3. Електричні реактивні двигуни на металевій плазмі
Організація: ДП "КБ "Південне" ім. М. К. Янгеля", Дніпро, Україна
Сторінка: Kosm. teh. Raket. vooruž. 2025, (2); 24-34
Мова: Українська
Ключові слова: електричний реактивний двигун, вакуумний дуговий розряд, металева плазма
1. Ethan Dale, Benjamin Jorns and Alec Gallimore. Future Directions for Electric Propulsion Research. Aerospace. 2020, 7, 120. https://doi.org/:10.3390/aerospace7090120
2. Lev D., Myers R. M., Lemmer K. M., Kolbeck J., Koizumi H., Polzin K. The technological and commercial expansion of electric propulsion. Acta Astronautica. 2019. Vol. 159. P. 213–227.
3. O’Reilly D., Herdrich G., Kavanagh D. F. Electric Propulsion Methods for Small Satellites: A Review. Aerospace 2021. Vol. 8. Issue 1. 22. https://doi.org/10.3390/aerospace8010022
4. Kolbeck J., Anders A., Beilis I. I., Keidar M. Micro-propulsion based on vacuum arcs. Journal of Appied Physics. 2019. Vol. 125. Issue 22. https://doi.org/10.1063/1.5081096.
5. Polk J. E., Sekerak M. J., Ziemer J. K., Schein J., Anders A. A Theoretical analysis of vacuum arc thruster and vacuum arc ion thruster performance. IEEE Trans. Plasma Sci. 2008. Vol. 36. No. 5, P. 2167–2179. https://doi.org/10.1109/TPS.2008.2004374
6. Schein J., Qi N. , Binder R., Krishnan M., Anders A. et al. Low mass vacuum arc thruster system for station keeping missions. IEPC-01-228: Pasadena, CA. USA. 2001.
7. Anders A. Cathodic Arcs. Springer Science Business Media. New York. 2008. 540 p.
8. Sanders D. M., Anders A. Review of Cathodic Arc Deposition Technology at the Start of the New Millennium. Surface and Coatings Technology. Vol. 133–134. 2000. P. 78–90. at the University of the Witwatersrand, Johannesburg, in fulfi lment of the requirements for the degree of Doctor of Philosophy. 2015.
13. Dethlefsen R. Performance measurements on a pulsed vacuum arc thruster. AIAA Journal. 1968. 6(6). P. 1197–1199.
14. Gilmour A. & Lockwood D. Pulsed metallic-plasma generators. Proceedings of the IEEE. 1972. 60(8). P. 977–991.
15. Qi N., Gensler S., Prasad R., Krishnan M., Vizir A. & Brown I. A vacuum arc ion thruster for space propulsion. Technical report, AASC. SBIR Phase-I Final Report F49620-97-C-0024, 31 MARCH 1998.
16. Tang B., Idzkowski L. & Au M. Thrust improvement of the magnetically enhanced vacuum arc thruster (MVAT), in ’29th International Electric Propulsion Conference’, Vol. IEPC-2005-304. 2005. Princeton University.
17. Polk J. E., Sekerak M. J., Ziemer J. K., Schein J., Niansheng Qi, Binder R., Anders A. A Theoretical analysis of vacuum arc thruster and vacuum arc ion thruster performance. IEEE Trans. Plasma Sci. 2008. Vol. 36. No. 5, P. 2167–2179.
18. Rysanek F., Hartmann J. W., Schein J. and Binder R. MicroVacuum Arc Thruster Design for a CubeSat Class Satellite. In 16th Annual/USU Conference on Small Satellites. 2002.
19. Lun J. Development of a vacuum arc thruster for nanosatellite propulsion. Master’s thesis, Stellenbosch University. 2008.
20. Keidar M., Schein J., Wilson K., Gerhan A., Au M., Tang B., Idzkowski L., Krishnan M. and Beilis I. I. Magnetically enhanced vacuum arc thruster. Plasma Sources Sci. Technol. 2005. 14(4), 661–669.
21. Schein J., Gerhan A., Woo R., Au M., Krishnan M. Vacuum arc plasma thrusters with inductive energy storage driver. US Patent App. 11/417,366. 2007.
22. Gilmour A. S. Concerning the Feasibility of a Vacuum arc Thruster. In AIAA 5th Electric Propulsion Conference, San Diego, CA. 1966.
23. Schein J., Qi N., Binder R., Krishnan M., Polk J., Ziemer J. and Shotwell R. Vacuum Arc Thruster for Small Satellite Applications. Final Contractor Report, NASA. NASA CR-2001-211323. 2001.
24. Pietzka M. Development and Characterization of a Propulsion System for CubeSats Based on Vacuum Arc Thrusters. Ph.D. Thesis, University of the Bundeswehr Munich, Munich, Germany, 2016. P. 177.
25. Zhuang T., Shashurin A., Brieda L., and Keidar M. Development of micro-vacuum arc thruster with extended lifetime. 31st International Electric Propulsion Conference, IEPC-2009-192. Ann Arbor, Michigan. 2009.
26. Duppada G. S., Taploo A., Spinelli J., Keidar M. Toward achieving longevity of micro cathode thrusters. Journal of Applied Physics. 2025. 138(2). https://doi.org/10.1063/5.0273158
27. Krishnan M., Velas K., and Leemans S. Metal Plasma Thruster for Small Satellites. AIAA Journal. 2020. Vol. 36. No. 4. P. 535–539. https://doi.org/10.2514/1.B37603
28. Frankovich K., Krishnan M., Metal plasma thruster (MPT): from garage to orbit in 4 years, presented at the 2024 3AF Space Propulsion Conference in Glasgow, Scotland, 20–23 MAY 2024.
29. Frankovich K., Krishnan M., Mackey J.A., Kamhawi H. Flight Metal Plasma Thruster (MPT) Development, Qualifi cation, and Thrust Measurement Campaign. Nasa Technical Reports Server: Cleveland, OH, USA, 2024.
30. Saletes J., Kim M., Saddul K., Wittig A., Honda K., Katila P. Development of a Novel Cubesat De-Orbiting All Printed Propulsion System. Space Propulsion: Estoril, Portugal, 2022.
31. Kanda B. and Kim M. Operation of Vacuum Arc Thruster Arrays with Multiple Isolated Current Sources. Aerospace. 2025, 12(6), 549. https://doi.org/10.3390/aerospace12060549
32. Anders A., Schein J. and Qi N. Pulsed vacuum-arc ion source operated with a ‘triggerless’ arc initiation method. Review of Scientifi c Instruments. 2000. 71(2). P. 827–829.
33. Schein J., Qi N., Binder R., Krishnan M., Ziemer J. K., Polk J. E., & Anders A. Inductive Energy Storage Driven Vacuum Arc Thruster, Review of Scientifi c Instruments. 2022. 73. P. 925–927. https://doi.org/10.1063/1.1428784
Повний текст (PDF) || Зміст 2025 (2)
| Країна | Місто | Кількість завантажень |
|---|---|---|
| США | Ель Монте | 1 |
| Україна | Дніпро | 1 |



