Результати пошуку “Гарт Е. Л.” – Збірник науково-технічних статей https://journal.yuzhnoye.com Космічна техніка. Ракетне озброєння Wed, 24 Apr 2024 09:16:08 +0000 uk hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Результати пошуку “Гарт Е. Л.” – Збірник науково-технічних статей https://journal.yuzhnoye.com 32 32 5.1.2020 Питання міцності і стійкості неоднорідних конструкцій ракетно-космічної техніки за умови врахування пластичності і повзучості https://journal.yuzhnoye.com/ua/content_2020_1-ua/annot_5_1_2020-ua/ Wed, 13 Sep 2023 06:15:53 +0000 https://journal.yuzhnoye.com/?page_id=30913
1 , Клименко Д. 1 , Гарт Е. Олеся Гончара, Дніпро, Україна 3 Сторінка: Kosm. Зазначені фактори є концентраторами напружено-деформованого стану та можуть призвести до передчасного руйнування елементів конструкцій. Розглянуто різні аспекти розв’язання задач міцності та стійкості об’єктів ракетно-космічної техніки, враховуючи вплив деформацій пластичності та повзучості. М., Клименко Д. В., Гарт Е. М., Клименко Д. В., Гарт Е. М., Клименко Д. В., Гарт Е. М., Клименко Д. В., Гарт Е. М., Клименко Д. В., Гарт Е. М., Клименко Д. В., Гарт Е. оболонкові конструкції , напружено-деформований стан , конструктивна і технологічна неоднорідність , термомеханічні навантаження , малоциклова і багатоциклова втома , ресурс .
]]>

5. Питання міцності і стійкості неоднорідних конструкцій ракетно-космічної техніки за умови врахування пластичності і повзучості

Організація:

ДП “КБ “Південне” ім. М. К. Янгеля”, Дніпро, Україна1; Інститут технічної механіки НАНУ та ДКАУ, Дніпро, Україна2; Дніпровський національний університет ім. Олеся Гончара, Дніпро, Україна3

Сторінка: Kosm. teh. Raket. vooruž. 2020, (1); 44-56

DOI: https://doi.org/10.33136/stma2020.01.044

Мова: Російська

Анотація: Оболонковим конструкціям, які широко застосовують у ракетно-космічній техніці, поряд з оптимальним поєднанням маси та міцності притаманні неоднорідності різного характеру: конструктивні (різна товщина, наявність підкріплень, вирізів-отворів тощо) і технологічні (наявність дефектів, що виникають у процесі виготовляння або під час зберігання, транспортування та непередбачених термомеханічних впливів). Зазначені фактори є концентраторами напружено-деформованого стану та можуть призвести до передчасного руйнування елементів конструкцій. Різні їх частини деформуються за своєю програмою і характеризуються різним рівнем напружено-деформованого стану. Ураховуючи пластичність і повзучість матеріалу для визначення напружено-деформованого стану, ефективний підхід, коли розрахунок розбивають на етапи, на кожному з яких вводять параметри, що характеризують деформації пластичності та повзучості: додаткові навантаження в рівняннях рівноваги або крайових умовах, додаткові деформації або змінні параметри пружності (модуль пружності та коефіцієнт Пуассона). Потім будують схеми послідовних наближень: на кожному етапі розв’язують задачу теорії пружності з уведенням зазначених вище параметрів. Окремо слід відзначити задачі визначення ресурсу космічних ракет-носіїв і стартових комплексів, оскільки він пов’язаний з виникненням пошкоджень під час знакозмінних термомеханічних навантажень високої інтенсивності. Головним під час визначення ресурсу є підхід на базі теорії малоциклової та багатоциклової втоми. Пластичність і повзучість матеріалу – основні фактори під час обґрунтування ресурсу. Розглянуто різні аспекти розв’язання задач міцності та стійкості об’єктів ракетно-космічної техніки, враховуючи вплив деформацій пластичності та повзучості.

Ключові слова: оболонкові конструкції, напружено-деформований стан, конструктивна і технологічна неоднорідність, термомеханічні навантаження, малоциклова і багатоциклова втома, ресурс

Список використаної літератури:
Завантажень статті: 45
Переглядів анотації: 
716
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Бордман; Ашберн; Колумбус; Матаван; Балтімор; Північний Берген; Бойдтон; Плейно; Майамі; Дублін; Дублін; Детроїт; Фінікс; Фінікс; Фінікс; Монро; Ашберн; Ашберн; Ашберн; Портленд; Сан-Матео; Сан-Матео; Сан-Матео; Де-Мойн; Бордман; Бордман; Ашберн; Ашберн28
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур6
Канада Торонто; Торонто; Монреаль3
Україна Одеса; Дніпро2
Фінляндія Гельсінкі1
Ефіопія Аддіс-Абеба1
Німеччина Фалькенштайн1
Латвія Рига1
Румунія Волонтарі1
Нідерланди Амстердам1
5.1.2020 Питання міцності і стійкості неоднорідних конструкцій ракетно-космічної техніки за умови врахування пластичності і повзучості
5.1.2020 Питання міцності і стійкості неоднорідних конструкцій ракетно-космічної техніки за умови врахування пластичності і повзучості
5.1.2020 Питання міцності і стійкості неоднорідних конструкцій ракетно-космічної техніки за умови врахування пластичності і повзучості

Хмара тегів

]]>
5.1.2019 Методологія нормативних основ обґрунтування ресурсу конструкцій стартових споруд ракет-носіїв https://journal.yuzhnoye.com/ua/content_2019_1-ua/annot_5_1_2019-ua/ Thu, 25 May 2023 12:09:25 +0000 https://journal.yuzhnoye.com/?page_id=27946
1 , Гарт Е. Олеся Гончара, Дніпро, Україна 3 Сторінка: Kosm. Стартовий стіл, до складу якого входять опорна рама, облицювання газоходу і закладні елементи для кріплення рами, є однією з основних складових частин пускової установки і значною мірою визначає ресурс стартового комплексу. Сформульовано основні методологічні етапи розрахунку ресурсу конструкції стартового комплексу. Подано класифікацію навантажень на стартові комплекси. 1: Термомеханіка багатокомпонентних тіл низької електропровідності. Расчет на прочность деталей машин: справочник / И. Иосилевич. О классификации стартового оборудования ракетно-космических комплексов при обосновании норм прочности/А. Ф., Гарт Е. Ф., Гарт Е. Ф., Гарт Е. Ф., Гарт Е. Ф., Гарт Е. Ф., Гарт Е.
]]>

5. Методологія нормативних основ обґрунтування ресурсу конструкцій стартових споруд ракет-носіїв

Організація:

Інститут технічної механіки НАНУ та ДКАУ, Дніпро, Україна1; ДП “КБ “Південне” ім. М. К. Янгеля”, Дніпро, Україна2; Дніпровський національний університет ім. Олеся Гончара, Дніпро, Україна3

Сторінка: Kosm. teh. Raket. vooruž. 2019, (1); 28-37

DOI: https://doi.org/10.33136/stma2019.01.028

Мова: Російська

Анотація: Наведено результати розроблення методології і нормативних основ розрахунку ресурсу конструкцій стартових споруд для виведення на навколоземну орбіту ракет-носіїв різного типу. Стартові комплекси створено у багатьох країнах світу (Європейський Союз, Індія, Китай, Корея, Росія, США, Україна, Франція, Японія та ін.). Для різних країн вони мають свою специфіку, зважаючи на тип і потужність ракет-носіїв, особливості інфраструктури (географію розміщення комплексу, номенклатуру космічних об’єктів, рівень розвитку ракетно-космічної техніки), завдань, які вирішують під час пусків, та ін. Вирішення різних питань, що виникають під час створення нормативних основ обґрунтування ресурсу стартових комплексів, пов’язане з потребою розглядати складні завдання міцності і ресурсу неоднорідних елементів конструкцій стартових комплексів і конструкцій ракетно-космічної техніки. Стартові комплекси – сукупність технологічно і функціонально взаємозв’язаних рухомих і стаціонарних технічних засобів, засобів керування і споруд, призначених для забезпечення усіх видів робіт з ракетами космічного призначення. Стартовий стіл, до складу якого входять опорна рама, облицювання газоходу і закладні елементи для кріплення рами, є однією з основних складових частин пускової установки і значною мірою визначає ресурс стартового комплексу. Зазначено основні досягнення вчених України в галузі міцності і ресурсу, враховуючи специфіку різних галузей техніки. Відзначено, що фізична нелінійність матеріалу і статистичні підходи визначають розрахунок міцності ресурсу. Сформульовано основні методологічні етапи розрахунку ресурсу конструкції стартового комплексу. Граничним ресурсом стартового комплексу запропоновано вважати критичний час роботи або кількість циклів (пусків) за цей час, після проведення яких у небезпечних зонах несучих елементів досягаються задані граничні стани: критичні тріщини, руйнування, недопустимі пластичні деформації, втрата стійкості, розвиток корозійних пошкоджень та ін. Подано класифікацію навантажень на стартові комплекси. Ресурс стартового комплексу пов’язаний з визначенням кількості пусків. Використано поняття мало- і багатоциклова утома. Створюючи норми міцності й основи розрахунку ресурсу, доцільно залучати сучасні методи технічної діагностики, зокрема голографічну інтерферометрію й акустичну емісію, і розробляти швидкодійні схеми числових методів для оперативних розрахунків під час відпрацювання проектованих систем.

Ключові слова: класифікація навантажень і пошкоджень, ударно-хвильові, акустичні, теплові навантаження, малоциклова утома, ієрархічний підхід до класифікації, проекційно-ітераційні схеми числових методів

Список використаної літератури:

1. Виды стартовых комплексов:ГП «КБ «Южное»: http://www.yuzhnoe.com/presscenter/media/photo/techique/launch-vehique.
2. Моделювання та оптимізація в термомеханіці електропровідних неоднорідних тіл: у 5 т. / Під заг. ред. акад. НАНУ Р. М. Кушніра. – Львів: Сполом, 2006–2011. Т. 1: Термомеханіка багатокомпонентних тіл низької електропровідності. – 2006. – 300 с. Т. 2: Механотермодифузія в частково прозорих тілах. – 2007. – 184 с. Т. 3: Термопружність термочутливих тіл. – 2009. – 412 с. Т. 4: Термомеханіка намагнічуваних
електропровідних термочутливих тіл. – 2010. – 256 с. Т. 5. Оптимізація та ідентифікація в термомеханіці неоднорідних тіл. – 2011. – 256 с.
3. Прочность материалов и конструкций/Под общ. ред. акад. НАНУ В. Т. Трощенко. – К.: Академперіодика, 2005. – 1088 с.
4. Бигус Г. А. Техническая диагностика опасных производственных объектов /Г. А. Бигус, Ю. Ф. Даниев. – М.: Наука, 2010. – 415 с.
5. Бигус Г. А. Основы диагностики технических устройств и сооружений /Г. А. Бигус, Ю. Ф. Даниев,
Н. А. Быстрова, Д. И. Галкин. – М.: Изд-во МВТУ, 2018. – 445 с.
6. Биргер И. А. Расчет на прочность деталей машин: справочник / И. А. Биргер, Б. Ф. Шорр, Г. Б. Иосилевич. – М.: Машиностроение, 1993. – 640 с.
7. Гудрамович В. С. Устойчивость упругопластических оболочек / В. С. Гудрамович. – К.: Наук. думка, 1987. – 216 с.
8. Гудрамович В. С. Теория ползучести и ее приложения к расчету элементов конструкций / В. С. Гудрамович. – К.: Наук.думка, 2005. – 224 с.
9. Гудрамович В. С. Влияние вырезов на прочность цилиндрических отсеков ракетносителей при неупругом деформировании материала / В. С. Гудрамович, Д. В. Клименко, Э. Л. Гарт // Космічна наука і технологія. – 2017. – Т. 23, № 6. – С. 12–20.
10. Гудрамович В. С. Несущая способность и долговечность элементов конструкций / В. С. Гудрамович,
Е. С. Переверзев. – К.: Наук. думка, 1981. – 284 с.
11. Гудрамович В. С. Створення методології нормативних основ розрахунку ресурсу конструкції стартових споруд космічних ракет-носіїв / В. С. Гудрамович, В. Н. Сіренко, Д. В. Клименко, Ю. Ф. Данієв // Теорія та практика раціонального проектування, виготовлення й експлуатації машинобудівних конструкцій: матеріали 6-ї Міжнар. наук.-техн. конф. (Львів, 2018). – Львів : Кінпатрі ЛТД, 2018. – С. 5–7.
12. Гудрамович В. С. Голографічне та акустико-емісійне діагностування неоднорідних конструкцій і матеріалів: монографія / В. С. Гудрамович, В. Р. Скальський, Ю. М. Селіванов; За ред. акад. НАНУ 3. Т. Назарчука. – Львів: Простір-М, 2017. – 492 с.
13. Даниев Ю. Ф. Космические летательные аппараты. Введение в космическую технику / Ю. Ф. Даниев,
Л. В. Дейченко, В. С. Зевако и др.; Под общ. ред. А. Н. Петренко. – Днепропетровск: АртПресс, 2007. – 456 с.
14. О классификации стартового оборудования ракетно-космических комплексов при обосновании норм прочности/А. В. Дегтярев, О. В. Пилипенко, В. С. Гудрамович, В. Н. Сиренко, Ю. Ф. Даниев, Д. В. Клименко,
В. П. Пошивалов // Космічна наука і технологія. – 2016. – Т. 22, №1.– С. 3–13.
15. Кармишин А. В. Основы отработки ракетно-космических конструкций: монография / А. В. Кармишин,
А. И. Лиходед, Н. Г. Паничкин, С. А. Сухинин. – М.: Машиностроение, 2007. – 480 с.
16. Моссаковский В. И. Контактные взаимодействия элементов оболочечных конструкций /В. И. Моссаковский, В. С. Гудрамович, Е. М. Макеев. – К.: Наук. думка, 1988. – 288 с.
17. Переверзев Е. С. Случайные сигналы в задачах оценки состояния технических систем / Е. С. Переверзев, Ю. Ф. Даниев, Г. П. Филей. – К.: Наук. думка, 1992. – 252 с.
18. Прочность, ресурс, живучесть и безопасность машин / Отв. ред. Н. А. Махутов. – М.: Либроком, 2008.
– 576 с.
19. Технічна діагностика матеріалів і конструкцій: Довідн. посібн. у 8 т. / За ред. акад. НАНУ 3. Т. Назарчука. Т. 1. Експлуатаційна деградація конструкційних матеріалів. – Львів: Простір-М, 2016. – 360 с.
20. Технологические объекты наземной инфраструктуры ракетно-космической техники: монография / Под ред. И. В. Бармина. – М.: Полиграфикс РПК, 2005. – Кн. 1. – 412 с.; 2006. – Кн. 2. – 376 с.
21. Нudrаmоvich V. S. Соntact mechanics of shell structures under local loading /V. S. Нudrаmоvich // International Аррlied Месhanics. – 2009. – Vol. 45, № 7. – Р. 708–729.
22. Нudrаmоvich V. Е1есtroplastic deformation of nonhomogeneous plates /V. Нudrаmоvich, Е. Наrt, S. Rjabokon //
I. Eng. Math. – 2013. – Vol. 70, Iss. 1. – Р. 181–197.
23. Нudrаmоvich V. S. Mutual influence of openings on strength of shell-type structures under plastic deformation /
V. S. Нudrаmоvich, Е. L. Наrt, D. V. Klymenko, S. A. Rjabokon/ Strenght of Materials.– 2013. –Vol. 45, Iss. 1. – Р. 1–9.
24. Мак-Ивили А. Дж. Анализ аварийных разрушений / Пер. с англ. – М.: Техносфера, 2010. – 416 с.
25. Наrt Е. L. Ргоjесtion-itеrаtive modification оf the method of local variations for problems with a quadratic functional / Е. L. Наrt, V. S. Нydrаmоvich/ Journal of Аррlied Мahtematics and Meсhanics.– 2016.– Vol.80, Iss.2.– Р. 156–163.
26. Месарович М. Теория иерархических многоуровневых систем /М. Месарович, Д. Махо, И. Тохакара/
Пер. с англ. – М.: Мир, 1973. – 344 с.

Завантажень статті: 48
Переглядів анотації: 
576
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Спрінгфілд; Матаван; Північний Берген; Плейно; Майамі; Майамі; Майамі; Дублін; Колумбус; Фінікс; Фінікс; Фінікс; Монро; Ашберн; Сіетл; Ашберн; Ашберн; Сіетл; Таппаханок; Портленд; Сан-Матео; Сан-Матео; Де-Мойн; Бордман; Бордман; Ашберн26
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур9
Німеччина Франкфурт на Майні; Франкфурт на Майні; Фалькенштайн3
Канада Торонто; Торонто; Монреаль3
Unknown Гонконг;2
Фінляндія Гельсінкі1
Індія1
Румунія Волонтарі1
Нідерланди Амстердам1
Україна Дніпро1
5.1.2019 Методологія нормативних основ обґрунтування ресурсу конструкцій стартових споруд ракет-носіїв
5.1.2019 Методологія нормативних основ обґрунтування ресурсу конструкцій стартових споруд ракет-носіїв
5.1.2019 Методологія нормативних основ обґрунтування ресурсу конструкцій стартових споруд ракет-носіїв

Хмара тегів

]]>
4.2.2019 Числове моделювання поведінки пружних конструкцій з локальними підкріпними елементамии https://journal.yuzhnoye.com/ua/content_2019_2-ua/annot_4_2_2019-ua/ Mon, 15 May 2023 15:45:37 +0000 https://journal.yuzhnoye.com/?page_id=27232
2 , Гарт Е. Олеся Гончара, Дніпро, Україна 3 Сторінка: Kosm. Включення можуть моделювати тонкі підкріплювальні елементи, накладки, зварні або клейові з’єднання. Для багатьох галузей техніки перспективним є використання поверхневого зміцнення, що підвищує працездатність елементів конструкції. С., Гарт Е. С., Гарт Е. С., Гарт Е. Числове моделювання поведінки пружних конструкцій з локальними підкріпними елементамии Автори: Гудрамович В. С., Гарт Е. Числове моделювання поведінки пружних конструкцій з локальними підкріпними елементамии Автори: Гудрамович В. С., Гарт Е. Числове моделювання поведінки пружних конструкцій з локальними підкріпними елементамии Автори: Гудрамович В. С., Гарт Е. метод скінченних елементів , міцність , включення , комп’ютерне моделювання .
]]>

4. Числове моделювання поведінки пружних конструкцій з локальними підкріпними елементамии

Організація:

ДП “КБ “Південне” ім. М. К. Янгеля”, Дніпро, Україна1; Інститут технічної механіки НАНУ та ДКАУ, Дніпро, Україна2; Дніпровський національний університет ім. Олеся Гончара, Дніпро, Україна3

Сторінка: Kosm. teh. Raket. vooruž. 2019 (2); 25-34

DOI: https://doi.org/10.33136/stma2019.02.025

Мова: Російська

Анотація: Різноманітні включення, підкріплення, порушення суцільності (отвори, пори, тріщини) є чинниками, що зумовлюють неоднорідність структури, і є характерними для елементів конструкцій і споруд різних галузей сучасної техніки, зокрема ракетно-космічної. Вони значно впливають на процеси деформування та призводять до концентрації напруг, що може викликати локальні руйнування або появу недосконалостей форми, що унеможливлює подальшу експлуатацію конструкції. Матеріали, які було використано під час створення конструкцій, також неоднорідні за своєю структурою. Включення можуть моделювати тонкі підкріплювальні елементи, накладки, зварні або клейові з’єднання. Потреба у врахуванні наявності тонких включень виникає також під час дослідження фазових перетворень матеріалів, наприклад під час формування мартенситних структур. Дослідження деформування різноманітних тіл із включеннями має важливе значення у процесах порошкової технології, керамічного виробництва тощо, в яких відбувається спікання за великих температур порошку, який було спресовано під високим тиском. Для багатьох галузей техніки перспективним є використання поверхневого зміцнення, що підвищує працездатність елементів конструкції. Важливим є розроблення дискретного зміцнення, яке здійснюється за допомогою технологічних схем певного виду. Під час моделювання впливу дискретних зміцнень на напружено-деформований стан елементів конструкцій їх також можна розглядати як включення особливої структури. Включення можуть моделювати також смужкуватість феритно-перлітної структури у мікроструктурі, що пов’язана з попереднім складним навантаженням під час пластичного деформування матеріалів. Під час досліджень доцільно використовувати числові методи, які є універсальними та застосовними для об’єктів різної форми, розмірів, а також для різних видів навантаження. До основних числових методів належать методи скінченних різниць, граничних елементів, варіаційно-сітковий, скінченних елементів, локальних варіацій. За допомогою пакета ANSYS проведено комп’ютерне моделювання поведінки елемента конструкції ракетно-космічної техніки – прямокутної пластини з двома протяжними пружними включеннями різної жорсткості, що моделюють пружні неоднорідності конструкцій та матеріалів.

Ключові слова: метод скінченних елементів, міцність, включення, комп’ютерне моделювання

Список використаної літератури:
Завантажень статті: 45
Переглядів анотації: 
144
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Бордман; Матаван; Балтімор; Північний Берген; Плейно; Колумбус; Колумбус; Фінікс; Фінікс; Лос Анджелес; Монро; Ашберн; Сіетл; Ашберн; Ашберн; Ашберн; Сіетл; Таппаханок; Сан-Матео; Сан-Матео; Сан-Матео; Сан-Матео; Де-Мойн; Де-Мойн; Бордман; Бордман; Ашберн27
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур6
Канада Торонто; Торонто; Монреаль3
Китай Шанхай1
Фінляндія Гельсінкі1
Unknown1
Пакистан Мултан1
Німеччина Фалькенштайн1
Румунія Волонтарі1
Нідерланди Амстердам1
Чехія Прага1
Україна Дніпро1
4.2.2019 Числове моделювання поведінки пружних конструкцій з локальними підкріпними елементамии
4.2.2019 Числове моделювання поведінки пружних конструкцій з локальними підкріпними елементамии
4.2.2019 Числове моделювання поведінки пружних конструкцій з локальними підкріпними елементамии

Хмара тегів

]]>