Результати пошуку “технологічні системи наземного комплексу” – Збірник науково-технічних статей https://journal.yuzhnoye.com Космічна техніка. Ракетне озброєння Mon, 17 Jun 2024 13:04:21 +0000 uk hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Результати пошуку “технологічні системи наземного комплексу” – Збірник науково-технічних статей https://journal.yuzhnoye.com 32 32 9.1.2024 УНІВЕРСАЛЬНИЙ МОДУЛЬ ТЕРМОСТАТУВАННЯ – НОВИЙ ПІДХІД У РОЗРОБЛЕННІ СУЧАСНИХ СИСТЕМ ТЕРМОСТАТУВАННЯ РАКЕТНО-КОСМІЧНИХ КОМПЛЕКСІВ https://journal.yuzhnoye.com/ua/content_2024_1-ua/annot_9_1_2024-ua/ Mon, 17 Jun 2024 08:48:18 +0000 https://journal.yuzhnoye.com/?page_id=34912
Ключові слова: ракетно-космічний комплекс , ракета-носій , технологічні системи наземного комплексу , система термостатування , система відкритого типу , універсальність , модульна конструкція Список використаної літератури: . ракетно-космічний комплекс , ракета-носій , технологічні системи наземного комплексу , система термостатування , система відкритого типу , універсальність , модульна конструкція .
]]>

9. Універсальний модуль термостатування – новий підхід у розробленні сучасних систем термостатування ракетно-космічних комплексів

Організація:

ДП “КБ “Південне” ім. М. К. Янгеля”, Дніпро, Україна

Сторінка: Kosm. teh. Raket. vooruž. 2024, (1); 78-84

Мова: Українська

Анотація: Нині під час створення будь-якого ракетного космічного комплексу актуальним є забезпечення його перспективності та конкурентоспроможності. Для створення такого комплексу технічні системи, що входять до його складу, мають бути реалізовані з мінімальними економічними й енергетичними витратами. У ракетних комплексах космічного призначення системою, відповідальною за забезпечення необхідного вологотемпературного режиму ракети космічного призначення на усіх етапах її підготовки до пуску, є система термостатування. Створення конкурентоспроможного РКК потребує нового підходу і до створення  систем термостатування. Створення системи, яку можна серійно виготовляти та використовувати у складі будь-якого ракетного космічного комплексу, є одним із основних завдань. Вирішення цього завдання дозволить значно скоротити витрати на створення, експлуатацію як самих систем, так і всього комплексу в цілому. Один із шляхів вирішення поставленого завдання — це створення системи термостатування універсального типу. Оптимальним є модульний принцип конструктивної побудови системи термостатування, що полягає у створенні системи з окремих модулів. Це спрощує загальний монтаж різних варіантів системи та полегшує налаштування й експлуатацію. У роботі продемонстровано можливість і перспективність створення модульних систем термостатування, що дозволяють забезпечити повітрям з потрібними параметрами різних споживачів. Наведено характеристики та конструкція універсального модуля термостатування, який може бути використаний як основний складовий елемент без змін у складі стаціонарних систем термостатування і транспортних систем термостатування.

Ключові слова: ракетно-космічний комплекс, ракета-носій, технологічні системи наземного комплексу, система термостатування, система відкритого типу, універсальність, модульна конструкція

Список використаної літератури:
  • . Tsiklon-4M. URL: https://www. yuzhnoye.com.
  • . KRK «Tsiklon-4M». C4M YZH SPS 090 02 Technicheskoe zadanie na sostavnuyu chast’ OKR «Sistema termostatirovaniya rakety-nositelya i golovnogo bloka» GP «KB «Yuzhnoye». 78 s.
  • . KRK «Tsiklon-4M». C4M YZH SPS 119 02 Technicheskoe zadanie na sostavnuyu chast OKR «Transportnaya systema termostatirovaniya» GP «KB «Yuzhnoye». 2018. 40 s.
Завантажень статті: 17
Переглядів анотації: 
393
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Матаван; Бойдтон; Колумбус; Фінікс; Ашберн; Ашберн; Де-Мойн; Бордман; Ашберн9
Німеччина;2
Сінгапур Сінгапур; Сінгапур2
Фінляндія Гельсінкі1
Канада Монреаль1
Нідерланди Амстердам1
Україна Дніпро1
9.1.2024 УНІВЕРСАЛЬНИЙ МОДУЛЬ ТЕРМОСТАТУВАННЯ – НОВИЙ ПІДХІД У РОЗРОБЛЕННІ СУЧАСНИХ СИСТЕМ ТЕРМОСТАТУВАННЯ РАКЕТНО-КОСМІЧНИХ КОМПЛЕКСІВ
9.1.2024 УНІВЕРСАЛЬНИЙ МОДУЛЬ ТЕРМОСТАТУВАННЯ – НОВИЙ ПІДХІД У РОЗРОБЛЕННІ СУЧАСНИХ СИСТЕМ ТЕРМОСТАТУВАННЯ РАКЕТНО-КОСМІЧНИХ КОМПЛЕКСІВ
9.1.2024 УНІВЕРСАЛЬНИЙ МОДУЛЬ ТЕРМОСТАТУВАННЯ – НОВИЙ ПІДХІД У РОЗРОБЛЕННІ СУЧАСНИХ СИСТЕМ ТЕРМОСТАТУВАННЯ РАКЕТНО-КОСМІЧНИХ КОМПЛЕКСІВ

Хмара тегів

]]>
8.1.2019 Віртуальні випробування система кріплення кидкових елементів касетної головної частини під час наземної експлуатації https://journal.yuzhnoye.com/ua/content_2019_1-ua/annot_8_1_2019-ua/ Thu, 25 May 2023 12:09:45 +0000 https://journal.yuzhnoye.com/?page_id=27949
Метод реалізовано на базі комп’ютерних моделей, розроблених у середовищі програмного комплексу ANSYS Workbench. На основі запропонованого методу проведено віртуальні випробування складної механічної системи кріплення кидкових елементів касетної головної частини в умовах температурних і циклічних впливів, що виникають під час наземного транспортування ракети. При цьому розрахункові моделі враховують усі конструктивні і технологічні особливості конструкції: компонування кріплення кидкових елементів, початковий напружено-деформований стан системи після затягування нарізних з`єднань, тертя між складовими елементами системи та їх взаємне зміщення, залежність від температури фізикомеханічних характеристик і граничних напруг матеріалів.
]]>

8. Віртуальні випробування система кріплення кидкових елементів касетної головної частини під час наземної експлуатації

Організація:

ДП “КБ “Південне” ім. М. К. Янгеля”, Дніпро, Україна1; Інститут проблем машинобудування ім. А. Підгорного, Харків, Україна2; Харківський політехнічний інститут, Харків, Україна3

Сторінка: Kosm. teh. Raket. vooruž. 2019, (1); 54-63

DOI: https://doi.org/10.33136/stma2019.01.054

Мова: Російська

Анотація: Запропоновано ефективний підхід у технології відпрацювання ракетних конструкцій, який ґрунтується на методі числового моделювання, що дозволяє до початку експериментального відпрацювання проводити віртуальні експлуатаційні випробування для перевірки працездатності штатних конструкцій і прогнозувати проблемні питання. Метод реалізовано на базі комп’ютерних моделей, розроблених у середовищі програмного комплексу ANSYS Workbench. На основі запропонованого методу проведено віртуальні випробування складної механічної системи кріплення кидкових елементів касетної головної частини в умовах температурних і циклічних впливів, що виникають під час наземного транспортування ракети. Розроблено розрахункові моделі, критерії та практичні технології випробувань, які необхідні для аналізу механічного стану та прогнозу працездатності реальної конструкції головної частини. При цьому розрахункові моделі враховують усі конструктивні і технологічні особливості конструкції: компонування кріплення кидкових елементів, початковий напружено-деформований стан системи після затягування нарізних з`єднань, тертя між складовими елементами системи та їх взаємне зміщення, залежність від температури фізикомеханічних характеристик і граничних напруг матеріалів. Для заданих режимів навантаження під час наземної експлуатації головної частини визначено найнебезпечніші розрахункові випадки, які реалізовано під час проведення віртуальних випробувань. За результатами випробувань проведено статичний аналіз механічного стану, міцності й умов, що забезпечують працездатність реальної конструкції кріплення на експлуатаційних рівнях температурних і циклічних впливів. Результати віртуальних випробувань підтверджують працездатність системи кріплення кидкових елементів касетної головної частини. Їх упроваджено у практику підприємства на етапі конструкторського розроблення.

Ключові слова: комп’ютерне моделювання, розрахункові моделі, наземна експлуатація, механічний стан, працездатність

Список використаної літератури:

1. Биргер И. А., Иосилевич Г. Б. Резьбовые и фланцевые соединения.  М.: Машиностроение, 1990.  368 с.
2. Кухлинг Х. Справочник по физике. – М.: Мир, 1985.  520 с.
3. Никольский Б. П., Рабинович В. А.Справочник химика. Т. 6. – Л.: Химия, 1967. – 1009 с.
4. Стали и сплавы. Марочник: Справ. изд. /Под ред. В. Г. Сорокина, М. А. Гервасьева. М.: Интермет Инжиниринг, 2001.  608 с.
5. Numerical simulation of missile warhead operation / G. Martynenko, M. Chernobryvko, K. Avramov, V. Martynenko, A. Tonkonozhenko, V. ozharin, D. Klymenko // Advances in Engineering Software. – 2018. – Vol. 123. – P. 93-103.

Завантажень статті: 39
Переглядів анотації: 
713
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Ашберн; Матаван; Балтімор; Плейно; Фінікс; Монро; Ашберн; Колумбус; Ашберн; Сіетл; Сіетл; Таппаханок; Сан-Матео; Сан-Матео; Колумбус; Де-Мойн; Бордман; Бордман; Ашберн19
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур13
Unknown Брісбен;2
Фінляндія Гельсінкі1
Канада Монреаль1
Румунія Волонтарі1
Нідерланди Амстердам1
Україна Дніпро1
8.1.2019 Віртуальні випробування система кріплення кидкових елементів касетної головної частини під час наземної експлуатації
8.1.2019 Віртуальні випробування система кріплення кидкових елементів касетної головної частини під час наземної експлуатації
8.1.2019 Віртуальні випробування система кріплення кидкових елементів касетної головної частини під час наземної експлуатації

Хмара тегів

]]>