Результати пошуку “Los' O. V.” – Збірник науково-технічних статей https://journal.yuzhnoye.com Космічна техніка. Ракетне озброєння Tue, 18 Jun 2024 08:50:02 +0000 uk hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Результати пошуку “Los' O. V.” – Збірник науково-технічних статей https://journal.yuzhnoye.com 32 32 12.1.2024 ЗМІЦНЕННЯ СТАЛЕЙ ШЛЯХОМ МОДИФІКАЦІЇ ЇХНЬОЇ ПОВЕРХНІ ІОННО-ПЛАЗМОВИМ АЗОТУВАННЯМ У ЖЕВРІЮЧОМУ РОЗРЯДІ https://journal.yuzhnoye.com/ua/content_2024_1-ua/annot_12_1_2024-ua/ Mon, 17 Jun 2024 11:36:02 +0000 https://journal.yuzhnoye.com/?page_id=34936
Loskutova T.
]]>

12. Зміцнення сталей шляхом модифікації їхньої поверхні іонно-плазмовим азотуванням у жевріючому розряді

Організація:

ДП “КБ “Південне” ім. М. К. Янгеля”, Дніпро, Україна1; Український державний університет науки та технологій2

Сторінка: Kosm. teh. Raket. vooruž. 2024, (1); 102-113

Мова: Українська

Анотація: Розглянуто технологію зміцнення сталей шляхом модифікації їхньої поверхні методом іонно-плазмового азотування у жевріючому розряді. Іонно-плазмове азотування є багатофакторним процесом, що вимагає вивчення впливу умов процесу азотування на структуру модифікованих шарів, яка, у свою чергу, визначає їхні механічні властивості. Об’єктами досліджень були: аустенітна сталь 12Х18Н10Т, вуглецева сталь Ст3 та конструкційна сталь 45. Дослідження проводили для двох умов створення плазми: вільного розташування зразків на поверхні катода (конфігурація І) та всередині порожнистого катода (конфігурація ІІ). Втановлено оптимальні параметри процесу іонно-плазмового азотування, що забезпечують стабільність процесу та створюють умови для інтенсивної дифузії азоту в поверхню сталі. Для інтенсифікації процесу азотування у газове середовище аргон-азот додавали водень. Робочий тиск у камері підтримувався в діапазоні 250-300 Па, тривалість процесу становила 120 хв. Наведено порівняльні характеристики структури та мікротвердості модифікованих поверхонь досліджуваних сталей для двох технологій іонно-плазмового азотування. Металографічне дослідження структури поверхневих модифікованих шарів у поперечному перерізі показало наявність шаруватого азотованого шару, що складається з різних фаз і має різну глибину залежно від матеріалу зразка та режиму оброблення. Азотований шар сталі 12Х18Н10Т складався з чотирьох підшарів: верхнього «білого» нітридного шару, подвійного дифузійного шару та нижнього перехідного шару. Загальна глибина азотованого шару при зазначеному часі оброблення досягла 23 мкм, застосування порожнистого катода збільшило її на 26% до 29 мкм. Азотовані шари сталі Ст3 і сталі 45 складалися з двох підшарів – товстого “білого” нітридного шару і загальної дифузійного товщиною порядку 18 мкм. Мікротвердість азотованого шару сталі Ст3 становила 480 HV, збільшившись у 2,5 рази, а сталі 45 – 440 HV, збільшившись в 1,7 рази. Застосування порожнистого катода для цих сталей зменшує глибину азотованого шару, але при цьому мікротвердість збільшується за рахунок утворення товстішого та щільнішого нітридного шару на поверхні. Результати проведених досліджень можуть бути використані для зміцнення поверхонь сталевих деталей ракетно-космічної техніки, нанесення високоміцних покриттів.

Ключові слова: іонне азотування, жевріючий розряд, структура шару в поперечному перерізі, зміцнення, мікротвердість.

Список використаної літератури:

1. Loskutova T. V., Pogrebova I. S., Kotlyar S. M., Bobina M. M., Kapliy D. A., Kharchenko N. A., Govorun T. P. Physichni ta tekhnologichni parametry azotuvannya stali Х28 v seredovyschi amiaku. Journal nano-elektronnoi physiki. 2023. №1(15). s. 1-4.
2. Al-Rekaby D. W., Kostyk V., Glotka A., Chechel M. The choice of the optimal temperature and time parameters of gas nitriding of steel. Eastern-European journal of Enterprise Technologies. 2016. V. 3/5(81). P.44-49.
3. Yunusov A. I., Yesipov R. S. Vliyanie sostava gazovoy sredy na process ionnogo azotirovaniya martensitnoy stali 15Х16К5НР2МВФАБ-Ш. Vestnik nauki. 2023. №5(62). s. 854-863.
4. Zakalov O. V. Osnovy tertya i znoshuvannya u mashinah: navch. posibnik, vydavnytstvo TNTU im. I. Pulyuya, Ternopil. 2011. 332 s.
5. Kindrachuk M. V., Zagrebelniy V. V., Khizhnyak V. G., Kharchenko N. A. Technologichni aspeckty zabespechennya pratsezdatnosti instrument z shvydkorizalnykh staley. Problemy tertya ta znoshuvannya. 2016. №1 (70). S. 67-78.
6. Skiba M. Ye., Stechishyna N. M., Medvechku N. K., Stechishyn M. S., Lyukhovets’ V. V. Bezvodneve azotuvannya u tliyuchomu rozryadi, yak metod pidvyschennya znosostiykisti konstruktsiynykh staley. Visn. Khmelnitskogo natsionalnogo universitetu. 2019. №5. S. 7-12.
7. Axenov I. I. Vakkumno-dugovye pokrytiya. Technologiya, materialy, struktura i svoistva. Kharkov, 2015. 379 s.
8. Pastukh I. M., Sokolova G. N., Lukyanyuk N. V. Azotirovanie v tleyuschem razryade: sostoyanie i perspektyvy. Problemy trybologii. 2013. №3. S. 18-22.
9. Pastukh I. M. Teoriya i praktika bezvodorodnogo azotirovanniya v tleuschem razryade: izdatelstvo NNTs KhFTI. Kharkov, 2006. 364 s.
10. Sagalovich O. V., Popov V. V., Sagalovich V. V. Plasmove pretsenziyne azotuvannya AVINIT N detaley iz staley i splaviv. Technologicheskie systemy. 2019. №4. S. 50-56.
11. Kozlov A. A. Nitrogen potential during ion nitriding process in glow-discharge plasma. Science and Technique. 2015. Vol. 1. P. 79-90.
12. Nadtoka V., Kraiev M., Borisenko А., Kraieva V. Multi-component nitrated ion-plasma Ni-Cr coating. Journal of Physics and Electronics. 2021. №29(1). Р. 61–64. DOI 10.15421/332108.
13. Nadtoka V., Kraiev M., Borisenko A., Bondar D., Gusarova I. Heat-resistant MoSi2–NbSi2 and Cr–Ni coatings for rocket engine combustion chambers and respective vacuum-arc deposition technology/ 74th International Astronautical Congress (IAC-23-C2.4.2), Baku, Azerbaijan, 2-6 October 2023.
14. Kostik K. O., Kostik V. O. Porivnyalniy analiz vplyvu gazovogo ta ionno-plazmovogo azotuvannya na zminu struktury i vlastyvostey legovannoi stali 30Х3ВА. Visnik NTU «KhPI». 2014. №48(1090). S. 21-41.
15. Axenov I. I., Axenov D. S., Andreev A. A., Belous V. A., Sobol’ O.V. Vakuumno-dugovye pokrytiya: technologia, materialy, struktura, svoistva: VANT NNTs KhFTI, Kharkov. 2015. 380 s.
16. Pidkova V. Ya. Modyfikuvannya poverkhni stali 12Х18Н10Т ionnoyu implantatsieyu azotom. Technology audit and production reserves. 2012. Vol. 3/2(5). P. 51-52.
17. Kosarchuk V. V., Kulbovsliy I. I., Agarkov O. V. Suchasni metody zmitsnennya i pidvyschennya znosostiykosti par tertya. Ch. 2. Visn. Natsionalnogo transportnogo universytetu. 2016. Vyp. 1(34). S. 202-210.
18. Budilov V. V., Agzamov R. D., Ramzanov K. N. Issledovanie i razrabotka metodov khimiko-termicheskoy obrabotki na osnove strukturno-fasovogo modifitsirovaniya poverkhnisti detaley silnotochnymi razryadami v vakuume. Vestnik UGATU. Mashinostroenie. 2007. T. 9, №1(19). S. 140-149.
19. Abrorov A., Kuvoncheva M., Mukhammadov M. Ion-plasma nitriding of disc saws of the fiber-extracting machine. Modern Innovation, Systems and Technologies. 2021. Vol. 1(3). P. 30-35.
20. Smolyakova M. Yu., Vershinin D. S., Tregubov I. M. Issledovaniya vliyaniya nizkotemperaturnogo azotirovanniya na strukturno-fasoviy sostav i svoistva austenitnoy stali. Vzaimodeystvie izlecheniy s tverdym telom: materialy 9-oi Mezhdunarodnoy konferentsii (Minsk, 20-22 sentyabrya 2011 g.). Minsk, 2011. S. 80-82.
21. Adhajani H., Behrangi S. Plasma Nitriding of Steel: Topics in Mining, Metallurgy and Material Engineering by series editor Bergmann C.P. 2017. 186 p.
22. Fernandes B.B. Mechanical properties of nitrogen-rich surface layers on SS304 treated by plasma immersion ion implantation. Applied Surface Science. 2014. Vol. 310. P. 278-283.
23. Khusainov Yu. G., Ramazanov K. N., Yesipov R. S., Issyandavletova G. B. Vliyanie vodoroda na process ionnogo azotirovanniya austenitnoy stali 12Х18Н10Т. Vestnik UGATU. 2017. №2(76). S. 24-29.
24. Sobol’ O. V., Andreev A. A., Stolbovoy V. A., Knyazev S. A., Barmin A. Ye., Krivobok N. A. Issledovanie vliyaniya rezhimov ionnogo azotirovanniya na strukturu i tverdost’ stali. Vostochno-Yevropeyskiy journal peredovykh tekhnologiy. 2015. №2(80). S. 63-68.
25. Kaplun V. G. Osobennosti formirovanniya diffusionnogo sloya pri ionnom azotirovannii v bezvodorodnykh sredakh. FIP. 2003. T1, №2. S. 145.

Завантажень статті: 10
Переглядів анотації: 
499
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Матаван; Фінікс; Ашберн; Де-Мойн; Бордман5
Україна Київ; Дніпро2
Фінляндія Гельсінкі1
Сінгапур Сінгапур1
Нідерланди Амстердам1
12.1.2024 ЗМІЦНЕННЯ СТАЛЕЙ ШЛЯХОМ МОДИФІКАЦІЇ ЇХНЬОЇ ПОВЕРХНІ ІОННО-ПЛАЗМОВИМ АЗОТУВАННЯМ У ЖЕВРІЮЧОМУ РОЗРЯДІ
12.1.2024 ЗМІЦНЕННЯ СТАЛЕЙ ШЛЯХОМ МОДИФІКАЦІЇ ЇХНЬОЇ ПОВЕРХНІ ІОННО-ПЛАЗМОВИМ АЗОТУВАННЯМ У ЖЕВРІЮЧОМУ РОЗРЯДІ
12.1.2024 ЗМІЦНЕННЯ СТАЛЕЙ ШЛЯХОМ МОДИФІКАЦІЇ ЇХНЬОЇ ПОВЕРХНІ ІОННО-ПЛАЗМОВИМ АЗОТУВАННЯМ У ЖЕВРІЮЧОМУ РОЗРЯДІ

Хмара тегів

]]>
11.1.2024 РОЗРАХУНОК ПАРАМЕТРІВ СИСТЕМИ ТРАНСПОРТУВАННЯ МІСЯЧНОГО РЕГОЛІТУ https://journal.yuzhnoye.com/ua/content_2024_1-ua/annot_11_1_2024-ua/ Mon, 17 Jun 2024 08:41:21 +0000 https://journal.yuzhnoye.com/?page_id=34925
vooruž. Pustovgarov A. A., Osinoviy G. Sposoby transortirovki poleznykh iskopaemykh ot mesta ikh dobychi k mestu pererabotki v lunnykh usloviyukh. Osinoviy, Ye. molodykh vchenykh «Geotechnichni problemy rozrobky rodovysch». Dnipro, 24 zhovtnya 2019 r. Mnogorazoviy lunniy lander. Vol. Journal of Rare Earths Vol. GLOBAL MOON VILLAGE. https://space-architect.org/portfolio-item/ global-moon-village// 11. November 1991. S-9 https://denning.atmos.colostate.edu/readings/ lunar.regolith.heat.transfer.pdf 13. SLobodyannikova I. molodykh vchennykh (26 zhovt. Polyakova NAN Ukrainy, 2023. Doslidzhennya travmuvannya zerna gvintovym konveerom. Gevko R. B., Vitroviy A. Bulgakov B. V., Nadikto V. Vol. Missile armaments, vol.
]]>

11. Розрахунок параметрів системи транспортування місячного реголіту

Організація:

Інститут геотехнічної механіки ім. М. С. Полякова НАН України1; ДП “КБ “Південне” ім. М. К. Янгеля”, Дніпро, Україна2; Український державний університет науки та технологій3

Сторінка: Kosm. teh. Raket. vooruž. 2024, (1); 93-101

Мова: Українська

Анотація: Мета статті полягає в розробленні науково обґрунтованого методу визначення основних технологічних показників шнекового транспорту, таких як витрата матеріалу та потужність відповідного електродвигуна, за густиною та пористістю матеріалу, який транспортується, геометричними характеристиками шнека та особливостями гравітаційних полів в місці транспортування, а також у дослідженні можливих обмежень параметрів шнека при транспортуванні місячного реголіту. Для досягнення мети були використані відомі залежності для розрахування параметрів шнека-транспортера та фундаментальні закономірності механіки сипкого середовища, основні рівняння електродинаміки асинхронних двигунів, а також особливості поведінки сипких середовищ при переміщенні шнеком, що були експериментально досліджені вітчизняними авторами. Це дозволило вперше для умов Місяця запропонувати методику розрахування технологічних показників шнека-транспортера, таких як витрата матеріалу та потужність електродвигуна, що її забезпечує, за відомими геометричними характеристиками магістралі та трубопроводу, ступенем наповненості шнека та параметрами обраного електродвигуна. Вдалося дослідити вплив величини ступеня наповненості шнека-транспортера на його основні характеристики та встановити можливі обмеження геометричних параметрів та ступеня наповненості шнека, які обумовлені властивостями та особливостями електродвигуна, що використовується. Визначено припустимі значення відстані транспортування, діаметра шнека-транспортера та його інших геометричних параметрів, а також ступеня наповненості шнека, які можливі за параметрів обраного електродвигуна. Обґрунтовано, що для транспортування розсипів місячного реголіту в умовах Місяця найбільш перспективними будуть технологічні рішення на основі шнекового транспорту, оскільки вони малогабаритні та гнучкі, можуть розміщатися у трубах та розташовуватися під рівнем денної поверхні, забезпечують безперебійний процес транспортування, дозволяють автономне використання та спроможні живитися від сонячних батарей.

Ключові слова: Місяць, реголіт, шнек, електродвигун, витрата, потужність

Список використаної літератури:

1. Pustovgarov A. A., Osinoviy G. G. Kontseptsiya shlyuzovogo modulya misyachnoi bazy. ХХV Mizhnarodna molodizhna naukovo-praktychna conf. «Lyudyna i cosmos». Zbirnyk tez, NTsAOM, Dnipro, 2023. S. 86 – 87.
2. Semenenko P. V. Sposoby transortirovki poleznykh iskopaemykh ot mesta ikh dobychi k mestu pererabotki v lunnykh usloviyukh. P. V. Semenenko, D. G. Groshelev, G. G. Osinoviy, Ye. V. Semenenko, N. V. Osadchaya. XVII conf. molodykh vchenykh «Geotechnichni problemy rozrobky rodovysch». m. Dnipro, 24 zhovtnya 2019 r. S. 7.
3. Berdnik A. I. Mnogorazoviy lunniy lander. A. I. Berdnyk, M. D. Kalyapin, Yu. A. Lysenko, T. K. Bugaenko. Raketno-kosmichny complexy. 2019. T. 25. №5:3-10. ISSN 1561-8889.
4. Semenenko Ye. V., Osadchaya N. V. Traditsionnye i netraditsionnye vydy energii, a takzhe kosmicheskie poleznye iskopaemye v okolozemnom prostranstve. Nauch.-parakt. conf. «Sovremennye raschetno-experimentalnye metody opredeleniya characteristic raketno-kosmicheskoy techniki». m. Dnipro, 10 – 12 grudnya 2019 r. S. 62 – 63.
5. Komatsu pobudue excavator dlya roboty na Misyatsi https://www.autocentre.ua/ua/ news/concept/komatsu-postroit-ekskavator-dlya-raboty-na-lune-1380272.html.
6. Help NASA Design a Robot to Dig on the Moon https://www.nasa.gov/directorates/ stmd/help-nasa-design-a-robot-to-dig-on-the-moon/
7. Robert E. Grimm. Geophysical constaints on the lunar Procellarum KREEP Terrane. Vol. 118, Issue 4. April 2013. P. 768-778. https://agupubs-onlinelibrary-wiley-com.translate. goog/doi/10.1029/2012JE004114?_x_tr_sl=en&_x_tr_tl=ru&_x_tr_hl=ru&_x_tr_pto=sc
https://doi.org/10.1029/2012JE004114
8. Chen Li. A novel strategy to extract lunar mare KREEP-rich metal resources using a silicon collector. Kuixian Wei, Yang Li, Wenhui Ma, Yun Lei, Han Yu, Jianzhong Liu. Journal of Rare Earths Vol. 41, Issue 9, September 2023, P. 1429-1436. https://www-sciencedirect-com.translate.goog/science/article/ abs/pii/S1002072122001910?_x_tr_sl=en&_x_tr_tl=ru&_x_tr_hl=ru&_x_tr_pto=sc https://doi. org/10.1016/j.jre.2022.07.002
9. Moon Village Association https://moon-villageassociation.org/about/
10. GLOBAL MOON VILLAGE. https://space-architect.org/portfolio-item/ global-moon-village//
11. Just G. H. Parametric review of existing regolith excavation techniques for lunar In Situ Resource Utilization (ISRU) and recommendations for future excavation experiments. G. H. Just, Smith K., Joy K. H., Roy M. J. https://doi.org/10.1016/j.pss.2019.104746
https://www.sciencedirect.com/science/article/pii/S003206331930162X
12. Anthony J. Analysis of Lunar Regolith Thermal Energy Storage. Anthony J. Colozza Sverdrup Technology, Inc. Lewis Research Center Group Brook Park, Ohio NASA Contractor Report 189073. November 1991. S-9 https://denning.atmos.colostate.edu/readings/ lunar.regolith.heat.transfer.pdf
13. Obgruntuvannya vykorystannya shneka dlya utilizatsii vidkhodiv vuglezbagachennya z mozhlyvistyu pidvyschennya bezpeki energetychnoi systemy pidpriemstv. SLobodyannikova I. L., Podolyak K. K., Tepla T. D. Materialy XХІ Mizhnarod. conf. molodykh vchennykh (26 zhovt. 2023 roku, m. Dnipro). Dnipro: IGTM im. M.S. Polyakova NAN Ukrainy, 2023. S. 50–55.
14. Kulikivskiy V. L., Paliychuk V. K., Borovskiy V. M. Doslidzhennya travmuvannya zerna gvintovym konveerom. Konstryuvannya, vyrobnitstvo ta exspluatatsiya silskogospodarskykh mashin. 2016. Vyp. 46. S. 160 – 165.
14. Lyubin M. V., Tokarchuk O. A., Yaropud V. M. Osoblyvosti roboty krutopokhylennykh gvyntovykh transporterov pri peremischenni zernovoi produktsii. Tekhnika, energetika, transport APK. 216. № 3(95). S. 235 – 240.
15. Gevko R. B., Vitroviy A. O., Pik A. I. Pidvyschennya tekhnichnogo rivnya gnuchkykh gvyntovykh konveeriv. Ternopil: Aston, 2012. 204 s.
16. Bulgakov B. M., Adamchyuk V. V., Nadikto V. T., Trokhanyak O. M. Teoretichne obgruntuvannya parametriv gnuchkogo gvintovogo konveera dlya transportuvannya zernovykh materialiv. Visnyk agrarnoi nauki. 2023. № 4(841). S. 59 – 66.
17. New Views of the moon. Reviews in mineralogy and geochemistry. Eds. Joliff B.L., Wieczorek M.A., Shearer C.K., Neal C.R. Mineralogical Society of America. Reviews in mineralogy and geochemistry. 2006. Vol. 60. 721 p. DOI: 10.2138/rmg.2006.60.
18. Semenenko Ye. V. Nauchnye osnovy technologiy hydromechanizatsii otkrytoy razrabotki titan-cyrkonovykh rossypey. Yevgeniy Vladimirovich Semenenko. Kiev: Nauk. dumka, 2011. 232 s.

Завантажень статті: 13
Переглядів анотації: 
292
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Матаван; Фінікс; Ашберн; Ашберн; Де-Мойн; Бордман; Ашберн7
Сінгапур Сінгапур; Сінгапур2
Китай Шанхай1
Фінляндія Гельсінкі1
Нідерланди Амстердам1
Україна Дніпро1
11.1.2024 РОЗРАХУНОК ПАРАМЕТРІВ СИСТЕМИ ТРАНСПОРТУВАННЯ МІСЯЧНОГО РЕГОЛІТУ
11.1.2024 РОЗРАХУНОК ПАРАМЕТРІВ СИСТЕМИ ТРАНСПОРТУВАННЯ МІСЯЧНОГО РЕГОЛІТУ
11.1.2024 РОЗРАХУНОК ПАРАМЕТРІВ СИСТЕМИ ТРАНСПОРТУВАННЯ МІСЯЧНОГО РЕГОЛІТУ

Хмара тегів

Your browser doesn't support the HTML5 CANVAS tag.
]]>
3.1.2024 РЕАЛІЗАЦІЯ МАЙБУТНІХ ПРОЄКТІВ ДОСЛІДЖЕННЯ МІСЯЦЯ НА ДП «КБ «ПІВДЕННЕ» https://journal.yuzhnoye.com/ua/content_2024_1-ua/annot_3_1_2024-ua/ Wed, 12 Jun 2024 15:28:59 +0000 https://journal.yuzhnoye.com/?page_id=34870
https://www.epravda.com.ua/publications/2023/08/23/703510 (Russia lost Luna-25, India successfully completed the mission.
]]>

3. Реалізація майбутніх проєктів дослідження місяця на ДП «КБ «Південне»

Автори: Гусарова І. О., Лисенко Ю. О., Осіновий Г. Г.

Організація: ДП "КБ "Південне" ім. М. К. Янгеля", Дніпро, Україна

Сторінка: Kosm. teh. Raket. vooruž. 2024, (1); 19-28

Мова: Англійська

Анотація: Останніми роками провідні космічні держави повертаються до ідеї експедицій на Місяць, активно проєктують і створюють складові елементи населених місячних баз. ДП «КБ «Південне» має власну концепцію місячної бази і, безумовно, не може стояти осторонь вирішення науково-технічних проблем щодо освоєння Місяця. Спеціалісти ДП «КБ «Південне» виконали концептуальне опрацювання значного спектра необхідних для освоєння Місяця технологій: космічної транспортної системи для виконання місячних експедицій; лендерів, що забезпечують доставку корисного вантажу на поверхню Місяця, а також призначених для транспортування дослідної апаратури; мобільних лабораторій; ровера-розвідника для забезпечення розвідувальних місій на поверхні Місяця; транспортних засобів для забезпечення підйомно-транспортних, монтажно-будівельних, виробничо-технологічних і ґрунто-виймальних робіт на поверхні Місяця; населених модулів та інших елементів місячної інфраструктури. Ураховуючі високі витрати на дослідження Місяця, зрозуміло, що міжнародна кооперація – найбільш реалістичний для ДП «КБ «Південне» сценарій участі в його освоєнні. Місячна програма США є найпривабливішою. Партнерами КБ «Південне» можуть стати приватні компанії, які НАСА долучає до місячних програм. Для забезпечення участі ДП «КБ «Південне» в міжнародних програмах проведено аналіз сучасного стану технологій для дослідження й освоєння Місяця у світі та на його основі визначено можливості просування розробок українських фахівців на міжнародному ринку космічних технологій. Уперше запропоновано, ураховуючи високий рівень розробок потенційних партнерів, вважати за доцільне просування технологій ДП «КБ «Південне», які вже успішно випробувано і мають рівень TRL 6-9, та інноваційних розробок підприємства, що не мають аналогів у світі або перевершують за своїми технічними й економічними показниками світовий рівень. На основі аналізу розробок концептуального проєкту місячної промислово-дослідної бази до таких технологій можна віднести ракетні двигуни, агрегати та вузли РРД (TRL 6-9), а також перспективні розробки: водневий акумулятор енергії й інертні аноди з ультрависокотемпературної кераміки для електролізу розплавів реголіту.

Ключові слова: ракетні двигуни, водневий акумулятор енергії, інертні аноди

Список використаної літератури:
  1. Rosiya vtratyla “Lunu-25”, India uspishno zavershyla misiu. Chomu krainy ponovyly gonku za resursy Misyatsa? 23 serpnya 2023. https://www.epravda.com.ua/publications/2023/08/23/703510 (Russia lost Luna-25, India successfully completed the mission. Why have countries renewed the race for lunar resources? August 23, 2023. In Ukrainian)
  2. Creech S, Guidi J, Elburn D. Artemis: An overview of NASA’s activities to return humans to the Moon. Paper presented at: 2022 IEEE Aerospace Conference (AERO); 2022 Mar 05–12; Big Sky, Montana.
  3. In-Situ Resource Utilization (ISRU) Demonstration Mission, 2019. https://exploration.esa.int/web/moon/-/60127-in-situ-resource-utilisation-demonstration-mission.
  4. Peng Zhang, Wei Dai, Ran Niu, Guang Zhang, +12 authors. Overview of the Lunar In Situ Resource Utilization Techniques for Future Lunar Missions. Journal Space: Science & Technology. 2023, Vol. 3, Р. 1-18. Article ID: 0037. DOI: 10.34133/space.0037
  5. Lin XU, Hui LI, Pei Z, Zou Y, Wang C. A brief introduction to the International Lunar Research Station Program and the Interstellar Express Mission. Chinese J Space Sci. 2022;42(4):511–513.
  6. Li C, Wang C, Wei Y, Lin Y. China’s present and future lunar exploration program. Science. 2019;365(6450):238–239.
  7. Ukrinform, 09 sichnya 2024, https://www.ukrinform.ua/rubric-technology/3804665-aponskij-zond-uvijsov-do-orbiti-misaca-pered-posadkou.html (Ukrinform, January 9, 2024. In Ukrainian).
  8. Nimechina priednalasya do programmy vyvchennya Misyatsa Artemis, 15.09.2023, https://www.dw.com/uk/nimeccina-priednalas-do-programi-vivcenna-misaca-artemis/a-66826693 (Germany joined the Artemis moon exploration program, September 15, 2023. In Ukrainian).
  9. Grigoriev O. N., Frolov G. A., Evdokimenko Yu. I., Kisel’ V. M., Panasyuk A. D., Melakh L. M., Kotenko V. A., Koroteev A. V. Ultravysokotemperaturnaya keramika dlya aviatsionno-kosmicheskoy techniki, Aviatsionno-kosmicheskaya technika i technologiya, 2012, No 8 (95), st.119-128 (O.N. Grigoriev, G.A. Frolov, Yu.I. Evdokimenko, V.M. Kisel, A.D. Panasyuk, L.M. Melakh, V.A. Kotenko, A.V. Koroteev. Ultra-high-temperature ceramics for aerospace engineering, Aerospace engineering and technology, 2012, No. 8 (95), Р. 119-128. In Russian).
  10. Grigoriev O. N. et al. Oxidation of ZrB2–SiC–ZrSi2 ceramics in oxygen. Journal of the European Ceramic Society 30 (2010). 2397–2405.
Завантажень статті: 12
Переглядів анотації: 
233
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Матаван; Фінікс; Сіетл; Ашберн; Де-Мойн; Бордман6
Україна Київ; Дніпро2
Сінгапур Сінгапур; Сінгапур2
Фінляндія Гельсінкі1
Нідерланди Амстердам1
3.1.2024 РЕАЛІЗАЦІЯ МАЙБУТНІХ ПРОЄКТІВ ДОСЛІДЖЕННЯ МІСЯЦЯ НА ДП «КБ «ПІВДЕННЕ»
3.1.2024 РЕАЛІЗАЦІЯ МАЙБУТНІХ ПРОЄКТІВ ДОСЛІДЖЕННЯ МІСЯЦЯ НА ДП «КБ «ПІВДЕННЕ»
3.1.2024 РЕАЛІЗАЦІЯ МАЙБУТНІХ ПРОЄКТІВ ДОСЛІДЖЕННЯ МІСЯЦЯ НА ДП «КБ «ПІВДЕННЕ»

Хмара тегів

]]>