Результати пошуку “строк експлуатації” – Збірник науково-технічних статей https://journal.yuzhnoye.com Космічна техніка. Ракетне озброєння Tue, 05 Nov 2024 20:56:33 +0000 uk hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Результати пошуку “строк експлуатації” – Збірник науково-технічних статей https://journal.yuzhnoye.com 32 32 15.1.2024 ПІДВИЩЕННЯ ПРАЦЕЗДАТНОСТІ АГРЕГАТІВ ПАЛИВНИХ СИСТЕМ В УМОВАХ СПЕКОТНОГО КЛІМАТУ https://journal.yuzhnoye.com/ua/content_2024_1-ua/annot_15_1_2024-ua/ Mon, 17 Jun 2024 07:43:36 +0000 https://journal.yuzhnoye.com/?page_id=34947
Наведено результати прискорених кліматичних випробувань зразків ГТВ, а також результати ресурсно-кліматичних випробувань агрегатів на строк, що імітує 20-річний строк експлуатації, основні види дефектів, які призводять до втрати працездатності ГТВ: велика (до 100 %) Результати ресурсно-кліматичних випробувань агрегатів паливної системи, укомплектовані ГТВ з гуми Д2301, дають підстави збільшити призначений строк експлуатації зазначених агрегатів з 12 років до 16 років.
]]>

15. Підвищення працездатності агрегатів паливних систем в умовах спекотного клімату

Організація:

ТОВ «УНДКТІ «ДІН-ТЕМ»1; ДП «ХМЗ «ФЕД»2

Сторінка: Kosm. teh. Raket. vooruž. 2024, (1); 129-135

DOI: https://doi.org/10.33136/stma2024.01.129

Мова: Українська

Анотація: Розглянуто проблему збільшення довговічності гумотехнічних виробів (ГТВ), безпосередньо пов’язану з підвищенням опору гуми різним видам термічного старіння. Термостійкість під час стискання є найбільш важлива для гум, які використовують для ущільнювачів різних типів: кілець, манжет, армованих манжет, прокладок для авіації та ракетної техніки. Релаксація напруги та нагромадження відносної залишкової деформації гум, що зумовлені саме кінетичною перебудовою хімічних зв’язків, надзвичайно чутлива до впливу високих температур. Основна причина дефектів – це втрата пружно-еластичних властивостей ущільнювачів у результаті прискореного теплового старіння нітрильної групи в умовах довгострокової дії підвищенних температур у спекотному кліматі. Наведено результати прискорених кліматичних випробувань зразків ГТВ, а також результати ресурсно-кліматичних випробувань агрегатів на строк, що імітує 20-річний строк експлуатації, основні види дефектів, які призводять до втрати працездатності ГТВ: велика (до 100 %) залишкова деформація перетинів, розтріскування, втрата еластичності. Гарантійний термін експлуатації агрегатів паливних систем, укомплектованих ГТВ з нітрильної гуми ИРП-1078, не перевищує 12 років. Зміна існуючих гум на гуми, створені на основі більш тепломісних каучуків, є найбільш перспективним шляхом підвищення працездатності ГТВ за високих температур. Нова гума Д2301 створена на основі фторсилоксанового каучуку. Вона забезпечує високу термічну стійкість та, особливо, спроможність довготривало зберігати високі експлуатаційні властивості при одночасному впливі агресивних середовищ і високих температур. Результати ресурсно-кліматичних випробувань агрегатів паливної системи, укомплектовані ГТВ з гуми Д2301, дають підстави збільшити призначений строк експлуатації зазначених агрегатів з 12 років до 16 років. Рекомендовано ввести гуму Д2301 до чинної нормативної документації та продовжити дослідження з метою розширення номенклатури ГТВ з гуми Д2301 з метою надійності герметизації вузлів протягом терміну експлуатації 16 років і більше.

Ключові слова: герметичність агрегатів, фторсилоксановий каучук, гума, температура спекотного клімату, фізико-механічні показники гуми, ресурсно-кліматичні випробування, пружно-еластичні властивості, гарантійний термін експлуатації.

Список використаної літератури:
  • . Tsiklon-4M. URL: https://www. yuzhnoye.com.
  • . KRK «Tsiklon-4M». C4M YZH SPS 090 02 Technicheskoe zadanie na sostavnuyu chast’ OKR «Sistema termostatirovaniya rakety-nositelya i golovnogo bloka» GP «KB «Yuzhnoye». 78 s.
  • . KRK «Tsiklon-4M». C4M YZH SPS 119 02 Technicheskoe zadanie na sostavnuyu chast OKR «Transportnaya systema termostatirovaniya» GP «KB «Yuzhnoye». 2018. 40 s.
Завантажень статті: 17
Переглядів анотації: 
784
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Сан-Хосе; Сент-Луїс; Лос Анджелес; Лос Анджелес; Лос Анджелес; Чикаго; Колумбус; Портленд; Ашберн9
Німеччина Фалькенштайн; Дюсельдорф; Фалькенштайн3
Індія Мумбаї1
Франція1
Таїланд Сонгкхла1
Китай Шеньчжень1
Україна Кременчук1
15.1.2024 ПІДВИЩЕННЯ ПРАЦЕЗДАТНОСТІ АГРЕГАТІВ ПАЛИВНИХ СИСТЕМ В УМОВАХ СПЕКОТНОГО КЛІМАТУ
15.1.2024 ПІДВИЩЕННЯ ПРАЦЕЗДАТНОСТІ АГРЕГАТІВ ПАЛИВНИХ СИСТЕМ В УМОВАХ СПЕКОТНОГО КЛІМАТУ
15.1.2024 ПІДВИЩЕННЯ ПРАЦЕЗДАТНОСТІ АГРЕГАТІВ ПАЛИВНИХ СИСТЕМ В УМОВАХ СПЕКОТНОГО КЛІМАТУ

Хмара тегів

]]>
15.1.2020 Моделювання термомеханічних процесів у функціонально-градієнтних матеріалах неоднорідної структури під час виготовляння й експлуатації елементів ракетних конструкцій https://journal.yuzhnoye.com/ua/content_2020_1-ua/annot_15_1_2020-ua/ Wed, 13 Sep 2023 11:07:28 +0000 https://journal.yuzhnoye.com/?page_id=30945
Моделювання термомеханічних процесів у функціонально-градієнтних матеріалах неоднорідної структури під час виготовляння й експлуатації елементів ракетних конструкцій Автори: Усов А. У свою чергу точне визначення порядку і характеру сингулярності біля вершин гострокутної недосконалості в неоднорідному середовищі, подане в аналітичному вигляді, потрібне для формулювання і запису відповідних критеріальних співвідношень для визначення функціональних властивостей неоднорідних систем. (2020) "Моделювання термомеханічних процесів у функціонально-градієнтних матеріалах неоднорідної структури під час виготовляння й експлуатації елементів ракетних конструкцій" Космическая техника.
]]>

15. Моделювання термомеханічних процесів у функціонально-градієнтних матеріалах неоднорідної структури під час виготовляння й експлуатації елементів ракетних конструкцій

Автори: Усов А. В., Куніцин М. В.

Організація: Інститут машинобудування Одеського національного політехнічного університету, Одеса, Україна

Сторінка: Kosm. teh. Raket. vooruž. 2020, (1); 137-148

DOI: https://doi.org/10.33136/stma2020.01.137

Мова: Українська

Анотація: Міцність реальних твердих тіл істотно залежить від дефектності структури. У реальних матеріалах завжди є велика кількість різних мікродефектів, розвиток яких під дією навантаження призводить до виникнення тріщин та їх збільшення і, як наслідок, локального або повного руйнування. У цій роботі на основі методу сингулярних інтегральних рівнянь подано єдиний підхід до розв’язування задач термопружності для тіл, ослаблених неоднорідностями. Метою роботи є врахування впливу неоднорідностей у матеріалах елементів ракетних конструкцій на їх функціонально-градієнтні властивості, у тому числі на міцність. Вибір методу дослідження міцності та руйнування елементів конструкцій залежить від розміру досліджуваного об’єкта. Мікродослідження пов’язані з неоднорідностями, які формуються у поверхневому шарі на етапі одержання заготовки, у процесі виготовляння елементів конструкції. Урахування дефектності дозволяє адекватно розглядати механізм руйнування об’єктів як процес розвитку тріщин. Досліджуючи граничний стан реальних елементів, ослаблених дефектами, і будуючи на цій основі теорію міцності та руйнування, крім детермінованого потрібно розглядати і ймовірнісно-статистичний підхід. За теплового впливу на елементи конструкцій, у яких спостерігаються рівномірно розсіяні, випадково розподілені дефекти типу тріщин,що не взаємодіють між собою, закони спільного розподілу довжини та кута орієнтації яких відомі, визначено граничне значення теплового потоку для зрівноваженого стану тріщини, що має довжину найслабшої ланки. Вплив неоднорідностей технологічного походження (починаючи із заготовки і закінчуючи готовим виробом), які виникають у поверхневому шарі під час виготовляння елементів конструкцій, на руйнування виробу враховує розроблена модель. Розв’язок сингулярного інтегрального рівняння з ядром Коші дозволяє визначити інтенсивність напружень в околі вершин дефектів типу тріщин і, порівнюючи її з критерієм тріщиностійкості для матеріалу конструктивного елемента, можна визначити його стан. У разі порушення цього критерію дефект «слабка ланка» розвивається у магістральну тріщину. Крім того, одержано критеріальне співвідношення умови зрівноваженого стану дефекту завдовжки 2l залежно від значення контактної температури. Під час охолодження зварного шва у ньому розвиваються гарячі тріщини, які спричиняють брак у зварних елементах конструкцій. Результати моделювання з використанням сингулярних інтегральних рівнянь дають можливість ефективно оцінити вплив сторонніх наповнювачів на втрату функціональних властивостей неоднорідними системами. У свою чергу точне визначення порядку і характеру сингулярності біля вершин гострокутної недосконалості в неоднорідному середовищі, подане в аналітичному вигляді, потрібне для формулювання і запису відповідних критеріальних співвідношень для визначення функціональних властивостей неоднорідних систем.

Ключові слова: математична модель, лінійні системи, сингулярні інтегральні рівняння, імпульсна характеристика, дефекти, критерії руйнування стохастично дефектних тіл, задача Рімана, термопружний стан

Список використаної літератури:
Завантажень статті: 46
Переглядів анотації: 
675
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Бордман; Матаван; Балтімор;; Плейно; Майамі; Колумбус; Колумбус; Фінікс; Фінікс; Монро; Ашберн; Ашберн; Сіетл; Ашберн; Ашберн; Маунтін-В'ю; Сіетл; Таппаханок; Портленд; Сан-Матео; Сан-Матео; Сан-Матео; Сан-Матео; Де-Мойн; Бордман; Ашберн27
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур7
Україна Одеса; Дніпро; Київ3
Німеччина;; Фалькенштайн3
Канада Торонто; Монреаль2
Камбоджа Пномпень1
Фінляндія Гельсінкі1
Румунія Волонтарі1
Нідерланди Амстердам1
15.1.2020 Моделювання термомеханічних процесів у функціонально-градієнтних матеріалах неоднорідної структури під час виготовляння й експлуатації елементів ракетних конструкцій
15.1.2020 Моделювання термомеханічних процесів у функціонально-градієнтних матеріалах неоднорідної структури під час виготовляння й експлуатації елементів ракетних конструкцій
15.1.2020 Моделювання термомеханічних процесів у функціонально-градієнтних матеріалах неоднорідної структури під час виготовляння й експлуатації елементів ракетних конструкцій

Хмара тегів

]]>
11.2.2018 Деякі особливості забезпечення гарантійного строку эксплуатацїі РРД в умовах заміщення комплектувальних виробів міжгалузевого застосування https://journal.yuzhnoye.com/ua/content_2018_2-ua/annot_11_2_2018-ua/ Thu, 07 Sep 2023 11:32:42 +0000 https://journal.yuzhnoye.com/?page_id=30645
2018 (2); 94-100 DOI: https://doi.org/10.33136/stma2018.02.094 Мова: Російська Анотація: Розглянуто сучасні аспекти прогнозування та встановлення гарантійних строків експлуатації рідинних ракетних двигунів.
]]>

11. Деякі особливості забезпечення гарантійного строку эксплуатацїі РРД в умовах заміщення комплектувальних виробів міжгалузевого застосування

Автори: Паталаха В. А., Рыжко О. В.

Організація: ДП "КБ "Південне" ім. М. К. Янгеля", Дніпро, Україна

Сторінка: Kosm. teh. Raket. vooruž. 2018 (2); 94-100

DOI: https://doi.org/10.33136/stma2018.02.094

Мова: Російська

Анотація: Розглянуто сучасні аспекти прогнозування та встановлення гарантійних строків експлуатації рідинних ракетних двигунів. Наведено етапи та послідовність проведення робіт з призначення гарантійних строків. Викладено фізичні основи визначення режимів випробувань на термічне старіння, вплив підвищеної вологості. Дано математичні залежності для визначення часу проведення випробувань за підвищених температури і відносної вологості, еквівалентної температури зберігання виробу. Викладено узагальнений перелік і послідовність випробувань для встановлення гарантійного строку. Розглянуто зміст робіт з пошуку та впровадження нових комплектувальних виробів міжгалузевого використання, зокрема матеріалів-замісників для гумових сумішей під час виробництва гумових технічних виробів, полімерних матеріалів (фторопластів, поліамідів), ізотропного пірографіту, озонозберігаючих засобів для знежирювання вузлів рідинних ракетних двигунів, що контактують з компонентом палива  киснем, а також пошуку альтернативних підшипників.

Ключові слова: ізотропний пірографіт, прискорені кліматичні випробування, фторопласт, еквівалентна температура зберігання, енергія активації

Список використаної літератури:
Завантажень статті: 39
Переглядів анотації: 
508
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Матаван; Північний Берген; Плейно; Колумбус; Фінікс; Фінікс; Монро; Ашберн; Сіетл; Сіетл; Ашберн; Ашберн; Ашберн; Сіетл; Таппаханок; Портленд; Сан-Матео; Сан-Матео; Сан-Матео; Де-Мойн; Бордман; Ашберн22
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур7
Фінляндія Гельсінкі1
Unknown1
Індія Харар1
Ірак Аль-Хілла1
Монголія1
Канада Монреаль1
Німеччина Фалькенштайн1
Румунія Волонтарі1
Нідерланди Амстердам1
Україна Дніпро1
11.2.2018 Деякі особливості забезпечення гарантійного строку эксплуатацїі РРД в умовах заміщення комплектувальних виробів міжгалузевого застосування
11.2.2018 Деякі особливості забезпечення гарантійного строку эксплуатацїі РРД в умовах заміщення комплектувальних виробів міжгалузевого застосування
11.2.2018 Деякі особливості забезпечення гарантійного строку эксплуатацїі РРД в умовах заміщення комплектувальних виробів міжгалузевого застосування

Хмара тегів

]]>
14.1.2019 Методологія визначення ресурсу працездатності РДТП з урахуванням запасів міцності матеріалів та елементів https://journal.yuzhnoye.com/ua/content_2019_1-ua/annot_14_1_2019-ua/ Wed, 24 May 2023 16:00:23 +0000 https://journal.yuzhnoye.com/?page_id=27955
2019, (1); 95-101 DOI: https://doi.org/10.33136/stma2019.01.096 Мова: Російська Анотація: Строк експлуатації (ресурс працездатності) пристрою (системи, конструкції, матеріалу) є одним з найважливіших показників, що визначають надійне виконання завдання або необхідність заміни пристрою. Розроблені методологічні основи інженерного оцінювання ресурсу працездатності може бути використано для розрахункового обґрунтування строку експлуатації матеріалу й конструкції на етапі проектування системи і внесення необхідних коригувань у прийняті проектно-конструкторські рішення. Ключові слова: напруження , деформація , строк експлуатації , старіння , навантаження Список використаної літератури: 1. напруження , деформація , строк експлуатації , старіння , навантаження .
]]>

14. Методологія визначення ресурсу працездатності РДТП з урахуванням запасів міцності матеріалів та елементів

Автори: Ушкін М. П.

Організація: ДП "КБ "Південне" ім. М. К. Янгеля", Дніпро, Україна

Сторінка: Kosm. teh. Raket. vooruž. 2019, (1); 95-101

DOI: https://doi.org/10.33136/stma2019.01.096

Мова: Російська

Анотація: Строк експлуатації (ресурс працездатності) пристрою (системи, конструкції, матеріалу) є одним з найважливіших показників, що визначають надійне виконання завдання або необхідність заміни пристрою. Метою цієї роботи є розроблення інженерної методології проектного оцінювання ресурсу працездатності пристрою для забезпечення обґрунтованого прийняття проектноконструкторських рішень. Методологію оцінювання ресурсу матеріалу і конструкції розроблено на основі узагальнення великого обсягу експериментальних даних ДП «КБ «Південне» і теоретичних досліджень впливу різних факторів (властивостей матеріалів, навантажень, умов зберігання й експлуатації) на запас їх працездатності на основі міцнісного розрахунку. При цьому визначення ресурсу базується на результатах розрахунків напружень і деформацій і їх порівнянні з міцнісними характеристиками застосовуваного матеріалу (міцністю на розрив і деформативністю). Міцнісні властивості матеріалу повинні бути зведені до умов випробування за температурою, тиском, швидкістю навантаження, ступенем старіння матеріалу та ін. Методологія передбачає оцінювання запасів міцності на всіх стадіях зберігання й експлуатації пристрою, врахування впливу діючих факторів (масових, температурних, навантажувальних, процесу старіння матеріалу), проведення розрахунків для вибраних специфічних зон пристрою. Показано, що оцінка ресурсу в загальному випадку є ймовірнісною величиною через випадкове поєднання впливних факторів (міцнісних характеристик, умов зберігання й експлуатації, навантажень). Аналіз експериментальних і розрахункових даних щодо РДТП показує, що найнебезпечнішими зонами, які визначають ресурс працездатності, є канал заряду (деформації під час запуску), зона скріплення палива з корпусом (відривні напруження) і зона «замка» розкріплювальної манжети (концентрація зсувних і відривних напружень і деформацій). Розроблені методологічні основи інженерного оцінювання ресурсу працездатності може бути використано для розрахункового обґрунтування строку експлуатації матеріалу й конструкції на етапі проектування системи і внесення необхідних коригувань у прийняті проектно-конструкторські рішення.

Ключові слова: напруження, деформація, строк експлуатації, старіння, навантаження

Список використаної літератури:

1. Ляшевский А. В., Миронов Е. А., Ведерников М. В. Прогнозирование сроков пригодности твердых ракетных топлив методом рентген-компьютерной томографии //Авиационная и ракетно-космическая техника. – №2. – 2015. – С. 118-123.
2. Schubert H., Menke K. Service Life Determination of Rocket Motors by Comprehensive Property Analysis of Propellant Grain // Athens, Greece, May, 1996, Simposium. – №41 – С. 1-10.
3. Hufferd W. L. Service Life Assessment for Space Launch Vehicles // Athens, Greece, May, 1996, Simposium. – №46 – С. 1-9.
4. Faulkner G. S., Tod D. Service Life Prediction Methodologies Aspects of the TTCP KTA-14 UK Programme // Athens, Greece, May, 1996, Simposium. – №24 – С. 1-13.
5. Francis E. C. (England), Busswell H. J. Improvements in Rocket Motor Service Life Prediction // Athens, Greece, May, 1996, Simposium. – №27 – С. 1-13.
6. Collingwood G. A., Dixon M. D., Clark L. M., Becker E. B. Solid Rocket Motor Service Life Prediction Using Nonlinear Viscoelastic Analysis and Probabilistic Approach //Athens, Greece, May, 1996, Simposium. – №29 – С. 1-8.
7. Жарков А. С., Анисимов И. И., Марьяш В. И. Физко-химические процессы в изделиях из высокоэнергетических конденсированных материалов при длительной эксплуатации // Физическая мезомеханика. – №9/4. – 2006. – С. 93-106.
8. Гуль В. Е. Структура и прочность полимеров // М.: Химия, 1971. – С. 10-23, 189-209.
9. Павлов П. А. Основы инженерных расчетов элементов машин на усталостную и длительную прочность // Л.: Машиностроение, 1988. – С. 65-70.
10. Ушкин Н. П. Способы проектной оценки ресурса РДТТ и обеспечения его длительной эксплуатации // Космическая техника. Ракетное вооружение: Сб. науч.-техн. ст. – 2016. – Вып. 1. – Днепропетровск: ГП «КБ «Южное». – С. 110-116.

Завантажень статті: 47
Переглядів анотації: 
222
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Бордман; Балтімор;; Плейно; Майамі; Майамі; Колумбус; Колумбус; Детроїт; Фінікс; Фінікс; Фінікс; Монро; Ашберн; Ашберн; Сіетл; Сіетл; Таппаханок; Портленд; Портленд; Портленд; Сан-Матео; Сан-Матео; Сан-Матео; Колумбус; Де-Мойн; Бордман; Ашберн28
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур9
Індія Карнал; Тіруччіраппаллі2
Україна Київ; Дніпро2
Китай Шанхай1
Unknown1
Великобританія Лондон1
Німеччина Фалькенштайн1
Румунія Волонтарі1
Нідерланди Амстердам1
14.1.2019 Методологія визначення ресурсу працездатності РДТП з урахуванням запасів міцності матеріалів та елементів
14.1.2019 Методологія визначення ресурсу працездатності РДТП з урахуванням запасів міцності матеріалів та елементів
14.1.2019 Методологія визначення ресурсу працездатності РДТП з урахуванням запасів міцності матеріалів та елементів

Хмара тегів

]]>
18.1.2016 Способи проектного оцінювання ресурсу РДТП і забезпечення його тривалої експлуатації https://journal.yuzhnoye.com/ua/content_2016_1-ua/annot_18_1_2016-ua/ Tue, 23 May 2023 13:14:12 +0000 https://journal.yuzhnoye.com/?page_id=27296
2016 (1); 110-116 Мова: Російська Анотація: На підставі узагальнення й аналізу великого досвіду робіт ДП “КБ “Південне” щодо створення РДТП різних типів установлено залежності строків їх експлуатації від основних діючих факторів.
]]>

18. Способи проектного оцінювання ресурсу РДТП і забезпечення його тривалої експлуатації

Автори: Ушкін М. П.

Організація: ДП "КБ "Південне" ім. М. К. Янгеля", Дніпро, Україна

Сторінка: Kosm. teh. Raket. vooruž. 2016 (1); 110-116

Мова: Російська

Анотація: На підставі узагальнення й аналізу великого досвіду робіт ДП “КБ “Південне” щодо створення РДТП різних типів установлено залежності строків їх експлуатації від основних діючих факторів. Розглянуто способи проектного оцінювання ресурсу працездатності новорозроблюваних РДТП на основі методів обліку руйнівних напруг і нагромаджених пошкоджень (руйнівних деформацій). Запропоновано алгоритм проектного оцінювання ресурсу РДТП і вироблено рекомендації щодо забезпечення тривалої експлуатації двигунів.

Ключові слова:

Список використаної літератури:
Завантажень статті: 47
Переглядів анотації: 
120
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Ашберн; Балтімор;; Шайєнн; Колумбус; Фінікс; Фінікс; Фінікс; Монро; Ашберн; Сіетл; Сіетл; Ашберн; Сіетл; Сіетл; Таппаханок; Портленд; Портленд; Сан-Матео; Сан-Матео; Де-Мойн; Бордман; Бордман; Ашберн; Бордман; Сіетл26
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур7
Україна Київ; Київ; Дрогобич; Дніпро; Дніпро; Дніпро6
Бельгія Брюссель1
Камбоджа Пномпень1
Індія Тіруччіраппаллі1
Монголія1
Німеччина Фалькенштайн1
Румунія Волонтарі1
Нідерланди Амстердам1
Unknown1
18.1.2016 Способи проектного оцінювання ресурсу РДТП і забезпечення його тривалої експлуатації
18.1.2016 Способи проектного оцінювання ресурсу РДТП і забезпечення його тривалої експлуатації
18.1.2016 Способи проектного оцінювання ресурсу РДТП і забезпечення його тривалої експлуатації
]]>
3.1.2016 Про особливості відпрацювання строків експлуатації та безпечного зберігання ракетних двигунів на твердому паливі https://journal.yuzhnoye.com/ua/content_2016_1-ua/annot_3_1_2016-ua/ Tue, 23 May 2023 12:56:17 +0000 https://test8.yuzhnoye.com/?page_id=26870
Про особливості відпрацювання строків експлуатації та безпечного зберігання ракетних двигунів на твердому паливі Автори: Кириченко А. 2016 (1); 19-25 Мова: Російська Анотація: Наведено результати експериментального відпрацювання гарантійних строків експлуатації ракетних двигунів на твердому паливі. (2016) "Про особливості відпрацювання строків експлуатації та безпечного зберігання ракетних двигунів на твердому паливі" Космическая техника. "Про особливості відпрацювання строків експлуатації та безпечного зберігання ракетних двигунів на твердому паливі" Космическая техника. quot;Про особливості відпрацювання строків експлуатації та безпечного зберігання ракетних двигунів на твердому паливі", Космическая техника. Про особливості відпрацювання строків експлуатації та безпечного зберігання ракетних двигунів на твердому паливі Автори: Кириченко А. Про особливості відпрацювання строків експлуатації та безпечного зберігання ракетних двигунів на твердому паливі Автори: Кириченко А.
]]>

3. Про особливості відпрацювання строків експлуатації та безпечного зберігання ракетних двигунів на твердому паливі

Автори: Кириченко А. С., Баліцький І. П., Рогулін В. В., Чепель Г. М., Тутов М. І.

Організація: ДП "КБ "Південне" ім. М. К. Янгеля", Дніпро, Україна

Сторінка: Kosm. teh. Raket. vooruž. 2016 (1); 19-25

Мова: Російська

Анотація: Наведено результати експериментального відпрацювання гарантійних строків експлуатації ракетних двигунів на твердому паливі. Розглянуто деякі особливості та методи випробувань з імітації існуючих під час експлуатації ракетних двигунів механічних і кліматичних навантажень.

Ключові слова:

Список використаної літератури:
Завантажень статті: 41
Переглядів анотації: 
366
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Бордман; Ашберн; Матаван; Балтімор; Бойдтон; Майамі; Фінікс; Фінікс; Монро; Ашберн; Колумбус; Сіетл; Ашберн; Бордман; Сіетл; Портленд; Портленд; Сан-Матео; Де-Мойн; Бордман; Бордман; Ашберн22
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур6
Німеччина Нюрнберг;;; Фалькенштайн4
Україна Дніпро; Дніпро;3
Фінляндія Гельсінкі1
Франція1
Індія Тіруччіраппаллі1
Канада Монреаль1
Румунія Волонтарі1
Нідерланди Амстердам1
3.1.2016 Про особливості відпрацювання строків експлуатації та безпечного зберігання ракетних двигунів на твердому паливі
3.1.2016 Про особливості відпрацювання строків експлуатації та безпечного зберігання ракетних двигунів на твердому паливі
3.1.2016 Про особливості відпрацювання строків експлуатації та безпечного зберігання ракетних двигунів на твердому паливі
]]>