Результати пошуку “Los” – Збірник науково-технічних статей https://journal.yuzhnoye.com Космічна техніка. Ракетне озброєння Wed, 19 Jun 2024 08:05:39 +0000 uk hourly 1 https://wordpress.org/?v=6.2.2 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Результати пошуку “Los” – Збірник науково-технічних статей https://journal.yuzhnoye.com 32 32 12.1.2024 ЗМІЦНЕННЯ СТАЛЕЙ ШЛЯХОМ МОДИФІКАЦІЇ ЇХНЬОЇ ПОВЕРХНІ ІОННО-ПЛАЗМОВИМ АЗОТУВАННЯМ У ЖЕВРІЮЧОМУ РОЗРЯДІ https://journal.yuzhnoye.com/ua/content_2024_1-ua/annot_12_1_2024-ua/ Mon, 17 Jun 2024 11:36:02 +0000 https://journal.yuzhnoye.com/?page_id=34936
Loskutova T.
]]>

12. Зміцнення сталей шляхом модифікації їхньої поверхні іонно-плазмовим азотуванням у жевріючому розряді

Організація:

ДП “КБ “Південне” ім. М. К. Янгеля”, Дніпро, Україна1; Український державний університет науки та технологій2

Сторінка: Kosm. teh. Raket. vooruž. 2024, (1); 102-113

Мова: Українська

Анотація: Розглянуто технологію зміцнення сталей шляхом модифікації їхньої поверхні методом іонно-плазмового азотування у жевріючому розряді. Іонно-плазмове азотування є багатофакторним процесом, що вимагає вивчення впливу умов процесу азотування на структуру модифікованих шарів, яка, у свою чергу, визначає їхні механічні властивості. Об’єктами досліджень були: аустенітна сталь 12Х18Н10Т, вуглецева сталь Ст3 та конструкційна сталь 45. Дослідження проводили для двох умов створення плазми: вільного розташування зразків на поверхні катода (конфігурація І) та всередині порожнистого катода (конфігурація ІІ). Втановлено оптимальні параметри процесу іонно-плазмового азотування, що забезпечують стабільність процесу та створюють умови для інтенсивної дифузії азоту в поверхню сталі. Для інтенсифікації процесу азотування у газове середовище аргон-азот додавали водень. Робочий тиск у камері підтримувався в діапазоні 250-300 Па, тривалість процесу становила 120 хв. Наведено порівняльні характеристики структури та мікротвердості модифікованих поверхонь досліджуваних сталей для двох технологій іонно-плазмового азотування. Металографічне дослідження структури поверхневих модифікованих шарів у поперечному перерізі показало наявність шаруватого азотованого шару, що складається з різних фаз і має різну глибину залежно від матеріалу зразка та режиму оброблення. Азотований шар сталі 12Х18Н10Т складався з чотирьох підшарів: верхнього «білого» нітридного шару, подвійного дифузійного шару та нижнього перехідного шару. Загальна глибина азотованого шару при зазначеному часі оброблення досягла 23 мкм, застосування порожнистого катода збільшило її на 26% до 29 мкм. Азотовані шари сталі Ст3 і сталі 45 складалися з двох підшарів – товстого “білого” нітридного шару і загальної дифузійного товщиною порядку 18 мкм. Мікротвердість азотованого шару сталі Ст3 становила 480 HV, збільшившись у 2,5 рази, а сталі 45 – 440 HV, збільшившись в 1,7 рази. Застосування порожнистого катода для цих сталей зменшує глибину азотованого шару, але при цьому мікротвердість збільшується за рахунок утворення товстішого та щільнішого нітридного шару на поверхні. Результати проведених досліджень можуть бути використані для зміцнення поверхонь сталевих деталей ракетно-космічної техніки, нанесення високоміцних покриттів.

Ключові слова: іонне азотування, жевріючий розряд, структура шару в поперечному перерізі, зміцнення, мікротвердість.

Список використаної літератури:

1. Loskutova T. V., Pogrebova I. S., Kotlyar S. M., Bobina M. M., Kapliy D. A., Kharchenko N. A., Govorun T. P. Physichni ta tekhnologichni parametry azotuvannya stali Х28 v seredovyschi amiaku. Journal nano-elektronnoi physiki. 2023. №1(15). s. 1-4.
2. Al-Rekaby D. W., Kostyk V., Glotka A., Chechel M. The choice of the optimal temperature and time parameters of gas nitriding of steel. Eastern-European journal of Enterprise Technologies. 2016. V. 3/5(81). P.44-49.
3. Yunusov A. I., Yesipov R. S. Vliyanie sostava gazovoy sredy na process ionnogo azotirovaniya martensitnoy stali 15Х16К5НР2МВФАБ-Ш. Vestnik nauki. 2023. №5(62). s. 854-863.
4. Zakalov O. V. Osnovy tertya i znoshuvannya u mashinah: navch. posibnik, vydavnytstvo TNTU im. I. Pulyuya, Ternopil. 2011. 332 s.
5. Kindrachuk M. V., Zagrebelniy V. V., Khizhnyak V. G., Kharchenko N. A. Technologichni aspeckty zabespechennya pratsezdatnosti instrument z shvydkorizalnykh staley. Problemy tertya ta znoshuvannya. 2016. №1 (70). S. 67-78.
6. Skiba M. Ye., Stechishyna N. M., Medvechku N. K., Stechishyn M. S., Lyukhovets’ V. V. Bezvodneve azotuvannya u tliyuchomu rozryadi, yak metod pidvyschennya znosostiykisti konstruktsiynykh staley. Visn. Khmelnitskogo natsionalnogo universitetu. 2019. №5. S. 7-12.
7. Axenov I. I. Vakkumno-dugovye pokrytiya. Technologiya, materialy, struktura i svoistva. Kharkov, 2015. 379 s.
8. Pastukh I. M., Sokolova G. N., Lukyanyuk N. V. Azotirovanie v tleyuschem razryade: sostoyanie i perspektyvy. Problemy trybologii. 2013. №3. S. 18-22.
9. Pastukh I. M. Teoriya i praktika bezvodorodnogo azotirovanniya v tleuschem razryade: izdatelstvo NNTs KhFTI. Kharkov, 2006. 364 s.
10. Sagalovich O. V., Popov V. V., Sagalovich V. V. Plasmove pretsenziyne azotuvannya AVINIT N detaley iz staley i splaviv. Technologicheskie systemy. 2019. №4. S. 50-56.
11. Kozlov A. A. Nitrogen potential during ion nitriding process in glow-discharge plasma. Science and Technique. 2015. Vol. 1. P. 79-90.
12. Nadtoka V., Kraiev M., Borisenko А., Kraieva V. Multi-component nitrated ion-plasma Ni-Cr coating. Journal of Physics and Electronics. 2021. №29(1). Р. 61–64. DOI 10.15421/332108.
13. Nadtoka V., Kraiev M., Borisenko A., Bondar D., Gusarova I. Heat-resistant MoSi2–NbSi2 and Cr–Ni coatings for rocket engine combustion chambers and respective vacuum-arc deposition technology/ 74th International Astronautical Congress (IAC-23-C2.4.2), Baku, Azerbaijan, 2-6 October 2023.
14. Kostik K. O., Kostik V. O. Porivnyalniy analiz vplyvu gazovogo ta ionno-plazmovogo azotuvannya na zminu struktury i vlastyvostey legovannoi stali 30Х3ВА. Visnik NTU «KhPI». 2014. №48(1090). S. 21-41.
15. Axenov I. I., Axenov D. S., Andreev A. A., Belous V. A., Sobol’ O.V. Vakuumno-dugovye pokrytiya: technologia, materialy, struktura, svoistva: VANT NNTs KhFTI, Kharkov. 2015. 380 s.
16. Pidkova V. Ya. Modyfikuvannya poverkhni stali 12Х18Н10Т ionnoyu implantatsieyu azotom. Technology audit and production reserves. 2012. Vol. 3/2(5). P. 51-52.
17. Kosarchuk V. V., Kulbovsliy I. I., Agarkov O. V. Suchasni metody zmitsnennya i pidvyschennya znosostiykosti par tertya. Ch. 2. Visn. Natsionalnogo transportnogo universytetu. 2016. Vyp. 1(34). S. 202-210.
18. Budilov V. V., Agzamov R. D., Ramzanov K. N. Issledovanie i razrabotka metodov khimiko-termicheskoy obrabotki na osnove strukturno-fasovogo modifitsirovaniya poverkhnisti detaley silnotochnymi razryadami v vakuume. Vestnik UGATU. Mashinostroenie. 2007. T. 9, №1(19). S. 140-149.
19. Abrorov A., Kuvoncheva M., Mukhammadov M. Ion-plasma nitriding of disc saws of the fiber-extracting machine. Modern Innovation, Systems and Technologies. 2021. Vol. 1(3). P. 30-35.
20. Smolyakova M. Yu., Vershinin D. S., Tregubov I. M. Issledovaniya vliyaniya nizkotemperaturnogo azotirovanniya na strukturno-fasoviy sostav i svoistva austenitnoy stali. Vzaimodeystvie izlecheniy s tverdym telom: materialy 9-oi Mezhdunarodnoy konferentsii (Minsk, 20-22 sentyabrya 2011 g.). Minsk, 2011. S. 80-82.
21. Adhajani H., Behrangi S. Plasma Nitriding of Steel: Topics in Mining, Metallurgy and Material Engineering by series editor Bergmann C.P. 2017. 186 p.
22. Fernandes B.B. Mechanical properties of nitrogen-rich surface layers on SS304 treated by plasma immersion ion implantation. Applied Surface Science. 2014. Vol. 310. P. 278-283.
23. Khusainov Yu. G., Ramazanov K. N., Yesipov R. S., Issyandavletova G. B. Vliyanie vodoroda na process ionnogo azotirovanniya austenitnoy stali 12Х18Н10Т. Vestnik UGATU. 2017. №2(76). S. 24-29.
24. Sobol’ O. V., Andreev A. A., Stolbovoy V. A., Knyazev S. A., Barmin A. Ye., Krivobok N. A. Issledovanie vliyaniya rezhimov ionnogo azotirovanniya na strukturu i tverdost’ stali. Vostochno-Yevropeyskiy journal peredovykh tekhnologiy. 2015. №2(80). S. 63-68.
25. Kaplun V. G. Osobennosti formirovanniya diffusionnogo sloya pri ionnom azotirovannii v bezvodorodnykh sredakh. FIP. 2003. T1, №2. S. 145.

Завантажень статті: 10
Переглядів анотації: 
487
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Матаван; Фінікс; Ашберн; Де-Мойн; Бордман5
Україна Київ; Дніпро2
Фінляндія Гельсінкі1
Сінгапур Сінгапур1
Нідерланди Амстердам1
12.1.2024 ЗМІЦНЕННЯ СТАЛЕЙ ШЛЯХОМ МОДИФІКАЦІЇ ЇХНЬОЇ ПОВЕРХНІ ІОННО-ПЛАЗМОВИМ АЗОТУВАННЯМ У ЖЕВРІЮЧОМУ РОЗРЯДІ
12.1.2024 ЗМІЦНЕННЯ СТАЛЕЙ ШЛЯХОМ МОДИФІКАЦІЇ ЇХНЬОЇ ПОВЕРХНІ ІОННО-ПЛАЗМОВИМ АЗОТУВАННЯМ У ЖЕВРІЮЧОМУ РОЗРЯДІ
12.1.2024 ЗМІЦНЕННЯ СТАЛЕЙ ШЛЯХОМ МОДИФІКАЦІЇ ЇХНЬОЇ ПОВЕРХНІ ІОННО-ПЛАЗМОВИМ АЗОТУВАННЯМ У ЖЕВРІЮЧОМУ РОЗРЯДІ

Хмара тегів

]]>
11.1.2024 РОЗРАХУНОК ПАРАМЕТРІВ СИСТЕМИ ТРАНСПОРТУВАННЯ МІСЯЧНОГО РЕГОЛІТУ https://journal.yuzhnoye.com/ua/content_2024_1-ua/annot_11_1_2024-ua/ Mon, 17 Jun 2024 08:41:21 +0000 https://journal.yuzhnoye.com/?page_id=34925
S-9 https://denning.atmos.colostate.edu/readings/ lunar.regolith.heat.transfer.pdf 13.
]]>

11. Розрахунок параметрів системи транспортування місячного реголіту

Організація:

Інститут геотехнічної механіки ім. М. С. Полякова НАН України1; ДП “КБ “Південне” ім. М. К. Янгеля”, Дніпро, Україна2; Український державний університет науки та технологій3

Сторінка: Kosm. teh. Raket. vooruž. 2024, (1); 93-101

Мова: Українська

Анотація: Мета статті полягає в розробленні науково обґрунтованого методу визначення основних технологічних показників шнекового транспорту, таких як витрата матеріалу та потужність відповідного електродвигуна, за густиною та пористістю матеріалу, який транспортується, геометричними характеристиками шнека та особливостями гравітаційних полів в місці транспортування, а також у дослідженні можливих обмежень параметрів шнека при транспортуванні місячного реголіту. Для досягнення мети були використані відомі залежності для розрахування параметрів шнека-транспортера та фундаментальні закономірності механіки сипкого середовища, основні рівняння електродинаміки асинхронних двигунів, а також особливості поведінки сипких середовищ при переміщенні шнеком, що були експериментально досліджені вітчизняними авторами. Це дозволило вперше для умов Місяця запропонувати методику розрахування технологічних показників шнека-транспортера, таких як витрата матеріалу та потужність електродвигуна, що її забезпечує, за відомими геометричними характеристиками магістралі та трубопроводу, ступенем наповненості шнека та параметрами обраного електродвигуна. Вдалося дослідити вплив величини ступеня наповненості шнека-транспортера на його основні характеристики та встановити можливі обмеження геометричних параметрів та ступеня наповненості шнека, які обумовлені властивостями та особливостями електродвигуна, що використовується. Визначено припустимі значення відстані транспортування, діаметра шнека-транспортера та його інших геометричних параметрів, а також ступеня наповненості шнека, які можливі за параметрів обраного електродвигуна. Обґрунтовано, що для транспортування розсипів місячного реголіту в умовах Місяця найбільш перспективними будуть технологічні рішення на основі шнекового транспорту, оскільки вони малогабаритні та гнучкі, можуть розміщатися у трубах та розташовуватися під рівнем денної поверхні, забезпечують безперебійний процес транспортування, дозволяють автономне використання та спроможні живитися від сонячних батарей.

Ключові слова: Місяць, реголіт, шнек, електродвигун, витрата, потужність

Список використаної літератури:

1. Pustovgarov A. A., Osinoviy G. G. Kontseptsiya shlyuzovogo modulya misyachnoi bazy. ХХV Mizhnarodna molodizhna naukovo-praktychna conf. «Lyudyna i cosmos». Zbirnyk tez, NTsAOM, Dnipro, 2023. S. 86 – 87.
2. Semenenko P. V. Sposoby transortirovki poleznykh iskopaemykh ot mesta ikh dobychi k mestu pererabotki v lunnykh usloviyukh. P. V. Semenenko, D. G. Groshelev, G. G. Osinoviy, Ye. V. Semenenko, N. V. Osadchaya. XVII conf. molodykh vchenykh «Geotechnichni problemy rozrobky rodovysch». m. Dnipro, 24 zhovtnya 2019 r. S. 7.
3. Berdnik A. I. Mnogorazoviy lunniy lander. A. I. Berdnyk, M. D. Kalyapin, Yu. A. Lysenko, T. K. Bugaenko. Raketno-kosmichny complexy. 2019. T. 25. №5:3-10. ISSN 1561-8889.
4. Semenenko Ye. V., Osadchaya N. V. Traditsionnye i netraditsionnye vydy energii, a takzhe kosmicheskie poleznye iskopaemye v okolozemnom prostranstve. Nauch.-parakt. conf. «Sovremennye raschetno-experimentalnye metody opredeleniya characteristic raketno-kosmicheskoy techniki». m. Dnipro, 10 – 12 grudnya 2019 r. S. 62 – 63.
5. Komatsu pobudue excavator dlya roboty na Misyatsi https://www.autocentre.ua/ua/ news/concept/komatsu-postroit-ekskavator-dlya-raboty-na-lune-1380272.html.
6. Help NASA Design a Robot to Dig on the Moon https://www.nasa.gov/directorates/ stmd/help-nasa-design-a-robot-to-dig-on-the-moon/
7. Robert E. Grimm. Geophysical constaints on the lunar Procellarum KREEP Terrane. Vol. 118, Issue 4. April 2013. P. 768-778. https://agupubs-onlinelibrary-wiley-com.translate. goog/doi/10.1029/2012JE004114?_x_tr_sl=en&_x_tr_tl=ru&_x_tr_hl=ru&_x_tr_pto=sc
https://doi.org/10.1029/2012JE004114
8. Chen Li. A novel strategy to extract lunar mare KREEP-rich metal resources using a silicon collector. Kuixian Wei, Yang Li, Wenhui Ma, Yun Lei, Han Yu, Jianzhong Liu. Journal of Rare Earths Vol. 41, Issue 9, September 2023, P. 1429-1436. https://www-sciencedirect-com.translate.goog/science/article/ abs/pii/S1002072122001910?_x_tr_sl=en&_x_tr_tl=ru&_x_tr_hl=ru&_x_tr_pto=sc https://doi. org/10.1016/j.jre.2022.07.002
9. Moon Village Association https://moon-villageassociation.org/about/
10. GLOBAL MOON VILLAGE. https://space-architect.org/portfolio-item/ global-moon-village//
11. Just G. H. Parametric review of existing regolith excavation techniques for lunar In Situ Resource Utilization (ISRU) and recommendations for future excavation experiments. G. H. Just, Smith K., Joy K. H., Roy M. J. https://doi.org/10.1016/j.pss.2019.104746
https://www.sciencedirect.com/science/article/pii/S003206331930162X
12. Anthony J. Analysis of Lunar Regolith Thermal Energy Storage. Anthony J. Colozza Sverdrup Technology, Inc. Lewis Research Center Group Brook Park, Ohio NASA Contractor Report 189073. November 1991. S-9 https://denning.atmos.colostate.edu/readings/ lunar.regolith.heat.transfer.pdf
13. Obgruntuvannya vykorystannya shneka dlya utilizatsii vidkhodiv vuglezbagachennya z mozhlyvistyu pidvyschennya bezpeki energetychnoi systemy pidpriemstv. SLobodyannikova I. L., Podolyak K. K., Tepla T. D. Materialy XХІ Mizhnarod. conf. molodykh vchennykh (26 zhovt. 2023 roku, m. Dnipro). Dnipro: IGTM im. M.S. Polyakova NAN Ukrainy, 2023. S. 50–55.
14. Kulikivskiy V. L., Paliychuk V. K., Borovskiy V. M. Doslidzhennya travmuvannya zerna gvintovym konveerom. Konstryuvannya, vyrobnitstvo ta exspluatatsiya silskogospodarskykh mashin. 2016. Vyp. 46. S. 160 – 165.
14. Lyubin M. V., Tokarchuk O. A., Yaropud V. M. Osoblyvosti roboty krutopokhylennykh gvyntovykh transporterov pri peremischenni zernovoi produktsii. Tekhnika, energetika, transport APK. 216. № 3(95). S. 235 – 240.
15. Gevko R. B., Vitroviy A. O., Pik A. I. Pidvyschennya tekhnichnogo rivnya gnuchkykh gvyntovykh konveeriv. Ternopil: Aston, 2012. 204 s.
16. Bulgakov B. M., Adamchyuk V. V., Nadikto V. T., Trokhanyak O. M. Teoretichne obgruntuvannya parametriv gnuchkogo gvintovogo konveera dlya transportuvannya zernovykh materialiv. Visnyk agrarnoi nauki. 2023. № 4(841). S. 59 – 66.
17. New Views of the moon. Reviews in mineralogy and geochemistry. Eds. Joliff B.L., Wieczorek M.A., Shearer C.K., Neal C.R. Mineralogical Society of America. Reviews in mineralogy and geochemistry. 2006. Vol. 60. 721 p. DOI: 10.2138/rmg.2006.60.
18. Semenenko Ye. V. Nauchnye osnovy technologiy hydromechanizatsii otkrytoy razrabotki titan-cyrkonovykh rossypey. Yevgeniy Vladimirovich Semenenko. Kiev: Nauk. dumka, 2011. 232 s.

Завантажень статті: 13
Переглядів анотації: 
286
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Матаван; Фінікс; Ашберн; Ашберн; Де-Мойн; Бордман; Ашберн7
Сінгапур Сінгапур; Сінгапур2
Китай Шанхай1
Фінляндія Гельсінкі1
Нідерланди Амстердам1
Україна Дніпро1
11.1.2024 РОЗРАХУНОК ПАРАМЕТРІВ СИСТЕМИ ТРАНСПОРТУВАННЯ МІСЯЧНОГО РЕГОЛІТУ
11.1.2024 РОЗРАХУНОК ПАРАМЕТРІВ СИСТЕМИ ТРАНСПОРТУВАННЯ МІСЯЧНОГО РЕГОЛІТУ
11.1.2024 РОЗРАХУНОК ПАРАМЕТРІВ СИСТЕМИ ТРАНСПОРТУВАННЯ МІСЯЧНОГО РЕГОЛІТУ

Хмара тегів

Your browser doesn't support the HTML5 CANVAS tag.
]]>
5.1.2024 ОЦІНКА РИЗИКУ ТОКСИЧНОГО УРАЖЕННЯ ЛЮДЕЙ У РАЗІ АВАРІЇ РАКЕТИ-НОСІЯ ПІД ЧАС ПОЛЬОТУ https://journal.yuzhnoye.com/ua/content_2024_1-ua/annot_5_1_2024-ua/ Thu, 13 Jun 2024 06:00:42 +0000 https://journal.yuzhnoye.com/?page_id=34895
184 s [Safety rules for handling explosive substances for industrial purposes.
]]>

5. Оцінка ризику токсичного ураження людей у разі аварії ракети-носія під час польоту

Автори: Гладкий Е. Г., Шейко А. Ф.

Організація: ДП "КБ "Південне" ім. М. К. Янгеля", Дніпро, Україна

Сторінка: Kosm. teh. Raket. vooruž. 2024, (1); 40-50

Мова: Англійська

Анотація: Сучасні ракети-носії/ракети космічного призначення (РН/РКП), незважаючи на жорсткі екологічні вимоги, використовують токсичні компоненти ракетного палива АТ і НДМГ. Зазвичай такі компоненти використовують на верхніх ступенях РН/РКП, де міститься незначний об’єм палива, проте окремі РН/РКП досі застосовують таке паливо на всіх маршових ступенях. Аварії під час польоту РН/РКП, що містять токсичні компоненти ракетного палива, можуть призводити до падіння аварійної РН/РКП на поверхню Землі й утворення значних за розмірами зон хімічного ураження для людей (можуть перевищувати зони ураження від вибуху та пожежі). Це притаманно аваріям на відрізку польоту першого ступеня, коли поверхні Землі досягатимуть незруйновані РН/РКП або її складові частини (як правило, окремі ступені) з компонентами ракетного палива. Вибух і пожежа під час такого падіння, найімовірніше, спричинить залповий викид токсиканту та забруднення приземного шару атмосфери. Розглянуто аварію на етапі польоту першого ступеня для РН/РКП з токсичними компонентами ракетного палива, яку обладнано системою польотної безпеки, що реалізує аварійне вимкнення двигуна у разі виявлення аварійної ситуації. Для оцінювання ризику токсичного ураження людини, що знаходиться у певній точці, необхідно математично описати зону, в межах якої можливе падіння аварійної РН/РКП спричинить токсичне ураження людини (названо зоною небезпечного падіння аварійної РН/РКП). Складність цього полягає у необхідності враховувати стан атмосфери, насамперед вітер. З використанням зони токсичного ураження людини при падінні аварійної РН/РКП, яку запропоновано подавати сукупністю двох фігур: півкола та півеліпса, побудовано відповідну зону небезпечного падіння аварійної РН/РКП. Ураховуючи складності запису аналітичних виразів для цих фігур під час переходу до стартової системи координат і подальшого інтегрування при визначенні ризику, у практичних розрахунках зону небезпечного падіння аварійної РН/РКП запропоновано наближати багатокутником. Це дозволяє використати відому процедуру визначення ризиків. Узагальнення розробленої моделі визначення ризику токсичного ураження людини передбачає урахування різних типів аварійних відмов, які можуть спричинити падіння аварійної РН/РКП, та блокування аварійного вимкнення двигуна на початковому відрізку польоту. Для випадку аварії РН «Дніпро» з використанням запропонованої моделі побудовано небезпечну зону для людини, у якій ризики токсичного ураження перевищують допустимий рівень (10-6). Отримана небезпечна зона значно перевищує небезпечну зону, яка зумовлена уражальною дією вибухової хвилі. Показано напрямки подальшого удосконалення моделі, що пов’язані з урахуванням реального поширення токсиканту в атмосфері й отримання людиною певної токсодози.

Ключові слова: ракета-носій, аварійна відмова, аварія на етапі польоту, зона токсичного ураження людини, зона небезпечного падіння аварійної ракети-носія, ризик токсичного ураження людини.

Список використаної літератури:
  1. Hladkiy E. H. Protsedura otsenky poletnoy bezopasnosti raket-nositeley, ispolzuyuschaya geometricheskoe predstavlenie zony porazheniya obiekta v vide mnogougolnika. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2015. Vyp. 3. S. 50 – 56. [Hladkyi E. Procedure for evaluation of flight safety of launch vehicles, which uses geometric representation of object lesion zone in the form of a polygon. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2015. Issue 3. Р. 50 – 56. (in Russian)].
  2. Hladkiy E. H., Perlik V. I. Vybor interval vremeni blokirovki avariynogo vyklucheniya dvigatelya na nachalnom uchastke poleta pervoy stupeni. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-tech. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2011. Vyp. 2. s. 266 – 280. [Hladkyi E., Perlik V. Selection of time interval for blocking of emergency engine cut off in the initial flight leg of first stage. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2011. Issue 2. Р. 266 – 280. (in Russian)].
  3. Hladkiy E. H., Perlik V. I. Matematicheskie modeli otsenki riska dlya nazemnykh obiektov pri puskakh raket-nositeley. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2010. Vyp. 2. S. 3 – 19. [Hladkyi E., Perlik V. Mathematic models for evaluation of risk for ground objects during launches of launch-vehicles. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2010. Issue 2. P. 3 – 19. (in Russian)].
  4. NPAOP 0.00-1.66-13. Pravila bezpeki pid chas povodzhennya z vybukhovymy materialamy promyslovogo pryznachennya. Nabrav chynnosti 13.08.2013. 184 s [Safety rules for handling explosive substances for industrial purposes. Consummated 13.08.2013. 184 p.
    (in Ukranian)].
  5. AFSCPMAN 91-710 RangeSafetyUserRequirements. Vol. 1. 2016 [Internet resource]. Link : http://static.e-publishing.af.mil/production/1/afspc/publicating/
    afspcman91-710v1/afspcman91-710. V. 1. pdf.
  6. 14 CFR. Chapter III. Commercial space transportation, Federal aviation administration, Department of transportation, Subchapter C – Licensing, part 417 – Launch Safety, 2023 [Internet resource]. Link: http://law.cornell.edu/cfr/text/14/part-417.
  7. 14 CFR. Chapter III. Commercial space transportation, Federal aviation administration, Department of transportation, Subchapter C – Licensing, part 420 License to Operate a Launch Site. 2022 [Internet resource]. Link: http://law.cornell.edu/cfr/text/14/part-420.
  8. ISO 14620-1:2018 Space systems – Safety requirements. Part 1: System safety.
  9. GOST 12.1.005-88. Systema standartov bezopasnosti truda. Obschie sanitarno-gigienicheskie trebovaniya k vozdukhu rabochei zony. [GOST 12.1.005-88. Labor safety standards system. General sanitary and hygienic requirements to air of working zone].
  10. Rukovodyaschiy material po likvidatsii avarijnykh bolshykh prolivov okislitelya АТ (АК) i goruchego NDMG. L.:GIPKh, 1981, 172 s. [Guidelines on elimination of large spillages of oxidizer NTO and fuel UDMH. L.:GIPH, 1981, 172 p. (in Russian)].
  11. Kolichestvennaya otsenka riska chimicheskykh avariy. Kolodkin V. M., Murin A. V., Petrov A. K., Gorskiy V. G. Pod red. Kolodkina V. M. Izhevsk: Izdatelskiy dom «Udmurtskiy universitet», 2001. 228 s. [Quantitative risk assessment of accident at chemical plant. Kolodkin V., Murin A., Petrov A., Gorskiy V. Edited by Kolodkin V. Izhevsk: Udmurtsk’s University. Publish house, 2001. 228 p. (in Russian)].

 

Завантажень статті: 14
Переглядів анотації: 
309
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Матаван; Фінікс; Буфало; Ашберн; Таппаханок; Де-Мойн; Бордман7
Сінгапур Сінгапур; Сінгапур2
Україна Дніпро; Дніпро2
Фінляндія Гельсінкі1
Франція1
Нідерланди Амстердам1
5.1.2024 ОЦІНКА РИЗИКУ ТОКСИЧНОГО УРАЖЕННЯ ЛЮДЕЙ У РАЗІ АВАРІЇ РАКЕТИ-НОСІЯ ПІД ЧАС ПОЛЬОТУ
5.1.2024 ОЦІНКА РИЗИКУ ТОКСИЧНОГО УРАЖЕННЯ ЛЮДЕЙ У РАЗІ АВАРІЇ РАКЕТИ-НОСІЯ ПІД ЧАС ПОЛЬОТУ
5.1.2024 ОЦІНКА РИЗИКУ ТОКСИЧНОГО УРАЖЕННЯ ЛЮДЕЙ У РАЗІ АВАРІЇ РАКЕТИ-НОСІЯ ПІД ЧАС ПОЛЬОТУ

Хмара тегів

]]>
3.1.2024 РЕАЛІЗАЦІЯ МАЙБУТНІХ ПРОЄКТІВ ДОСЛІДЖЕННЯ МІСЯЦЯ НА ДП «КБ «ПІВДЕННЕ» https://journal.yuzhnoye.com/ua/content_2024_1-ua/annot_3_1_2024-ua/ Wed, 12 Jun 2024 15:28:59 +0000 https://journal.yuzhnoye.com/?page_id=34870
https://www.epravda.com.ua/publications/2023/08/23/703510 (Russia lost Luna-25, India successfully completed the mission.
]]>

3. Реалізація майбутніх проєктів дослідження місяця на ДП «КБ «Південне»

Автори: Гусарова І. О., Лисенко Ю. О., Осіновий Г. Г.

Організація: ДП "КБ "Південне" ім. М. К. Янгеля", Дніпро, Україна

Сторінка: Kosm. teh. Raket. vooruž. 2024, (1); 19-28

Мова: Англійська

Анотація: Останніми роками провідні космічні держави повертаються до ідеї експедицій на Місяць, активно проєктують і створюють складові елементи населених місячних баз. ДП «КБ «Південне» має власну концепцію місячної бази і, безумовно, не може стояти осторонь вирішення науково-технічних проблем щодо освоєння Місяця. Спеціалісти ДП «КБ «Південне» виконали концептуальне опрацювання значного спектра необхідних для освоєння Місяця технологій: космічної транспортної системи для виконання місячних експедицій; лендерів, що забезпечують доставку корисного вантажу на поверхню Місяця, а також призначених для транспортування дослідної апаратури; мобільних лабораторій; ровера-розвідника для забезпечення розвідувальних місій на поверхні Місяця; транспортних засобів для забезпечення підйомно-транспортних, монтажно-будівельних, виробничо-технологічних і ґрунто-виймальних робіт на поверхні Місяця; населених модулів та інших елементів місячної інфраструктури. Ураховуючі високі витрати на дослідження Місяця, зрозуміло, що міжнародна кооперація – найбільш реалістичний для ДП «КБ «Південне» сценарій участі в його освоєнні. Місячна програма США є найпривабливішою. Партнерами КБ «Південне» можуть стати приватні компанії, які НАСА долучає до місячних програм. Для забезпечення участі ДП «КБ «Південне» в міжнародних програмах проведено аналіз сучасного стану технологій для дослідження й освоєння Місяця у світі та на його основі визначено можливості просування розробок українських фахівців на міжнародному ринку космічних технологій. Уперше запропоновано, ураховуючи високий рівень розробок потенційних партнерів, вважати за доцільне просування технологій ДП «КБ «Південне», які вже успішно випробувано і мають рівень TRL 6-9, та інноваційних розробок підприємства, що не мають аналогів у світі або перевершують за своїми технічними й економічними показниками світовий рівень. На основі аналізу розробок концептуального проєкту місячної промислово-дослідної бази до таких технологій можна віднести ракетні двигуни, агрегати та вузли РРД (TRL 6-9), а також перспективні розробки: водневий акумулятор енергії й інертні аноди з ультрависокотемпературної кераміки для електролізу розплавів реголіту.

Ключові слова: ракетні двигуни, водневий акумулятор енергії, інертні аноди

Список використаної літератури:
  1. Rosiya vtratyla “Lunu-25”, India uspishno zavershyla misiu. Chomu krainy ponovyly gonku za resursy Misyatsa? 23 serpnya 2023. https://www.epravda.com.ua/publications/2023/08/23/703510 (Russia lost Luna-25, India successfully completed the mission. Why have countries renewed the race for lunar resources? August 23, 2023. In Ukrainian)
  2. Creech S, Guidi J, Elburn D. Artemis: An overview of NASA’s activities to return humans to the Moon. Paper presented at: 2022 IEEE Aerospace Conference (AERO); 2022 Mar 05–12; Big Sky, Montana.
  3. In-Situ Resource Utilization (ISRU) Demonstration Mission, 2019. https://exploration.esa.int/web/moon/-/60127-in-situ-resource-utilisation-demonstration-mission.
  4. Peng Zhang, Wei Dai, Ran Niu, Guang Zhang, +12 authors. Overview of the Lunar In Situ Resource Utilization Techniques for Future Lunar Missions. Journal Space: Science & Technology. 2023, Vol. 3, Р. 1-18. Article ID: 0037. DOI: 10.34133/space.0037
  5. Lin XU, Hui LI, Pei Z, Zou Y, Wang C. A brief introduction to the International Lunar Research Station Program and the Interstellar Express Mission. Chinese J Space Sci. 2022;42(4):511–513.
  6. Li C, Wang C, Wei Y, Lin Y. China’s present and future lunar exploration program. Science. 2019;365(6450):238–239.
  7. Ukrinform, 09 sichnya 2024, https://www.ukrinform.ua/rubric-technology/3804665-aponskij-zond-uvijsov-do-orbiti-misaca-pered-posadkou.html (Ukrinform, January 9, 2024. In Ukrainian).
  8. Nimechina priednalasya do programmy vyvchennya Misyatsa Artemis, 15.09.2023, https://www.dw.com/uk/nimeccina-priednalas-do-programi-vivcenna-misaca-artemis/a-66826693 (Germany joined the Artemis moon exploration program, September 15, 2023. In Ukrainian).
  9. Grigoriev O. N., Frolov G. A., Evdokimenko Yu. I., Kisel’ V. M., Panasyuk A. D., Melakh L. M., Kotenko V. A., Koroteev A. V. Ultravysokotemperaturnaya keramika dlya aviatsionno-kosmicheskoy techniki, Aviatsionno-kosmicheskaya technika i technologiya, 2012, No 8 (95), st.119-128 (O.N. Grigoriev, G.A. Frolov, Yu.I. Evdokimenko, V.M. Kisel, A.D. Panasyuk, L.M. Melakh, V.A. Kotenko, A.V. Koroteev. Ultra-high-temperature ceramics for aerospace engineering, Aerospace engineering and technology, 2012, No. 8 (95), Р. 119-128. In Russian).
  10. Grigoriev O. N. et al. Oxidation of ZrB2–SiC–ZrSi2 ceramics in oxygen. Journal of the European Ceramic Society 30 (2010). 2397–2405.
Завантажень статті: 12
Переглядів анотації: 
233
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Матаван; Фінікс; Сіетл; Ашберн; Де-Мойн; Бордман6
Україна Київ; Дніпро2
Сінгапур Сінгапур; Сінгапур2
Фінляндія Гельсінкі1
Нідерланди Амстердам1
3.1.2024 РЕАЛІЗАЦІЯ МАЙБУТНІХ ПРОЄКТІВ ДОСЛІДЖЕННЯ МІСЯЦЯ НА ДП «КБ «ПІВДЕННЕ»
3.1.2024 РЕАЛІЗАЦІЯ МАЙБУТНІХ ПРОЄКТІВ ДОСЛІДЖЕННЯ МІСЯЦЯ НА ДП «КБ «ПІВДЕННЕ»
3.1.2024 РЕАЛІЗАЦІЯ МАЙБУТНІХ ПРОЄКТІВ ДОСЛІДЖЕННЯ МІСЯЦЯ НА ДП «КБ «ПІВДЕННЕ»

Хмара тегів

]]>
Мапа сайту https://journal.yuzhnoye.com/ua/map-ua/ Tue, 09 Jan 2024 13:29:00 +0000 https://test5.yuzhnoye.com/?page_id=7536
Not found: los
]]>
]]>
1.2.2019 Оптимізація траєкторії зенітної керованої ракети https://journal.yuzhnoye.com/ua/content_2019_2-ua/annot_1_2_2019-ua/ Sat, 16 Sep 2023 21:19:15 +0000 https://journal.yuzhnoye.com/?page_id=27193
Not found: los
]]>

1. Оптимізація траєкторії зенітної керованої ракети

Автори: Іжко В. О., Ємельянова І. О., Різник І. М., Хорольський П. Г.

Організація: ДП "КБ "Південне" ім. М. К. Янгеля", Дніпро, Україна

Сторінка: Kosm. teh. Raket. vooruž. 2019 (2); 3-10

DOI: https://doi.org/10.33136/stma2019.02.003

Мова: Російська

Анотація: Описано спосіб оптимізації траєкторії зенітної керованої ракети, що застосовують на етапі проектування. Огляд існуючих рішень з цього питання підтвердив актуальність завдання. Аналітичне рішення отримати практично неможливо, тому відповідно до сучасних тенденцій було проведено оптимізацію числовим методом оригінального розроблення. У його основу було покладено дворівневу оптимізацію, яку виконують двома різними числовими методами і для двох різних критеріальних функцій. На верхньому рівні методом випадкового пошуку і, як варіант, методом покоординатного спуску виконано пошук фіксованого набору проміжних для заданої дальності польоту точок траєкторії, координати яких у сукупності забезпечують необхідний оптимум. На нижньому рівні для кожної пари послідовних проміжних точок розв’язано крайову задачу влучення в дальню точку шляхом одномірної оптимізації. Покоординатний спуск використано для пошуку спрощеної програми польоту. Як критерії оптимізації для верхнього рівня використано мінімум часу польоту або максимум кінцевої швидкості, для нижнього – термінальний критерій. Програма керування вибрала програму кута атаки. У результаті було отримано оптимальні й субоптимальні (такі, що додатково забезпечують мінімум часу розрахунку) траєкторії і програми польоту на максимальну дальність і різні висоти. Аналіз результатів показав практичну близькість траєкторій мінімального часу польоту і максимальної кінцевої швидкості.

Ключові слова: зенітна ракета, оптимізація, програма кута атаки, траєкторія

Список використаної літератури:
Завантажень статті: 38
Переглядів анотації: 
570
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Бордман; Матаван; Балтімор; Бойдтон; Плейно; Дублін; Лос Анджелес; Фінікс; Монро; Ашберн; Ашберн; Бордман; Сіетл; Сіетл; Портленд; Сан-Матео; Сан-Матео; Колумбус; Де-Мойн; Де-Мойн; Бордман; Бордман; Ашберн23
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур10
Фінляндія Гельсінкі1
Unknown Гонконг1
Румунія Волонтарі1
Нідерланди Амстердам1
Україна Дніпро1
logo_issn
logo_doi-300x178
logo_crossref-300x125

Хмара тегів

]]>
8.1.2023 Особливості розроблення піроболтів з низькими ударними та віброімпульсними характеристиками https://journal.yuzhnoye.com/ua/content_2023_1-ua/annot_8_1_2023-ua/ Fri, 12 May 2023 16:11:05 +0000 https://test8.yuzhnoye.com/?page_id=26911
Identification of Pyrotechnic Shock Sources for Shear Type Explosive Bolt, Shock and Vibration Vol. Yanhua Li, Jingeheng Wang, Shihui Xiong, Li Cheng, Yuquan Wen, and Zhiliang Li Numerical Study of Separation Characteristics of Piston-Type Explosive Bolt, Shock and Vibration, Vol.
]]>

8. Особливості розроблення піроболтів з низькими ударними та віброімпульсними характеристиками

Автори: Самойленко І. Д., Волошин В. В., Безкорсий Д. М.

Організація: ДП "КБ "Південне" ім. М. К. Янгеля", Дніпро, Україна

Сторінка: Kosm. teh. Raket. vooruž. 2023 (1); 70-76

DOI: https://doi.org/10.33136/stma2023.01.070

Мова: Українська

Анотація: У системах розділення літальних апаратів як виконавчих пристроїв широко використовують розривні болти, корпус яких поділяється на частини в результаті задіювання розміщеної всередині піросуміші. Під час спрацьовування розривні болти негативно механічно впливають на елементи стику та на розміщені поряд чутливі електронні прилади внаслідок вибухового характеру горіння піросуміші, що супроводжується утворенням фронту ударної хвилі з великим тиском і швидкістю, співударянь і взаємодій елементів конструкції. Спільну дію перелічених факторів на відокремлювані об’єкти називають піроударом. Для використання в системах розділення стиків з підвищеними вимогами до зовнішніх впливів і чистоти автор розробив конструкцію розривного болта зрізного типу або піроболта, розділення на частини якого відбувається перерізуванням стінки корпусу сегментами, що приводяться в дію за допомогою тиску газів, які утворюються після спрацьовування піропатрона. Основними джерелами піроудару у піроболтів зрізного типу із сегментами є: згоряння піросуміші, внутрішні співударяння елементів конструкції, переріз сегментами стінки корпусу та вивільнення попередньо деформованого стику після спрацьовування. Подано конструктивні рішення, що дозволяють провести зменшення піроудару за кожною із складових. Зниження віброімпульсних навантажень під час згоряння піросуміші досягнуто шляхом оптимізації кількості вибухової речовини з визначенням її мінімальної кількості, яке забезпечує надійну роботу пристрою. З метою зниження впливу на елементи піроболта та стику фронту ударної хвилі в конструкцію введена гумова прокладка, встановлена на шляху поширення ударної хвилі, яка частково розсіює та поглинає її кінетичну енергію, а для зниження внутрішнього співударяння штока та корпусу встановлено демпфер, виготовлений з алюмінієвого сплаву, що легко деформується. Проведені функціональні випробування пристрою на маятниковому підвісі із замірюванням швидкості розділення частин стику та віброімпульсних навантажень показали, що частини корпусу піроболта зрізного типу із сегментами роз’єднуються без значних ударних навантажень та виділення в навколишній простір високотемпературних газів, уламків, забезпечуючи надійне відокремлення відсіків і вузлів без пошкодження чутливого обладнання. Отримані значення механічного імпульсу – I=0,4-0,7 Н•с та спектру ударних навантажень 1950 g у діапазоні частот до 5000 Гц відповідають сучасним вимогам до піротехнічних пристоїв.

Ключові слова: розривний болт, піроудар, ударна хвиля, піропатрон, високотемпературні гази, демпфер

Список використаної літератури:

1. Пат. України на корисну модель «Піроболт» № 138414. Шевцов Є. І., Волошин В. В., Самойленко І. Д., Онофриєнко В. І., Безкорсий Д. М. МПК F42В 15/36, F42В 15/38, В64G 1/22 заявник та патентовласник КБ «Південне». Бюл. № 22, 2019 р.
2. Галузевий стандарт «Пірозамки. Методика розрахунку» ОСТ 92-9594-82, 24 арк.
3. Дуплищева О. М., Кононець П. І., Лісовий А. М., Мащенко А. М., Михайлов К. Ф., канд. техн. наук Порубаймех В. І., Свиридов В. М. Зниження віброімпульсних навантажень, що виникають під час спрацювання піромеханізму. Космічна техніка. Ракетне озброєння: Зб. Наук.-техн. ст. 2009. Вип. 2. Дніпро: ДП «КБ «Південне». 100 арк.
4. Bement L. J. and Schimmel М. L. А Manual for Pyrotechnic Design, Development and Qualification, NASA, NASA Technical Memorandum 110172, 1995.
5. Yanhua Li, Yuan Li, Xiaogan Li, Yuquan Wen, Huina Mu and Zhiliang Li. Identification of Pyrotechnic Shock Sources for Shear Type Explosive Bolt, Shock and Vibration Vol. 2017, Article ID 3846236, 9 p. https://doi.org/10.1155/2017/3846236
6. Yanhua Li, Jingeheng Wang, Shihui Xiong, Li Cheng, Yuquan Wen, and Zhiliang Li Numerical Study of Separation Characteristics of Piston-Type Explosive Bolt, Shock and Vibration, Vol. 2019, Article ID 2092796, 18 p. https://doi.org/10.1155/2019/2092796

Завантажень статті: 30
Переглядів анотації: 
227
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Матаван; Балтімор; Бойдтон; Плейно; Фінікс; Монро; Ашберн; Сіетл; Ашберн; Маунтін-В'ю; Сіетл; Сіетл; Портленд; Сан-Матео; Сан-Матео; Де-Мойн; Бордман; Бордман; Ашберн19
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур7
Фінляндія Гельсінкі1
Румунія Волонтарі1
Нідерланди Амстердам1
Україна Дніпро1
8.1.2023 Особливості розроблення піроболтів з низькими ударними та віброімпульсними характеристиками
8.1.2023 Особливості розроблення піроболтів з низькими ударними та віброімпульсними характеристиками
8.1.2023 Особливості розроблення піроболтів з низькими ударними та віброімпульсними характеристиками

Хмара тегів

]]>