Результати пошуку “співвідношення сил” – Збірник науково-технічних статей https://journal.yuzhnoye.com Космічна техніка. Ракетне озброєння Tue, 27 Jan 2026 09:53:33 +0000 uk hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Результати пошуку “співвідношення сил” – Збірник науково-технічних статей https://journal.yuzhnoye.com 32 32 1.2.2025 Методологія дослідження міцності конструкцій ракетної техніки https://journal.yuzhnoye.com/ua/content_2025_2-ua/annot_1_2_2025-ua/ Tue, 27 Jan 2026 01:13:55 +0000 https://journal.yuzhnoye.com/?page_id=35748
В основу розроблення покладено загальні співвідношення пружнопластичності в приростах на основі Лагранжевого підходу із застосуванням принципу віртуальних переміщень з урахуванням геометрично нелінійного характеру деформування конструкції за інтенсивних силових навантажень.
]]>

1. Методологія дослідження міцності конструкцій ракетної техніки

Організація:

Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України1, ДП “КБ “Південне” ім. М. К. Янгеля”, Дніпро, Україна2

Сторінка: Kosm. teh. Raket. vooruž. 2025, (2); 3-11

Мова: Українська

Анотація: Запропоновано методологію дослідження міцності конструкцій і визначення руйнівного навантаження шляхом комп’ютерного моделювання і неруйнівних експериментальних випробувань. В основу розроблення покладено загальні співвідношення пружнопластичності в приростах на основі Лагранжевого підходу із застосуванням принципу віртуальних переміщень з урахуванням геометрично нелінійного характеру деформування конструкції за інтенсивних силових навантажень. Основним методом числового моделювання обрано метод скінченних елементів. Методологія дослідження міцності конструкції має три етапи. На першому досліджують конструкцію у вигляді просторово двовимірної моделі оболонкового типу. За результатами обчислювального експерименту аналізують отримані значення параметрів напружено-деформованого стану моделі та визначають критичні зони конструкції, які мають максимальні значення цих параметрів. На другому етапі досліджень будують деталізовані тривимірні моделі критичних зон конструкції, які враховують геометричні (у т. ч. фактичні товщини елементів) і фізичні особливості конструкції. До побудованих моделей прикладають граничні умови, значення яких отримані за результатами числових експериментів повнорозмірної оболонкової моделі конструкції. За результатами числових експериментів аналізують уточнені значення параметрів напружено-деформованого стану тривимірних моделей і визначають мінімальне руйнівне навантаження. На третьому етапі у визначених критичних зонах конструкції встановлюють датчики деформації і проводять випробування конструкції на міцність неруйнівним навантаженням. Порівнюючи значення деформацій і переміщень, отримані за результатами випробувань і розрахункових експериментів, визначають прогнозне руйнівне навантаження. У рамках розробленої методології досліджено напружено-деформований стан бака окислювача першого ступеня за різних значень внутрішнього тиску, отримано кількісні оцінки його міцності, визначено руйнівне навантаження і локальні зони, з яких, імовірно, почнеться руйнування, показано, що результати оцінювання міцності бака за критерієм максимальних напружень найкраще узгоджуються з експериментальними даними.

Ключові слова: міцність, метод скінченних елементів, обчислювальний експеримент, випробування на міцність

Список використаної літератури:

1. Allen D. H., Heisler W. E. A theory for analysis of thermoplastic materials. Computers & Structures. 1981. Vol. 13. P. 129–135.
2. Bathe K. J. Finite Element Procedures Analysis. Englewood Cliff s: Prentice Hall, 1995. 1037 p.
3. Zienkiewicz O. C., Taylor R. L. Finite Element Method: Vol. 1. The Basis. London: Butterworth Heinemann, 2000. 689 p.
4. Гачкевич О. Р., Дробенко Б. Д. Моделювання та оптимізація в термомеханіці електропровідних неоднорідних тіл. Під заг. ред. Я. Й. Бурака, Р. М. Кушніра. Т. 4: Термомеханіка намагнечуваних електропровідних термочутливих тіл. Львів: СПОЛОМ, 2010. 256 с.
5. Kleiber M. Incremental Finite Element Modelling in Non-Linear Solid Mechanics. John Wiley & Sons, 1989. 187 p.
6. Computational Methods for Nonlinear Problems. Ed. by Taylor C., Owen D. R. J., Hinton E. Swansea: Pineridge Press, 1987. 384 p.
7. Марчук М. В. Нелінійне деформування і коливання податливих трансверсальним деформаціям зсуву та стиснення пластин і оболонок. Машинознавство. 2005. № 10. С. 9–14.

Завантажень статті: 2
Переглядів анотації: 
33
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Ель Монте1
Україна Дніпро1
1.2.2025 Методологія дослідження міцності конструкцій ракетної техніки
1.2.2025 Методологія дослідження міцності конструкцій ракетної техніки
1.2.2025 Методологія дослідження міцності конструкцій ракетної техніки

Хмара тегів

]]>
1.1.2023 До розроблення методології побудови систем протиповітряної та протиракетної оборони. Обґрунтування апарата дослідження https://journal.yuzhnoye.com/ua/content_2023_1-ua/annot_1_1_2023-ua/ https://test8.yuzhnoye.com/?page_id=26314
Як критерій ефективності, що підпорядковує цілеспрямованість моделі, взято найбільш поширене в сучасних підходах до розв’язання задач класу, що розглядається, кількісно-якісне співвідношення сил сторін, що протистоять. для визначення співвідношення сил сторін, що протистоять. При цьому слід урахувати, що відомий підхід до оцінювання співвідношення сил з використанням методу бойових потенціалів має ряд істотних обмежень, у т. Ключові слова: багатофункціональна система , математична модель , військове формування , бойовий потенціал , співвідношення сил , оборонна достатність Список використаної літератури: 1. багатофункціональна система , математична модель , військове формування , бойовий потенціал , співвідношення сил , оборонна достатність .
]]>

1. До розроблення методології побудови систем протиповітряної та протиракетної оборони. Обґрунтування апарата дослідження

Організація:

ДП “КБ “Південне” ім. М. К. Янгеля”, Дніпро, Україна

Сторінка: Kosm. teh. Raket. vooruž. 2023 (1); 3-13

DOI: https://doi.org/10.33136/stma2023.01.003

Мова: Українська

Анотація: У рамках завдання розроблення методології побудови системи протиповітряної та протиракетної оборони обґрунтовано апарат дослідження. Складність проблеми, яку розглядають, зумовлена багатофакторністю об’єкта дослідження, його якісним різноманіттям і розгалуженістю структури, а також неповною визначеністю умов задачі. Крім того, значно підвищують ризик прийняття не найкращих рішень можливості сучасних технологій зі створення різних систем озброєнь, здатних вирішувати завдання одного класу. Виходячи з цього, а також з урахуванням різкого зростання вартості сучасних озброєнь і військової техніки поставлене завдання віднесено до класу оптимізаційних, і таких, що вирішуються в рамках теорії дослідження операцій, де проблему розглядають як математичну задачу, а базовим методом дослідження є математичне моделювання. У рамках проведеного аналізу розглянуто основні види математичних моделей, їхні сфери застосування, переваги та недоліки. Позначено класифікацію математичних моделей за масштабом відтворюваних операцій, призначенням, цільовою направленістю. Як критерій ефективності, що підпорядковує цілеспрямованість моделі, взято найбільш поширене в сучасних підходах до розв’язання задач класу, що розглядається, кількісно-якісне співвідношення сил сторін, що протистоять. Показано проблеми, що належать до нього. Зокрема ‒ пошук компромісу між простотою математичної моделі та ступенем її адекватності об’єкту дослідження. Розглянуто два основних підходи до принципів побудови моделі військової операції та її оцінення. Перший реалізується за допомогою моделювання бойових дій. Другий підхід ґрунтується на припущенні порівнянності різних типів озброєнь за їхнім внеском у кінцевий результат операції та можливості присвоєння кожному з них «вагового коефіцієнта» – бойового потенціалу. Подано сучасний рівень розв’язання задач, пов’язаних з цим методом. Обґрунтовано доцільність його застосування в задачі, що розглядається, у т. ч. для визначення співвідношення сил сторін, що протистоять. За результатами аналізу сформульовано базові положення концепції побудови шуканої математичної моделі й апарата її дослідження: поставлене завдання необхідно вирішувати аналітичними методами в рамках теорії дослідження операцій; найбільш прийнятним поданням рівня військової операції, що аналізується, є аналітична модель; синтез моделі повинен базуватися на понятті бойового потенціалу. При цьому слід урахувати, що відомий підхід до оцінювання співвідношення сил з використанням методу бойових потенціалів має ряд істотних обмежень, у т. ч. методологічного плану, і в рамках подальших досліджень потребує розвитку як з точки зору підвищення ступеня достовірності одиничної оцінки, так і з точки зору надання математичній моделі, що синтезується, якостей системності.

Ключові слова: багатофункціональна система, математична модель, військове формування, бойовий потенціал, співвідношення сил, оборонна достатність

Список використаної літератури:

1. Коршунов Ю. М. Математические основы кибернетики. М., 1972. 376 с.
2. Павловский Р. И., Карякин В. В. Об опыте применения математических моде-
лей. Военная мысль. 1982. № 3. С. 54–57.
3. Катасонов Ю. В. США: военное программирование. М., 1972. 228 с.
4. Анализ опыта министерства обороны США по совершенствованию системы планирования и управления разработками вооружения. ЦИВТИ, отчет № 11152 по НИР.
М., 1967.
5. Соколов А. Развитие математического моделирования боевых действий в армии США. Зарубежное военное обозрение. 1980. № 8. С. 27–34.
6. Чуев Ю. В. Исследование операций в военном деле. М., 1970. 256 с.
7. Евстигнеев В. Н. К вопросу методологии математического моделирования операции. Военная мысль. 1987. № 17. С. 33–41.
8. Фендриков Н. И., Яковлев В. И. Методы расчетов боевой эффективности вооружения. М., 1971. 224 с.
9. Неупокоев Ф. О подходе к оценке боевых возможностей и боевой эффективности войск. Военная мысль. 1973. № 11. С. 70–72.
10. Агеев Ю. Д., Гераскин А. П. К вопросу о повышении достоверности оценки соотношения сил противоборствующих сторон. Военная мысль. 1978. № 4. С. 54–58.
11. Алешкин А. В. Оценка и соизмерение сил воюющих сторон с учётом качества средств поражения. Военная мысль. 1975. № 10. С. 69–76
12. Пономарёв О. К. О методах количественной и качественной оценки сил сторон. Военная мысль. 1976. № 4. С. 41–46.
13. Лузянин В. П., Елизаров В. С. Подход к определению состава группировки сил и средств оборонной достаточности. Военная мысль. 1992. № 11. С. 25–29.
14. Спешилов Л. Я., Павловский Р. И., Кабыш А. И. К вопросу о количественно-качественной оценке соотношения сил раз-
нородных группировок войск. Военная мысль. 1981. № 5.
15. Стрельченко Б. И., Иванов В. А. Некоторые вопросы оценки соотношения сил и средств в операции. Военная мысль. 1987. № 10. С. 55–61.
16. Морозов Н. А. О методологии качественного анализа больших военных систем. Военная мысль. 2004. № 7. С. 19–22.
17. Терехов А. Г. О методике расчета соотношения сил в операциях. Военная мысль. 1987. № 9. С. 51–57.
18. Цыгичко В. А., Стокли Ф. Метод боевых потенциалов. История и настоящее. Военная мысль. 1997. № 4. С. 23–28.
19. Бонин А. С. Основные положения методических подходов к оценке боевых потенциалов и боевых возможностей авиационных формирований. Военная мысль. 2008. № 1. С. 43–47.
20. Бонин А. С., Горчица Г. И. О боевых потенциалах образцов ВВТ, формирований и соотношениях сил группировок сторон. Военная мысль. 2010. № 4. С. 61–67.
21. Серегин Г. Г., Стрелков С. Н., Бобров В. М. Об одном подходе к расчету значений боевых потенциалов перспективных средств вооружений. Военная мысль. 2005. № 10. С. 32–38. https://doi.org/10.1016/S1097-8690(05)70764-2
22. Морозов Н. А. Еще раз о боевых потенциалах. Военная мысль. 2010. № 9. С. 75–79.
23. Нарышкин В. Г. О показателях боевого потенциала воинских формирований. Военная мысль. 2009. № 1. С. 68–72.
24. Костин Н. А. Методологический подход к определению боевых потенциалов войсковых формирований. Военная мысль. 2017. № 10. С. 44–48
25. Останков В. И. Обоснование боевого состава группировок войск (сил). Военная мысль. 2003. № 1. С. 23–28.

Завантажень статті: 71
Переглядів анотації: 
1872
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Ашберн;; Біско; Колумбус; Колумбус; Ашберн; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Ель Монте; Ель Монте; Ель Монте; Ашберн; Ашберн; Ашберн; Ашберн; Маунтін-В'ю; Сан-Матео; Сан-Матео; Ашберн; Ашберн; Ашберн; Ашберн; Ашберн; Помпано-Біч; Приозерний; Приозерний; Сіетл45
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур6
Німеччина Фалькенштайн; Фалькенштайн; Франкфурт на Майні; Лімбург-ан-дер-Лан; Фалькенштайн5
Канада Торонто; Торонто; Торонто; Торонто4
Unknown;2
Франція Париж; Париж2
Україна Дніпро; Кременчук2
В'єтнам1
Бразилія Монтіс-Кларус1
Японія1
Китай1
Нідерланди Амстердам1
1.1.2023 До розроблення методології побудови систем протиповітряної та протиракетної оборони. Обґрунтування апарата дослідження
1.1.2023 До розроблення методології побудови систем протиповітряної та протиракетної оборони. Обґрунтування апарата дослідження
1.1.2023 До розроблення методології побудови систем протиповітряної та протиракетної оборони. Обґрунтування апарата дослідження

Хмара тегів

]]>
3.2.2019 Особливості проектування і виготовлення технологічного пристрою для складання систем відокремлення космічного апарата типу CLAMP BAND https://journal.yuzhnoye.com/ua/content_2019_2-ua/annot_3_2_2019-ua/ Mon, 15 May 2023 15:45:32 +0000 https://journal.yuzhnoye.com/?page_id=27231
Обтискний пристрій призначено для забезпечення рівномірного розподілу зусиль натягу в бандажних поясах під час складання бандажного пристрою кріплення, що дозволяє мінімізувати навантаження на пірозамки-штовхачі й у такий спосіб забезпечити надійність їх спрацьовування. Замінено матеріал гвинта та гайки на основі співвідношення між границями міцності: σв стрижня > 1,3 σв гайки. Ключові слова: бандажний пристрій кріплення , обтискання півкілець , рівномірне зусилля натягу , притискний механізм Список використаної літератури: Повний текст (PDF) || бандажний пристрій кріплення , обтискання півкілець , рівномірне зусилля натягу , притискний механізм .
]]>

3. Особливості проектування і виготовлення технологічного пристрою для складання систем відокремлення космічного апарата типу CLAMP BAND

Автори: Коденець Д. О., Сенча С. А., Макаренко А. О.

Організація: ДП "КБ "Південне" ім. М. К. Янгеля", Дніпро, Україна

Сторінка: Kosm. teh. Raket. vooruž. 2019 (2); 18-24

DOI: https://doi.org/10.33136/stma2019.02.018

Мова: Російська

Анотація: Розглянуто особливості створення технологічного обтискного пристрою для складання бандажного пристрою кріплення системи відокремлення космічного апарата типу Clamp Band. Обтискний пристрій призначено для забезпечення рівномірного розподілу зусиль натягу в бандажних поясах під час складання бандажного пристрою кріплення, що дозволяє мінімізувати навантаження на пірозамки-штовхачі й у такий спосіб забезпечити надійність їх спрацьовування. Пристрій складається з притискних механізмів, розміщених по колу симетрично площині стику бандажних поясів і закріплених на підставці з регульованими опорами. Притискний механізм є конструкцією, повідкова кінематична схема якої дозволяє компенсувати монтажні похибки складання, несприятливі збіги допусків, уникнути появи радіального навантаження на упорному гвинті. Проте під час відпрацювання технології складання бандажного пристрою кріплення у притискних механізмах було виявлено заїдання нарізного з’єднання у результаті зминання витка упорного гвинта поблизу першого витка вкладиша, люфт у різі після багаторазового використання, наявність подряпин і незначних задирок на конічній поверхні притискача, незручність роботи двома ключами. Для усунення цих дефектів втулку із вкладишем було замінено на втулку з виступною частиною, що дозволило більш рівномірно розподілити навантаження по всіх витках. Замінено матеріал гвинта та гайки на основі співвідношення між границями міцності: σв стрижня > 1,3 σв гайки. Змінено конструкцію притискного механізму щодо з’єднання упорного гвинта з притискачем, що дозволило зменшити навантаження на гвинтову пару внаслідок передачі осьового зусилля від сферичної поверхні гвинта на плоску поверхню притискача, зменшити момент затяжки для забезпечення розрахункової сили закріплення бандажних поясів і полегшити процес складання й розбирання притискних механізмів. У результаті дороблень одержано технологічну й ергономічну конструкцію обтискного пристрою, застосування якої для складання бандажного пристрою кріплення дозволяє рівномірно розподілити зусилля обтискання по бандажних поясах, що забезпечує надійність роботи системи відокремлення космічного апарата.

Ключові слова: бандажний пристрій кріплення, обтискання півкілець, рівномірне зусилля натягу, притискний механізм

Список використаної літератури:
Завантажень статті: 104
Переглядів анотації: 
1304
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Бордман; Матаван; Лос Анджелес; Купертіно; Майамі; Ашберн; Колумбус; Колумбус; Колумбус; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Монро; Ель Монте; Ель Монте; Ашберн; Сіетл; Ашберн; Ашберн; Ашберн; Ашберн; Ашберн; Х'юстон; Ашберн; Ашберн; Ашберн; Ашберн; Ашберн; Портленд; Сан-Матео; Ашберн; Ашберн; Де-Мойн; Де-Мойн; Бордман; Бордман; Ашберн; Помпано-Біч; Маунтін-В'ю; Приозерний; Приозерний; Уест-Пальм-Біч59
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур9
Китай; Пекін; Шеньчжень; Пекін; Харбін; Шаосін6
Канада Торонто; Торонто; Монреаль; Монреаль4
Франція Париж; Париж; Париж; Париж4
Німеччина Фалькенштайн; Фалькенштайн; Дортмунд; Фалькенштайн4
Бразилія Сан-Карлус; Сан-Паулу; Сан-Паулу3
Японія Токіо;2
Нідерланди Амстердам; Амстердам2
Україна Дніпро;2
Unknown; Гонконг2
В'єтнам; Хошимін2
Республіка Корея Сеул1
Великобританія Лондон1
Фінляндія Гельсінкі1
Румунія Волонтарі1
Малайзія1
3.2.2019 Особливості проектування і виготовлення технологічного пристрою для складання систем відокремлення космічного апарата типу CLAMP BAND
3.2.2019 Особливості проектування і виготовлення технологічного пристрою для складання систем відокремлення космічного апарата типу CLAMP BAND
3.2.2019 Особливості проектування і виготовлення технологічного пристрою для складання систем відокремлення космічного апарата типу CLAMP BAND

Хмара тегів

]]>