstein1
Netherlands Amsterdam1
Ukraine Dnipro1
3.1.2019 Analysis of Spacecraft Control Issues In Early Design Phases
3.1.2019 Analysis of Spacecraft Control Issues In Early Design Phases
3.1.2019 Analysis of Spacecraft Control Issues In Early Design Phases

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
20.1.2019 Possibilities of Increasing Acting Loads on Hydraulic Actuator Middle Position Lock https://journal.yuzhnoye.com/content_2019_1-en/annot_20_1_2019-en/ Wed, 24 May 2023 16:00:46 +0000 https://journal.yuzhnoye.com/?page_id=27725
The results are presented of experimental check of impact of material of rod with hydraulic actuator piston on contact resistance and load capacity of the middle position lock of thrust vector control system two-channel hydraulic actuator. Key words: thrust vector control system , main engine , tests , rod with piston Bibliography: Full text (PDF) || thrust vector control system , main engine , tests , rod with piston .
]]>

20. Possibilities of Increasing Acting Loads on Hydraulic Actuator Middle Position Lock

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 139-143

DOI: https://doi.org/10.33136/stma2019.01.139

Language: Russian

Annotation: The results of work are described to determine optimal materials for one of the elements of middle position lock to increase load bearing characteristics and contact resistance of the middle position lock. The results are presented of experimental check of impact of material of rod with hydraulic actuator piston on contact resistance and load capacity of the middle position lock of thrust vector control system two-channel hydraulic actuator. As replacer, the 18ХГТ steel was selected allowing (after carbonization and hardening) obtaining in surface layer of material the HRCэ 56-62 hardness with plastic core, instead of HRCэ 36-42 after hardening of applied 09Х16Н4Б steel. The comparative results were obtained in the tests of experimental sample of the lock completed with two rods with piston: the rod with piston manufactured according to DD and the experimental rod with piston that passed carbonization to the depth 0.9-1.3 mm and hardened to HRCэ 56-62. The rod’s ring groove – one of the elements of lock was subjected to carbonization and hardening. Both rods with piston were tested in the lock’s dummy in the load range: up to 1200 kgf –standard rod with piston and up to 3000 kgf – experimental rod with piston under static and cyclic loading. The test results are positive: the standard rod with piston confirmed its serviceability at the loads up to 1200 kgf inclusive; the experimental rod with piston withstood the loads up to 3000 kgf under static and cyclic loading. The evaluation of contact resistance was made by comparison of dimensions of traces left by the balls on the surface of rod’s grove under lock loading. The dimensions of traces on the experimental rod with piston under the load 3000 kgf inclusive did not exceed the dimensions of traces on the standard rod with piston, which testifies to the increase of contact resistance. We believe that the direction of search for steel brands in combination with advanced methods of thermal treatment is promising in increasing the lock’s load-bearing characteristics.

Key words: thrust vector control system, main engine, tests, rod with piston

Bibliography:
Downloads: 32
Abstract views: 
519
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Baltimore; Plano; Dublin; Ashburn; Columbus; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Seattle; Seattle; Tappahannock; San Mateo; Des Moines; Boardman; Boardman; Ashburn19
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Unknown Melbourne;2
Indonesia Jakarta1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
20.1.2019 Possibilities of Increasing Acting Loads on Hydraulic Actuator Middle Position Lock
20.1.2019 Possibilities of Increasing Acting Loads on Hydraulic Actuator Middle Position Lock
20.1.2019 Possibilities of Increasing Acting Loads on Hydraulic Actuator Middle Position Lock

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
13.1.2019 Prediction of Solid Propellant Burnout Time in Launch Vehicle Propulsion System in Flight https://journal.yuzhnoye.com/content_2019_1-en/annot_13_1_2019-en/ Wed, 24 May 2023 16:00:19 +0000 https://journal.yuzhnoye.com/?page_id=27718
Suggested procedure is easily realized as the multistage adaptive algorithm and can be used in the guidance system of the solid-propellant launch vehicle in the extra-atmospheric flight segment for the numerical forecast of the reachable terminal parameters of flight, definition of command vector and development of the relevant thrust vector control commands.
]]>

13. Prediction of Solid Propellant Burnout Time in Launch Vehicle Propulsion System in Flight

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2019, (1); 87-94

DOI: https://doi.org/10.33136/stma2019.01.088

Language: Russian

Annotation: This article considers the problem of determination of propulsion system solid fuel burn-out time in the extraatmospheric flight segment taking the apparent acceleration and apparent speed measured by the inertial navigation system. Correlation analysis of the realized and nominal dependencies of the apparent acceleration and apparent speed of the launch vehicle on relative operating time of the propulsion system is suggested to be used to forecast the fuel burn-out time. In order to improve the accuracy of the forecast, and to decrease the amplitude and vibration rate of its results several channels simultaneously are suggested to be used for calculations with subsequent majority voting and digital filtration. As a result of the study, the procedure to forecast the time of solid fuel burn-out in the launch vehicle propulsion system in flight has been developed. Operability of the suggested procedure has been verified using the mathematical simulation of the launch vehicle flight for two operating modes of the propulsion system different from the nominal ones. Based on the statistical processing of the deviations of the predicted time of solid fuel burn-out versus the realized one it was determined that the forecast based on the results of apparent acceleration measurement has the greatest accuracy with the minimal number of operations. Suggested procedure is easily realized as the multistage adaptive algorithm and can be used in the guidance system of the solid-propellant launch vehicle in the extra-atmospheric flight segment for the numerical forecast of the reachable terminal parameters of flight, definition of command vector and development of the relevant thrust vector control commands.

Key words: guidance system, correlation analysis, procedure, mathematical simulation

Bibliography:

1. Osnovy teorii avtomaticheskogo upravleniya raketnymi dvigatelnymi ustanovkami / A. I. Babkin, S. I. Belov, N.B. Rutovskiy i dr. – M.: Mashinostroenie, 1986. – 456 s.
2. Proektirovanie system upravleniya obiektov raketno-kosmicheskoy techniki. T. 1. Proektirovanie system upravlenia raket-nositeley: Uchebnik/Yu. S. Alekseev, Yu. Ye. Balabey, T. A. Baryshnikova i dr.; Pod obshey red. Yu. S. Alekseeva, Yu. M. Zlatkina, V. S. Krivtsova, A. S. Kulika, V. I. Chumachenko. – Kh.: NAU «KhAI», NPP «Khartron-Arkos», 2012. – 578 s.
3. Sikharulidze Yu. G. Ballistika letatelnykh apparatov. – M.: Nauka, 1982. – 352 s.
4. Lysenko L. N. Navedenie I navigatsia ballisticheskykh raket: Ucheb. posobie. – M.: Izd-vo MGTU im. N. E. Baumana, 2007. – 672 s.
5. Systemy upravleniya letatelnymi apparatami (ballisticheskimi raketami I ikh golovnymi chastyami): Uchebnik dlya VUZov/ G. N. Razorenov, E. A. Bakhramov, Yu. F. Titov; Pod red. G. N. Razorenova. – M.: Mashinostroenie, 2003. – 584 s.
6. Siouris G. M. Missile guidance and control systems. – New York: Springer-Verlag New York, Inc., 2004. – 666 p. https://doi.org/10.1115/1.1849174
7. Zarchan P. Tactical and Strategic missile guidance. – American Institute of Aeronautics and Astronautics, Inc., 2012. – 989 p. https://doi.org/10.2514/4.868948
8. Balakrishnan S. N. Advances in missile guidance, control, and estimation / S. N. Balakrishnan, A. Tsourdos, B.A. White. – New York: CRC Press, Taylor & Francis Group. 2013. – 682 p.
9. Shneydor N. A. Missile guidance and pursuit: kinematics, dynamics and control. – Horwood Publishing Chichester, 1998. – 259 p. https://doi.org/10.1533/9781782420590
10. Yanushevsky R. Modern missile guidance. – CRC Press, Taylor & Francis Group, 2008. – 226 p. https://doi.org/10.1201/9781420062281

Downloads: 39
Abstract views: 
684
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; North Bergen; Plano; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman; Ashburn21
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Great Britain London; London2
Finland Helsinki1
Mongolia1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
13.1.2019 Prediction of Solid Propellant Burnout Time in Launch Vehicle Propulsion System in Flight
13.1.2019 Prediction of Solid Propellant Burnout Time in Launch Vehicle Propulsion System in Flight
13.1.2019 Prediction of Solid Propellant Burnout Time in Launch Vehicle Propulsion System in Flight

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>
16.1.2016 Peculiarities of Development of SRM Thrust Vector Controls at DO-5 https://journal.yuzhnoye.com/content_2016_1/annot_16_1_2016-en/ Tue, 23 May 2023 13:11:44 +0000 https://journal.yuzhnoye.com/?page_id=27633
Peculiarities of Development of SRM Thrust Vector Controls at DO-5 Authors: Slisarenko V. 2016 (1); 97-104 Language: Russian Annotation: The thrust vector controls, peculiarities of designing and development testing of most sophisticated units and assemblies of controls of special SRM for upper stage flight control are considered. (2016) "Peculiarities of Development of SRM Thrust Vector Controls at DO-5" Космическая техника. "Peculiarities of Development of SRM Thrust Vector Controls at DO-5" Космическая техника. quot;Peculiarities of Development of SRM Thrust Vector Controls at DO-5", Космическая техника. Peculiarities of Development of SRM Thrust Vector Controls at DO-5 Автори: Slisarenko V. Peculiarities of Development of SRM Thrust Vector Controls at DO-5 Автори: Slisarenko V. Peculiarities of Development of SRM Thrust Vector Controls at DO-5 Автори: Slisarenko V. Peculiarities of Development of SRM Thrust Vector Controls at DO-5 Автори: Slisarenko V.
]]>

16. Peculiarities of Development of SRM Thrust Vector Controls at DO-5

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2016 (1); 97-104

Language: Russian

Annotation: The thrust vector controls, peculiarities of designing and development testing of most sophisticated units and assemblies of controls of special SRM for upper stage flight control are considered.

Key words:

Bibliography:
Downloads: 29
Abstract views: 
370
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Columbus; Ashburn; Boardman; Tappahannock; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Ashburn16
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro; Dnipro2
Unknown Melbourne1
Great Britain London1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
16.1.2016 Peculiarities of Development of SRM Thrust Vector Controls at DO-5
16.1.2016 Peculiarities of Development of SRM Thrust Vector Controls at DO-5
16.1.2016 Peculiarities of Development of SRM Thrust Vector Controls at DO-5
]]>
2.1.2016 Experience of Testing SRM Thrust Vector Controls https://journal.yuzhnoye.com/content_2016_1/annot_2_1_2016-en/ Tue, 23 May 2023 12:58:41 +0000 https://journal.yuzhnoye.com/?page_id=27600
Experience of Testing SRM Thrust Vector Controls Authors: Golubenko M. 2016 (1); 13-18 Language: Russian Annotation: The design peculiarities and basic characteristics of thrust vector controls of main SRM developed by Yuzhnoye SDO DO-5 beginning from 1966 are presented. The basic design and design-theoretical problems solved during thrust vector controls development are considered. (2016) "Experience of Testing SRM Thrust Vector Controls" Космическая техника. "Experience of Testing SRM Thrust Vector Controls" Космическая техника. quot;Experience of Testing SRM Thrust Vector Controls", Космическая техника. Experience of Testing SRM Thrust Vector Controls Автори: Golubenko M. Experience of Testing SRM Thrust Vector Controls Автори: Golubenko M. Experience of Testing SRM Thrust Vector Controls Автори: Golubenko M. Experience of Testing SRM Thrust Vector Controls Автори: Golubenko M.
]]>

2. Experience of Testing SRM Thrust Vector Controls

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2016 (1); 13-18

Language: Russian

Annotation: The design peculiarities and basic characteristics of thrust vector controls of main SRM developed by Yuzhnoye SDO DO-5 beginning from 1966 are presented. The basic design and design-theoretical problems solved during thrust vector controls development are considered.

Key words:

Bibliography:
Downloads: 38
Abstract views: 
531
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Matawan; Baltimore; Boydton; Plano; Dublin; Columbus; Ashburn; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Boardman; Seattle; Seattle; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Boardman21
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Unknown; Hong Kong2
Germany; Falkenstein2
Ukraine Dnipro; Dnipro2
Finland Helsinki1
France1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
2.1.2016 Experience of Testing SRM Thrust Vector Controls
2.1.2016 Experience of Testing SRM Thrust Vector Controls
2.1.2016 Experience of Testing SRM Thrust Vector Controls
]]>