Результати пошуку “launch vehicle” – Збірник науково-технічних статей https://journal.yuzhnoye.com Космічна техніка. Ракетне озброєння Fri, 14 Feb 2025 18:47:49 +0000 uk hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Результати пошуку “launch vehicle” – Збірник науково-технічних статей https://journal.yuzhnoye.com 32 32 5.1.2024 ОЦІНКА РИЗИКУ ТОКСИЧНОГО УРАЖЕННЯ ЛЮДЕЙ У РАЗІ АВАРІЇ РАКЕТИ-НОСІЯ ПІД ЧАС ПОЛЬОТУ https://journal.yuzhnoye.com/ua/content_2024_1-ua/annot_5_1_2024-ua/ Thu, 13 Jun 2024 06:00:42 +0000 https://journal.yuzhnoye.com/?page_id=34895
Procedure for evaluation of flight safety of launch vehicles, which uses geometric representation of object lesion zone in the form of a polygon. Mathematic models for evaluation of risk for ground objects during launches of launch-vehicles.
]]>

5. Оцінка ризику токсичного ураження людей у разі аварії ракети-носія під час польоту

Організація:

Сторінка: Kosm. teh. Raket. vooruž. 2024, (1); 40-50

DOI: https://doi.org/10.33136/stma2024.01.040

Мова: Англійська

Анотація: Сучасні ракети-носії/ракети космічного призначення (РН/РКП), незважаючи на жорсткі екологічні вимоги, використовують токсичні компоненти ракетного палива АТ і НДМГ. Зазвичай такі компоненти використовують на верхніх ступенях РН/РКП, де міститься незначний об’єм палива, проте окремі РН/РКП досі застосовують таке паливо на всіх маршових ступенях. Аварії під час польоту РН/РКП, що містять токсичні компоненти ракетного палива, можуть призводити до падіння аварійної РН/РКП на поверхню Землі й утворення значних за розмірами зон хімічного ураження для людей (можуть перевищувати зони ураження від вибуху та пожежі). Це притаманно аваріям на відрізку польоту першого ступеня, коли поверхні Землі досягатимуть незруйновані РН/РКП або її складові частини (як правило, окремі ступені) з компонентами ракетного палива. Вибух і пожежа під час такого падіння, найімовірніше, спричинить залповий викид токсиканту та забруднення приземного шару атмосфери. Розглянуто аварію на етапі польоту першого ступеня для РН/РКП з токсичними компонентами ракетного палива, яку обладнано системою польотної безпеки, що реалізує аварійне вимкнення двигуна у разі виявлення аварійної ситуації. Для оцінювання ризику токсичного ураження людини, що знаходиться у певній точці, необхідно математично описати зону, в межах якої можливе падіння аварійної РН/РКП спричинить токсичне ураження людини (названо зоною небезпечного падіння аварійної РН/РКП). Складність цього полягає у необхідності враховувати стан атмосфери, насамперед вітер. З використанням зони токсичного ураження людини при падінні аварійної РН/РКП, яку запропоновано подавати сукупністю двох фігур: півкола та півеліпса, побудовано відповідну зону небезпечного падіння аварійної РН/РКП. Ураховуючи складності запису аналітичних виразів для цих фігур під час переходу до стартової системи координат і подальшого інтегрування при визначенні ризику, у практичних розрахунках зону небезпечного падіння аварійної РН/РКП запропоновано наближати багатокутником. Це дозволяє використати відому процедуру визначення ризиків. Узагальнення розробленої моделі визначення ризику токсичного ураження людини передбачає урахування різних типів аварійних відмов, які можуть спричинити падіння аварійної РН/РКП, та блокування аварійного вимкнення двигуна на початковому відрізку польоту. Для випадку аварії РН «Дніпро» з використанням запропонованої моделі побудовано небезпечну зону для людини, у якій ризики токсичного ураження перевищують допустимий рівень (10-6). Отримана небезпечна зона значно перевищує небезпечну зону, яка зумовлена уражальною дією вибухової хвилі. Показано напрямки подальшого удосконалення моделі, що пов’язані з урахуванням реального поширення токсиканту в атмосфері й отримання людиною певної токсодози.

Ключові слова: ракета-носій, аварійна відмова, аварія на етапі польоту, зона токсичного ураження людини, зона небезпечного падіння аварійної ракети-носія, ризик токсичного ураження людини.

Список використаної літератури:
  1. Hladkiy E. H. Protsedura otsenky poletnoy bezopasnosti raket-nositeley, ispolzuyuschaya geometricheskoe predstavlenie zony porazheniya obiekta v vide mnogougolnika. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2015. Vyp. 3. S. 50 – 56. [Hladkyi E. Procedure for evaluation of flight safety of launch vehicles, which uses geometric representation of object lesion zone in the form of a polygon. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2015. Issue 3. Р. 50 – 56. (in Russian)].
  2. Hladkiy E. H., Perlik V. I. Vybor interval vremeni blokirovki avariynogo vyklucheniya dvigatelya na nachalnom uchastke poleta pervoy stupeni. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-tech. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2011. Vyp. 2. s. 266 – 280. [Hladkyi E., Perlik V. Selection of time interval for blocking of emergency engine cut off in the initial flight leg of first stage. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2011. Issue 2. Р. 266 – 280. (in Russian)].
  3. Hladkiy E. H., Perlik V. I. Matematicheskie modeli otsenki riska dlya nazemnykh obiektov pri puskakh raket-nositeley. Kosmicheskaya technika. Raketnoe vooruzhenie: sb. nauch.-techn. st. Dnepropetrovsk: GP «KB «Yuzhnoye», 2010. Vyp. 2. S. 3 – 19. [Hladkyi E., Perlik V. Mathematic models for evaluation of risk for ground objects during launches of launch-vehicles. Space Technology. Missile Weapons: Digest of Scientific Technical Papers. Dnipro: Yuzhnoye SDO, 2010. Issue 2. P. 3 – 19. (in Russian)].
  4. NPAOP 0.00-1.66-13. Pravila bezpeki pid chas povodzhennya z vybukhovymy materialamy promyslovogo pryznachennya. Nabrav chynnosti 13.08.2013. 184 s [Safety rules for handling explosive substances for industrial purposes. Consummated 13.08.2013. 184 p.
    (in Ukranian)].
  5. AFSCPMAN 91-710 RangeSafetyUserRequirements. Vol. 1. 2016 [Internet resource]. Link : http://static.e-publishing.af.mil/production/1/afspc/publicating/
    afspcman91-710v1/afspcman91-710. V. 1. pdf.
  6. 14 CFR. Chapter III. Commercial space transportation, Federal aviation administration, Department of transportation, Subchapter C – Licensing, part 417 – Launch Safety, 2023 [Internet resource]. Link: http://law.cornell.edu/cfr/text/14/part-417.
  7. 14 CFR. Chapter III. Commercial space transportation, Federal aviation administration, Department of transportation, Subchapter C – Licensing, part 420 License to Operate a Launch Site. 2022 [Internet resource]. Link: http://law.cornell.edu/cfr/text/14/part-420.
  8. ISO 14620-1:2018 Space systems – Safety requirements. Part 1: System safety.
  9. GOST 12.1.005-88. Systema standartov bezopasnosti truda. Obschie sanitarno-gigienicheskie trebovaniya k vozdukhu rabochei zony. [GOST 12.1.005-88. Labor safety standards system. General sanitary and hygienic requirements to air of working zone].
  10. Rukovodyaschiy material po likvidatsii avarijnykh bolshykh prolivov okislitelya АТ (АК) i goruchego NDMG. L.:GIPKh, 1981, 172 s. [Guidelines on elimination of large spillages of oxidizer NTO and fuel UDMH. L.:GIPH, 1981, 172 p. (in Russian)].
  11. Kolichestvennaya otsenka riska chimicheskykh avariy. Kolodkin V. M., Murin A. V., Petrov A. K., Gorskiy V. G. Pod red. Kolodkina V. M. Izhevsk: Izdatelskiy dom «Udmurtskiy universitet», 2001. 228 s. [Quantitative risk assessment of accident at chemical plant. Kolodkin V., Murin A., Petrov A., Gorskiy V. Edited by Kolodkin V. Izhevsk: Udmurtsk’s University. Publish house, 2001. 228 p. (in Russian)].

 

Завантажень статті: 63
Переглядів анотації: 
921
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Ашберн; Буфало; Буфало; Лас-Вегас; Сан-Хосе; Чикаго; Чикаго; Сент-Луїс; Сент-Луїс;; Нью Йорк; Буфало; Буфало; Буфало; Буфало; Лос Анджелес; Чикаго; Колумбус; Даллас; Нью-Хейвен; Нью-Хейвен; Буфало; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Чикаго; Сан-Франциско; Лос Анджелес; Сан-Франциско; Ашберн; Маунтін-В'ю; Портленд; Портленд; Портленд; Ашберн40
Канада Торонто; Торонто; Торонто; Торонто; Торонто5
Китай Пекін; Шеньчжень; Пекін; Ханчжоу4
Німеччина Фалькенштайн; Дюсельдорф; Фалькенштайн; Лейпциг4
Сінгапур Сінгапур; Сінгапур2
Республіка Корея; Сеул2
Франція1
Unknown1
Румунія1
Індія1
Нідерланди Амстердам1
Україна Кременчук1
5.1.2024 ОЦІНКА РИЗИКУ ТОКСИЧНОГО УРАЖЕННЯ ЛЮДЕЙ У РАЗІ АВАРІЇ РАКЕТИ-НОСІЯ ПІД ЧАС ПОЛЬОТУ
5.1.2024 ОЦІНКА РИЗИКУ ТОКСИЧНОГО УРАЖЕННЯ ЛЮДЕЙ У РАЗІ АВАРІЇ РАКЕТИ-НОСІЯ ПІД ЧАС ПОЛЬОТУ
5.1.2024 ОЦІНКА РИЗИКУ ТОКСИЧНОГО УРАЖЕННЯ ЛЮДЕЙ У РАЗІ АВАРІЇ РАКЕТИ-НОСІЯ ПІД ЧАС ПОЛЬОТУ

Хмара тегів

]]>
9.1.2019 Моделювання акустичного випромінення струменя ракети “Циклон-4М” об’ємним джерелом https://journal.yuzhnoye.com/ua/content_2019_1-ua/annot_9_1_2019-ua/ Thu, 25 May 2023 12:09:50 +0000 https://journal.yuzhnoye.com/?page_id=27950
Acoustic Design of Launch Pad for Epsilon Launch Vehicle//Proceedings of AJCPP2014 .
]]>

9. Моделювання акустичного випромінення струменя ракети "Циклон-4М" об'ємним джерелом

Організація:

ДП “КБ “Південне” ім. М. К. Янгеля”, Дніпро, Україна1; Дніпровський національний університет ім. Олеся Гончара, Дніпро, Україна2

Сторінка: Kosm. teh. Raket. vooruž. 2019, (1); 64-71

DOI: https://doi.org/10.33136/stma2019.01.064

Мова: Російська

Анотація: Під час старту ракет космічного призначення струмінь рушійної установки генерує акустичне поле. При цьому можуть створюватися навантаження, критичні для стартового устаткування, корпусу самої ракети і особливо для космічних апаратів, які розташовані під обтічником. Для урахування впливу на ці елементи необхідно визначити характеристики акустичного поля, яке генерується. Розроблено метод, що дозволяє виконати моделювання акустичних полів під час старту ракети космічного призначення на основі визначення виду акустичних джерел. Зокрема, проведено моделювання акустичного випромінювання струменя РКП «Циклон-4М» об’ємним джерелом. Це дало змогу розрахувати амплітуди акустичного тиску в середовищі, що оточує РКП, й оцінити акустичні впливи на корпус ракети в певних точках. Метод передбачає використання для досліджень хвильового параметра kR. Моделювання акустичного поля струменя рушійної установки ракети космічного призначення як об’ємного джерела випромінювання проведено на відрізку польоту ракети, коли висота підйому РКП перевищує ~25 м. При цьому слід спиратися на значення граничної частоти fгр = 150 Гц, яка розділяє два види акустичного поля: fгр 150 Гц ‒ фронт акустичної хвилі плоского типу. Розроблено алгоритм і програму розрахунку рівнів звукового тиску на мові JAVA. Розраховано характеристики рівнів звукового тиску акустичних полів залежно від частоти випромінювання з урахуванням температури навколишнього середовища. Максимальний рівень звукового тиску на частоті 150 Гц становив у зонах: корисного вантажу зовні обтічника ‒ 155 дБ, приладового відсіку ‒ 157 дБ, міжбакового відсіку ‒ 172 дБ, хвостового відсіку ‒ 182 дБ. На частотах, менших ніж 150 Гц, рівні звукового тиску становлять менші значення. Дані розрахунків подано графічно.

Ключові слова: ракета космічного призначення, акустичне поле, звуковий тиск

Список використаної літератури:

1. Дементьев В. К. О максимальных акустических нагрузках на ракету при старте /В. К. Дементьев, Г. Е. Думнов, В. В. Комаров, Д.А. Мельников // Космонавтика и ракетостроение. – 2000. – Вып. 19. – С. 44-55.
2. Tsutsumi S., Ishii T., Ut K., Tokudone S., Chuuouku Y., Wado K. Acoustic Design of Launch Pad for Epsilon Launch Vehicle//Proceedings of AJCPP2014 . Asian Joint Conference on Propulsion and Power, March 5-8, 2014, Jeju Island, Korea. AJCPP2014-090.
3. Panda J., Mosher R., Porter D.J. Identification of Noise Sources during Rocket Engine Test Firings and a Rocket Launch a Microphone Phased-Array // NASA / TM2013-216625, December 2013. – P. 1-20.
4. Cокол Г. И. Метод определения вида источников акустического излучения в первые секунды старта ракет космического назначения / Г. И. Сокол // Системне проектування та аналіз характеристик аерокосмічної техніки: Зб. наук. пр. – 2018. –XXIV. –Дніпро: Ліра, 2018. –С. 91-101.
5. Cокол Г. И. Волновой параметр как критерий в основе метода исследования акустических источников при старте ракет /Г. И. Сокол, В. П. Фролов, В. Ю. Котлов //Авиационно-космическая техника и технология. – 2018. – 3 (147), май-июнь 2018. – Харьков: ХАИ, 2018. – С. 4-13.
DОІ:http://doi.org /10.20535/0203- 3771332017119600.
6. Ржевкин С. Н. Курс лекций по теории звука / С. Н. Ржевкин. – М.: МГУ, 1960. – 261с.
7. Тюлин В. Н. Введение в теорию излучения и рассеяния звука / В. Н. Тюлин. – М.:Наука, 1976. – 253 с.
8. Сапожков М. А. Электроакустика /М. А. Сапожков. – М.: Связь, 1978. – 272 с.
9. ГрінченкоВ.Т. Основи акустики / В. Т.Грінченко, В. В. Вовк, В. Т. Маципура. – Київ: Наук. думка, 2007. – 640 с.
10. Ультразвук: Малая энциклопедия. – М.: Наука, 1983. – 400 с.
11. Волков К. Н. Турбулентные струи – статические модели и моделирование крупных вихрей / К. Н. Волков, В. Н. Емельянов, В. А. Зазимко. – М.: Физматлит, 2013. – 960 с.
12. Шилдт Г. Java 8. Полное руководство. – 9-е изд. – М.: Вильямс, 2015. – 137 с.

Завантажень статті: 67
Переглядів анотації: 
633
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Бордман; Ашберн; Спрінгфілд; Матаван; Балтімор; Плейно; Майамі; Майамі; Дублін; Дублін; Колумбус; Ашберн; Детроїт; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Монро; Ашберн; Сіетл; Ашберн; Ашберн; Маунтін-В'ю; Сіетл; Таппаханок; Бойдтон; Портленд; Сан-Матео; Сан-Матео; Де-Мойн; Бордман; Бордман; Ашберн; Ашберн; Ашберн; Ашберн; Сіетл43
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур8
Канада Торонто; Торонто; Торонто; Торонто; Торонто; Торонто; Торонто; Монреаль8
Нідерланди Амстердам; Амстердам2
Фінляндія Гельсінкі1
Індонезія Сураба1
Німеччина Фалькенштайн1
Румунія Волонтарі1
Unknown1
Україна Дніпро1
9.1.2019 Моделювання акустичного випромінення струменя ракети “Циклон-4М” об’ємним джерелом
9.1.2019 Моделювання акустичного випромінення струменя ракети “Циклон-4М” об’ємним джерелом
9.1.2019 Моделювання акустичного випромінення струменя ракети “Циклон-4М” об’ємним джерелом

Хмара тегів

]]>
14.1.2019 Методологія визначення ресурсу працездатності РДТП з урахуванням запасів міцності матеріалів та елементів https://journal.yuzhnoye.com/ua/content_2019_1-ua/annot_14_1_2019-ua/ Wed, 24 May 2023 16:00:23 +0000 https://journal.yuzhnoye.com/?page_id=27955
Service Life Assessment for Space Launch Vehicles //
]]>

14. Методологія визначення ресурсу працездатності РДТП з урахуванням запасів міцності матеріалів та елементів

Автори: Ушкін М. П.

Організація: ДП "КБ "Південне" ім. М. К. Янгеля", Дніпро, Україна

Сторінка: Kosm. teh. Raket. vooruž. 2019, (1); 95-101

DOI: https://doi.org/10.33136/stma2019.01.096

Мова: Російська

Анотація: Строк експлуатації (ресурс працездатності) пристрою (системи, конструкції, матеріалу) є одним з найважливіших показників, що визначають надійне виконання завдання або необхідність заміни пристрою. Метою цієї роботи є розроблення інженерної методології проектного оцінювання ресурсу працездатності пристрою для забезпечення обґрунтованого прийняття проектноконструкторських рішень. Методологію оцінювання ресурсу матеріалу і конструкції розроблено на основі узагальнення великого обсягу експериментальних даних ДП «КБ «Південне» і теоретичних досліджень впливу різних факторів (властивостей матеріалів, навантажень, умов зберігання й експлуатації) на запас їх працездатності на основі міцнісного розрахунку. При цьому визначення ресурсу базується на результатах розрахунків напружень і деформацій і їх порівнянні з міцнісними характеристиками застосовуваного матеріалу (міцністю на розрив і деформативністю). Міцнісні властивості матеріалу повинні бути зведені до умов випробування за температурою, тиском, швидкістю навантаження, ступенем старіння матеріалу та ін. Методологія передбачає оцінювання запасів міцності на всіх стадіях зберігання й експлуатації пристрою, врахування впливу діючих факторів (масових, температурних, навантажувальних, процесу старіння матеріалу), проведення розрахунків для вибраних специфічних зон пристрою. Показано, що оцінка ресурсу в загальному випадку є ймовірнісною величиною через випадкове поєднання впливних факторів (міцнісних характеристик, умов зберігання й експлуатації, навантажень). Аналіз експериментальних і розрахункових даних щодо РДТП показує, що найнебезпечнішими зонами, які визначають ресурс працездатності, є канал заряду (деформації під час запуску), зона скріплення палива з корпусом (відривні напруження) і зона «замка» розкріплювальної манжети (концентрація зсувних і відривних напружень і деформацій). Розроблені методологічні основи інженерного оцінювання ресурсу працездатності може бути використано для розрахункового обґрунтування строку експлуатації матеріалу й конструкції на етапі проектування системи і внесення необхідних коригувань у прийняті проектно-конструкторські рішення.

Ключові слова: напруження, деформація, строк експлуатації, старіння, навантаження

Список використаної літератури:

1. Ляшевский А. В., Миронов Е. А., Ведерников М. В. Прогнозирование сроков пригодности твердых ракетных топлив методом рентген-компьютерной томографии //Авиационная и ракетно-космическая техника. – №2. – 2015. – С. 118-123.
2. Schubert H., Menke K. Service Life Determination of Rocket Motors by Comprehensive Property Analysis of Propellant Grain // Athens, Greece, May, 1996, Simposium. – №41 – С. 1-10.
3. Hufferd W. L. Service Life Assessment for Space Launch Vehicles // Athens, Greece, May, 1996, Simposium. – №46 – С. 1-9.
4. Faulkner G. S., Tod D. Service Life Prediction Methodologies Aspects of the TTCP KTA-14 UK Programme // Athens, Greece, May, 1996, Simposium. – №24 – С. 1-13.
5. Francis E. C. (England), Busswell H. J. Improvements in Rocket Motor Service Life Prediction // Athens, Greece, May, 1996, Simposium. – №27 – С. 1-13.
6. Collingwood G. A., Dixon M. D., Clark L. M., Becker E. B. Solid Rocket Motor Service Life Prediction Using Nonlinear Viscoelastic Analysis and Probabilistic Approach //Athens, Greece, May, 1996, Simposium. – №29 – С. 1-8.
7. Жарков А. С., Анисимов И. И., Марьяш В. И. Физко-химические процессы в изделиях из высокоэнергетических конденсированных материалов при длительной эксплуатации // Физическая мезомеханика. – №9/4. – 2006. – С. 93-106.
8. Гуль В. Е. Структура и прочность полимеров // М.: Химия, 1971. – С. 10-23, 189-209.
9. Павлов П. А. Основы инженерных расчетов элементов машин на усталостную и длительную прочность // Л.: Машиностроение, 1988. – С. 65-70.
10. Ушкин Н. П. Способы проектной оценки ресурса РДТТ и обеспечения его длительной эксплуатации // Космическая техника. Ракетное вооружение: Сб. науч.-техн. ст. – 2016. – Вып. 1. – Днепропетровск: ГП «КБ «Южное». – С. 110-116.

Завантажень статті: 66
Переглядів анотації: 
283
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Бордман; Балтімор;;; Плейно; Майамі; Майамі; Колумбус; Колумбус; Колумбус; Детроїт; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Монро; Ашберн; Ашберн; Маунтін-В'ю; Сіетл; Сіетл; Таппаханок; Портленд; Портленд; Портленд; Портленд; Сан-Матео; Сан-Матео; Сан-Матео; Ашберн; Колумбус; Ашберн; Де-Мойн; Бордман; Ашберн; Ашберн42
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур10
Україна Харків; Київ; Дніпро3
Індія Карнал; Тіруччіраппаллі2
Канада Торонто; Торонто2
Нідерланди Амстердам; Амстердам2
Китай Шанхай1
Unknown1
Великобританія Лондон1
Німеччина Фалькенштайн1
Румунія Волонтарі1
14.1.2019 Методологія визначення ресурсу працездатності РДТП з урахуванням запасів міцності матеріалів та елементів
14.1.2019 Методологія визначення ресурсу працездатності РДТП з урахуванням запасів міцності матеріалів та елементів
14.1.2019 Методологія визначення ресурсу працездатності РДТП з урахуванням запасів міцності матеріалів та елементів

Хмара тегів

]]>
2.1.2023 Розвиток на ДП «КБ «Південне» моделей оцінювання показників польотної безпеки для випадку аварії ракети на етапі польоту https://journal.yuzhnoye.com/ua/content_2023_1-ua/annot_2_1_2023-ua/ Fri, 12 May 2023 16:10:21 +0000 https://test8.yuzhnoye.com/?page_id=26905
Gladky Mathematical Models of the Safety Assessment of Ground Facilities in Case of Failure of Launch Vehicle Equipped with Onboard Automatic Emergency Engine Shutdown/ Proceedings of the International Astronautical Congress, IAC.
]]>

2. Розвиток на ДП «КБ «Південне» моделей оцінювання показників польотної безпеки для випадку аварії ракети на етапі польоту

Автори: Гладкий Е. Г., Перлик В. І.

Організація: ДП "КБ "Південне" ім. М. К. Янгеля", Дніпро, Україна

Сторінка: Kosm. teh. Raket. vooruž. 2023 (1); 14-30

DOI: https://doi.org/10.33136/stma2023.01.014

Мова: Українська

Анотація: Убезпечення експлуатації сучасних ракетно-космічних комплексів залишається актуальною проблемою для розробників ракетно-космічної техніки. Невід’ємною складовою цієї проблеми разом із безпекою робіт під час наземної підготовки ракети-носія до пуску є убезпечення польоту. Основним завданням цієї складової безпеки ракетно-космічних комплексів є запобігання або зведення до мінімуму важких наслідків, що виникають у випадку аварії ракети-носія на етапі польоту, адже такі аварії можуть завдати збитків не тільки персоналу й об’єктам космодрому (наземного комплексу), а головне – населенню й об’єктам, які розташовані вздовж трас польоту. Показано, що убезпечення польоту ракет-носіїв у своїй основі має досвід бойових ракетних систем. Під час пусків ракет-носіїв безпека забезпечується за рахунок прокладення трас польоту через малонаселені (незаселені) території та застосування спеціальних бортових систем безпеки польоту. Така система обмежує розміри зони падіння аварійної ракети-носія та її фрагментів шляхом аварійного вимкнення двигуна. Останнім часом процес убезпечення польоту будується виходячи із концепції «прийнятного» ризику. У її основі оцінювання ризиків для наземних об’єктів і людей, які не повинні перевищувати встановлених норм. Такий підхід вимагає створення та вдосконалення математичних моделей оцінювання ризиків у випадку аварії ракети-носія на етапі польоту. Показано шлях становлення ризик-орієнтованого підходу до убезпечення польоту на ДП «КБ «Південне». Принциповим у цьому процесі виявилося створення у структурі конструкторського бюро окремої одиниці, що почала виконувати роботу із забезпечення і аналізу польотної безпеки ракетно-космічних комплексів. Проаналізовано базову модель оцінювання ризиків ураження об’єктів і людей, що використовує максимальну зону падіння аварійної ракети-носія для випадку втрати керованості та спрацювання системи безпеки польоту. Показано основні напрями удосконалення базової моделі, які привели до створення на ДП «КБ «Південне» ряду нових, оригінальних моделей оцінювання показників польотної безпеки. Насамперед, розроблені моделі враховують особливості систем безпеки польоту, якими обладнано ракети-носії розроблення ДП «КБ «Південне»: критерії спрацювання, блокування аварійного вимкнення двигуна на початковому відрізку польоту та функціонал Fe. Крім цього, отримані моделі дозволяють урахувати різноманітний характер аварійних ситуацій, що виникають на етапі польоту ракети-носія, та можливості їх відбиття, подання зон ураження об’єктів у вигляді опуклих багатокутників, можливу фрагментацію аварійної ракети-носія на відрізку пасивного падіння та інші. Розроблені моделі широко застосовують у практиці оцінювання показників польотної безпеки у проектах ДП «КБ «Південне».

Ключові слова: ракета-носій, прийнятний ризик, аварія ракети-носія на етапі польоту, система безпеки польоту, зона падіння аварійної ракети носія, ризик ураження наземного об’єкта, колективний ризик

Список використаної літератури:

1. Гладкий Э. Г. Определение коллективного риска в случае аварии ракетыносителя «Циклон-4М» на этапе полета с использованием представления населенных территорий в виде многоугольников. Космічна наука і технологія. К., 2020. Т. 26. № 3. С. 32–41. https://doi.org/10.15407/knit2020.03.032
2. Гладкий Э. Г. Определение риска для объектов стартового комплекса с учетом их обваловки в случае аварии ракеты-носителя на начальном участке полета. Техническая механика. Днепропетровск: ИТМ НАН и ГКА Украины, 2020. № 1. С. 31–41.
3. Гладкий Э. Г. Оценка риска поражения линейного объекта в случае аварии ракеты-носителя на этапе полета. Космічна наука і технологія. Киев: ГАО, 2019. Т. 25. № 4. С. 22–28.
4. Гладкий Э. Г. Процедура оценки полетной безопасности ракет-носителей, использующая геометрическое представление зоны поражения объекта в виде многоугольника. Космическая техника. Ракетное вооружение: Сб. науч. тр. Днепропетровск: ГПКБЮ, 2015. Вып. 3. С. 50–56.
5. Гладкий Э. Г., Крюков А. В. Определение вероятности падения аварийной ракеты-носителя на площадные объекты, расположенные вдоль трассы выведения. Космическая техника. Ракетное вооружение: Сб. науч. тр. Днепропетровск: ГКБЮ, 2008. Вып. 1. С. 81−90.
6. Гладкий Э. Г., Перлик В. И. Выбор интервала времени блокировки аварийного выключения двигателя на начальном участке полета первой ступени. Космическая техника. Ракетное вооружение: Сб. науч. тр. Днепропетровск: ГПКБЮ, 2011. Вып. 2. С. 266–280.
7. Гладкий Э. Г., Перлик В. И. Математические модели оценки риска для наземных объектов при пусках ракет-носителей. Космическая техника. Ракетное вооружение: Сб. науч. тр. Днепропетровск: ГПКБЮ, 2010. Вып. 2. С. 3–19.
8. Гладкий Э. Г., Перлик В. И. Модель оценки уровня безопасности ракетно-космических систем. Космическая техника. Ракетное вооружение: Сб. науч. тр. Днепропетровск: ГКБЮ. 2006. Вып. 1−2. С. 45–57.
9. Методика определения показателей безопасности по трассам пусков и в районах падения отделяющихся частей ракет-носителей. ООО «НТЦ «Экон ЦНИИмаш», 2006.
10. Программа «Гром-2». Оперативно-тактический ракетный комплекс. Полетная безопасность. GR2 YZH ANL 016 00 [Исп. Гладкий Э. Г. Желудков А. В. и др.]
11. Программа «Циклон-4М». Ракетно-космический комплекс. Анализ полетной безопасности РКК. C4M YZH ANL 062 00. 2018. Вып. 1. 92 с. [Исп. Гладкий Э. Г., Желудков А. В. и др.].
12. Проект ТКРК Анализ приемлемости альтернативной точки # 7 для размещения КПЦ ТКРК SL-YN-TD-R-009
13. Разработка методических материалов по оценке степени риска по трассе полета и в районах падения отделяющихся частей при пусках средств выведения. Книга 1. Методические материалы. НТО. ЦНИИмаш. 1990. 68 с.
14. Ракета космического назначения «Циклон-4». Уточнение характеристик зон падения РКН «Циклон-4» в случае аварии. Оценка безопасности выбранных мест размещения объектов НК КРК «Циклон-4». Циклон-4 21.16011.117 ОТ: Техн. отчет. Днепропетровск: ГП «КБ «Южное», 2008. 110 с.
15. Ракета космического назначения «Циклон-4». Опасные зоны при аварийном полете РКН «Циклон-4». Циклон-4 21.16522.635 ОТ: Техн. отчет. Днепропетровск: ГП «КБ «Южное», 2009. 69 с.
16. Увязка КА Лыбидь с РКК «Зенит-М»: Пояснительная записка Зенит-М. Лыбидь ПЗ, 2012. 363 с.
17. Хенли Э., Джм Кумамото X. Надежность технических систем и оценка риска: Под общ. ред. В. С. Сыромятникова. М.: Машиностроение, 1984. 528 с.
18. Шатров Я. Т. Исследование проблемы выбора трасс пусков и сокращения зон отчуждения для перспективных систем выведения с учетом факторов безопасности и экономичности. Канд. Дис., ЦНИИмаш, 1980, 207 с.
19. 14 CFR, Commercial space transportation, Federal aviation administration, Department of transportation Subchapter C – Licensing, part 420 – License to Operate a Launch Site, 2000
20. E. Gladky Mathematical Models of the Safety Assessment of Ground Facilities in Case of Failure of Launch Vehicle Equipped with Onboard Automatic Emergency Engine Shutdown/ Proceedings of the International Astronautical Congress, IAC. 2015. P. 9665 – 9675.

Завантажень статті: 27
Переглядів анотації: 
498
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Ашберн; Ашберн; Колумбус; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Сіетл; Ашберн; Квінтон; Норт-Чарлстон; Маунтін-В'ю; Ашберн; Ашберн17
Канада Торонто; Торонто; Торонто; Торонто4
Unknown Перт;2
Сінгапур Сінгапур1
Німеччина Фалькенштайн1
Нідерланди Амстердам1
Україна Кременчук1
2.1.2023 Розвиток на ДП «КБ «Південне» моделей оцінювання показників польотної безпеки для випадку аварії ракети на етапі польоту
2.1.2023 Розвиток на ДП «КБ «Південне» моделей оцінювання показників польотної безпеки для випадку аварії ракети на етапі польоту
2.1.2023 Розвиток на ДП «КБ «Південне» моделей оцінювання показників польотної безпеки для випадку аварії ракети на етапі польоту

Хмара тегів

]]>