Search Results for “Aksenenko A. V.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Wed, 06 Nov 2024 11:36:47 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Aksenenko A. V.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems https://journal.yuzhnoye.com/content_2020_1-en/annot_2_1_2020-en/ https://journal.yuzhnoye.com/?page_id=31001
Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems Authors: Aksenenko A. Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems Автори: Aksenenko O. Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems Автори: Aksenenko O. Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems Автори: Aksenenko O. Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems Автори: Aksenenko O.
]]>

2. Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2020, (1); 13-25

DOI: https://doi.org/10.33136/stma2020.01.013

Language: Russian

Annotation: The scientific and methodological propositions for the designing single-stage guided missiles with the solid rocket motors for advanced multiple launch rocket systems are defined. The guided missiles of multiple launch rocket system are intended for delivering munitions to the given spatial point with required and specified kinematic motion parameters at the end of flight. The aim of the article is an analysis of the development trends of the guided missiles with the solid rocket motors for the multiple launch rocket systems, identifying the characteristics and requirements for the flight trajectories, design parameters, control programs, overall dimensions and mass characteristics, structural layout and aerodynamic schemes of missiles. The formalization of the complex task to optimize design parameters, trajectory parameters and motion control programs for the guided missiles capable of flying along the ballistic, aeroballistic or combined trajectories is given. The complex task belongs to a problem of the optimal control theory with limitations in form of equa lity, inequality and differential constraints. To simplify the problem, an approach to program forming is proposed for motion control in the form of polynomial that brings the problem of the optimal control theory to a simpler problem of nonlinear mathematical programming. When trajectory parameters were calculated the missile was regarded as a material point of variable mass and the combined equations for center-of-mass motion of the guided missile with projections on axes of the terrestrial reference system were used. The structure of the mathematical model was given along with the calculation sequence of the criterion function that was used for determination of the optimal parameters, programs and characteristics. The mathematical model of the guided missile provides adequate accuracy for design study to determine depending on the main design parameters: overall dimensions and mass characteristics of the guided missile in general and its structural comp onents and subsystems; power, thrust and consumption characteristics of the rocket motor; aerodynamic and ballistic characteristics of the guided missile. The developed methodology was tested by determining design and trajectory parameters, overall dimensions and mass characteristics, power and ballistic characteristics of two guided missiles with wings for advanced multiple launch rocket systems produced by the People’s Republic of China, using the limited amount of information available in the product catalog.

Key words: multiple launch rocket systems (MLRS), complex problem of the optimal control theory, problem of nonlinear mathematical programming, main solid rocket motor, limitations for motion parameters and basic characteristics of the guided missiles

Bibliography:
1. Degtyarev A. V. Raketnaia tekhnika. Problemy i perspektivy: izbrannye nauchno-tekhnicheskie publikatsii. Dnepropetrovsk, 2014. 420 s.
2. Pro zatverdzhennia Poriadku zdiisnennia derzhavnoho kontriliu za mizhnarodnymy peredachamy tovariv podviinoho vykorystannia:Postanova Kabinetu Ministriv Ukrainy vid 28 sichnia 2004 r. № 86. Date: 29.11.2018. URL: https://zakon.rada.gov.ua/laws/show/86-2004-%D0%BF (Access date 01.09.2019).
3. Catalogue China Aerospase Long-march International. February, 2017. 136 p.
4. Reaktivnye sistemy zalpovogo ognia zarubezhnykh stran: obzor po materialam otkrytoi pechati za 1987–2016 gg. i interneta. Dnipro, 2016. Ч. I. 205 s.
5. Upravliaemye OTRK i TRK stran mira: obzor po materialam otkrytoi otechestvennoi i zarubezhnoi pechati za 2008–2014 gg. i interneta. Dnipro, 2014. 162 s.
6. Tail controlled rocket demonstrates near-vertical impact at extended range. URL: https://www.army.mil/article-amp/207357/tail_controlled_rocket_demonstrates_near_vertical_impact_at_extended_range (Access date 01.09.2019).
7. SY-400 Short-Range Ballistic Missile. URL: http://www.military-today.com/missiles/sy_400.htm (Access date 01.09.2019).
8. Vohniana “Vilkha”: nova vysokotochna systema zalpovoho vohnyu. Vpershe – detalno. URL: https://defence-ua.com/index.php/statti/4588-vohnyana-vilkha-nova-vysokotochna-systema-zalpovoho-vohnyu-vpershe-detalno (Access date 01.09.2019).
9. Gurov S. V. Reaktivnye sistemy zalpovogo ognia: obzor. 1-е izd. Tula, 2006. 432 s.
10. The new M30A1 GMLRS Alternate Warhead to replace cluster bombs for US Army Central 71601171. URL: https://www.armyrecognition.com/weapons_defence_industry_military_technology_uk/the_new_m30a1_gmlrs_alternate_warhead_to_replace_cluster_bombs_for_us_army_central_71601171.html (Access date 01.09.2019).
11. High-Mobility Artillery Rocket System (HIMARS), a member of MLRS family. URL: https://army-technology.com/projects/himars/ (Access date 01.09.2019).
12. SR-5 Multiple Launch Rocket System. URL: http://www.military-today.com/artillery/sr5.htm (Access date 01.09.2019).
13. Effectivnost slozhnykh system. Dinamicheskie modeli / V. А. Vinogradov, V. А. Hrushchansky, S. S. Dovhodush i dr. М., 1989. 285 s.
14. Ilichev А. V., Volkov V. D., Hrushchansky V. А. Effectivnost proektiruemykh elementov slozhnykh system: ucheb. posobie. М., 1982. 280 s.
15. Krotov V. F., Gurman V. I. Metody I zadachi optimalnogo upravleniia. М., 1973. 446 s.
16. Pontriagin L. S., Boltiansky V. G., Gamkrelidze R. V., Mishchenko Е. F. Matematicheskaia teoriia optimalnykh protsesov. М., 1969. 385 s.
17. Tarasov Е. V. Algoritm optimalnogo proektirovaniia letatelnogo apparata. М., 1970. 364 s.
18. Shcheverov D. N. Proektirovanie bespilotnykh letatelnykh apparatov. М., 1978. 264 s.
19. Siniukov А. М., Volkov L. I., Lvov А. I., Shishkevich А. М. Ballisticheskaia raketa na tverdom toplive / pod red. А. М. Siniukova. М., 1972. 511 s.
20. Burov М. А., Varfolomeev V. I., Volkov L. I. Proektirovanie i ispytanie ballisticheskikh raket / pod red. V. I. Varfolomeeva, М. I. Kopytova. М., 1970. 392 s.
21. Siutkina-Doronina S. V. K voprosu optimizatsii proektnykh parametrov i programm upravleniia raketnogo ob’ekta s raketnym dvigatelem na tverdom toplive. Aviatsionno-kosmicheskaia tekhnika i tekhnologiia. 2017. № 2 (137). S. 44–59.
22. Aksenenko A. V., Baranov E. Yu., Hursky A. I., Klochkov A. S., Morozov A. S., Alpatov A. P., Senkin V. S., Siutkina-Doronina S. V. Metodicheskoe obespechenie dlia optimizatsii na nachalnom etape proektirovaniia proektnykh parametrov, parametrov traektorii i programm upravleniia dvizheniem raketnogo ob’ekta. Kosmicheskaia tekhnika. Raketnoe vooruzhenie: sb. nauch.-tekhn. st. / GP “KB “Yuzhnoye”. Dnipro, 2018. Vyp. 2 (116). S. 101–116. https://doi.org/10.33136/stma2018.02.101
23. Metodicheskoe obespechenie dlia optimizatsii na nachalnom etape proektirovaniia proektnykh parametrov, programm upravleniia, ballisticheskikh, energeticheskikh i gabaritno-massovykh kharakteristik upravliaemykh raketnykh ob’ektov, osushchestvliaiushchikh dvizhenie po aeroballisticheskoi traektorii: otchet po NIR / ITM NANU i GKAU, GP “KB “Yuzhnoye”. Dnepropetrovsk, 2017. 159 S.
24. Senkin V. S. K Vyboru programm upravleniia dvizheniem raketnogo ob’ekta po ballisticheskoi traektorii. Tekhnicheskaia mekhanika. 2018. № 1. S. 48–59.
25. Alpatov A. P., Senkin V. S. Metodicheskoe obespechenie dlia vybora oblika, optimizatsii proektnykh parametrov i programm upravleniia poletom rakety-nositelia. Tekhnicheskaia mekhanika. 2013. № 4. S. 146–161.
26. Alpatov A. P., Senkin V. S. Kompleksnaia zadacha optimizatsii osnovnykh proektnykh parametrov i programm upravleniia dvizheniem raket kosmicheskogo naznacheniia. Tekhnicheskaia mekhanika. 2011. № 4. S. 98–113.
27. Senkin V. S. Optimizatsiia proektnykh parametrov rakety-nositelia sverkhlegkogo klassa. Tekhnicheskaia mekhanika. 2009. № 1. S. 80–88.
28. Lebedev А. А., Gerasiuta N. F. Ballistika raket. М., 1970. 244 s.
29. Razumev V. F., Kovalev B. K. Osnovy proektirovaniia ballisticheskikh raket na tverdom toplive: ucheb. posobie dlia vuzov. М., 1976. 356 s.
30. Erokhin B. Т. Teoreticheskie osnovy oroektirovaniia RDTT. М., 1982. 206 s.
31. Abugov D. I., Bobylev V. М. Teoriia i raschet raketnykh dvigatelei tverdogo topliva: uchebnik dlia mashinostroitelnykh vuzov. М., 1987. 272 s.
32. Shishkov А. А. Gasodinamika porokhovykh raketnykh dvigatelei: inzhenernye metody rascheta. М., 1974. 156 s.
Downloads: 46
Abstract views: 
3682
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Ashburn; Matawan; Baltimore; Plano; Miami; Columbus; Ashburn; Columbus; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Boardman; Seattle25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Ukraine Dnipro; Sumy; Kovel'; Dnipro; Dnipro5
Latvia Riga; Riga2
China Shanghai1
Finland Helsinki1
Unknown1
India Mumbai1
Canada Monreale1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems
2.1.2020 Analysis of development trends of design parameters and basic characteristics of missiles for the advanced multiple launch rocket systems

Keywords cloud

]]>
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs https://journal.yuzhnoye.com/content_2018_2-en/annot_12_2_2018-en/ Thu, 07 Sep 2023 11:38:27 +0000 https://journal.yuzhnoye.com/?page_id=30770
Content 2018 (2) Downloads: 42 Abstract views: 835 Dynamics of article downloads Dynamics of abstract views Downloads geography Country City Downloads USA Boardman; Columbus; Matawan; Baltimore; Plano; Miami; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Portland; Portland; San Mateo; Des Moines; Boardman; Ashburn; Ashburn 24 Unknown ; Brisbane;; 4 Ukraine Kharkiv; Dnipro; Dnipro; Kyiv 4 Singapore Singapore; Singapore; Singapore; Singapore 4 Germany Frankfurt am Main; Falkenstein 2 Finland Helsinki 1 Canada Monreale 1 Romania Voluntari 1 Netherlands Amsterdam 1 Downloads, views for all articles Articles, downloads, views by all authors Articles for all companies Geography of downloads articles Aksenenko O.
]]>

12. Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine1; The Institute of Technical Mechanics, Dnipro, Ukraine2

Page: Kosm. teh. Raket. vooruž. 2018 (2); 101-116

DOI: https://doi.org/10.33136/stma2018.02.101

Language: Russian

Annotation: The main scientific and methodological propositions for designing single-stage guided missiles with main solid rocket motors that are intended for delivering payload to the given spatial point with required and specified kinematic motion parameters are defined. The aim of the article is to develop methodology for the early design phase to improve the basic characteristics of guided missiles, including formalization of complex problem to optimize design parameters, trajectory parameters and motion control programs for guided missiles capable of flying along the ballistic, aeroballistic or combined trajectories. The task is defined as a problem of the optimal control theory with limitations in form of equality, inequality and differential constraints. An approach to program forming is proposed for motion control in the form of polynomial that brings the problem of the optimal control theory to a simpler problem of nonlinear mathematical programming. When trajectory parameters were calculated the missile was regarded as material point of variable mass and the combined equations for center-of-mass motion of the guided missile with projections on axes of the terrestrial reference system were used. The structure of the mathematical model was given along with the calculation sequence of criterion functional that was used for optimization of design parameters, control programs and basic characteristics of the guided missile. The mathematical model of the guided missile provides adequate accuracy for design study to determine: overall dimensions and mass characteristics of the guided missile in general and its structural components and subsystems; power, thrust and consumption characteristics of the main engine; aerodynamic and ballistic characteristics of the guided missile. The developed methodology was tested by solving design problems. Applications of the developed program were studied to present the research results in a user-friendly form.

Key words: complex problem of the optimal control theory, problem of nonlinear mathematical programming, main solid rocket motor, limitations for motion parameters and basic characteristics of the object

Bibliography:
1. Degtyarev A. V. Rocket Engineering: Problems and Prospects. Selected scientific-technical publications. Dnepropetrovsk, 2014. 420 p.
2. Shcheverov D. N. Designing of Unmanned Aerial Vehicles. М., 1978. 264 p.
3. Sinyukov А. М. et al. Ballistic Solid-Propellant Rocket / Under the editorship of A. M. Sinyukov. М., 1972. 511 p.
4. Varfolomeyev V. I. Designing and Testing of Ballistic Rockets / Under the editorship of V. I. Varfolomeyev, M. I. Kopytov. М., 1970. 392 p.
5. Vinogradov V. A., Grushchansky V. A., Dovgodush S. I. et al. Effectiveness of Complex Systems. Dynamic Models. М., 1989. 285 p.
6. Il’ichyov A. V., Volkov V. D., Grushchansky V. A. Effectiveness of Designed Complex Systems’ Elements. М., 1982. 280 p.
7. Krotov V. F., Gurman V. I. Methods and Problems of Optimal Control. М., 1973. 446 p.
8. Pontryagin L. S. et al. Mathematical Theory of Optimal Processes. М., 1969. 385 p.
9. Tarasov E. V. Algorithms of Flying Vehicles Optimal Designing. М., 1970. 364 p.
10. Alpatov A. P., Sen’kin V. S. Complex Task of Optimization of Space Rocket Basic Design Parameters and Motion Control Programs. Technical Mechanics. 2011. No. 4. P. 98-113.
11. Alpatov A. P., Sen’kin V. S. Methodological Support for Selection of Launch Vehicle Configuration, Optimization of Design Parameters and Flight Control Programs. Technical Mechanics. 2013. No. 4. P. 146-161.
12. Sen’kin V. S. Optimization of Super-Light Launch Vehicle Design Parameters. Technical Mechanics. 2009. No. 1. P. 80-88.
13. Sen’kin V. S. Flight Control Optimization and Thrust Optimization of Controllable Rocket Object Main Propulsion System. Technical Mechanics. 2000. No. 1. P. 46-50.
14. Syutkina-Doronina S. V. On Problem of Optimization of Design Parameters and Control programs of a Rocket Object With Solid Rocket Motor. Aerospace Engineering and Technology. 2017. No. 2 (137). P. 44-59.
15. Lebedev А. А., Gerasyuta N. F. Rocket Ballistics. М., 1970. 244 p.
16. Razumov V. F., Kovalyov B. K. Design Basis of Solid-Propellant Ballistic Missiles. М., 1976. 356 p.
17. Yerokhin B. T. SRM Theoretical Design Basis. М., 1982. 206 p.
18. Abugov D. I., Bobylyov V. M. Theory and Calculation of Solid Rocket Motors. М., 1987. 272 p.
19. Shishkov А. А. Gas Dynamics of Powder Rocket Motors. М., 1974. 156 p.
20. Sen’kin V. S. Complex Task of Optimization of Super-Light Solid-Propellant Launch Vehicle Design Parameters and Control Programs. Technical Mechanics. 2012. No. 2. P. 106-121.
21. Methodological Support to Determine in Initial Designing Phase the Design Parameters, Control Programs, Ballistic, Power, and Mass-Dimensional Characteristics of Controllable Rocket Objects Moving In Aeroballistic Trajectory: R&D Report. ITM of NASU and SSAU, Yuzhnoye SDO. Inv. No. 40-09/2017. 2017. 159 p.
Downloads: 42
Abstract views: 
835
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Columbus; Matawan; Baltimore; Plano; Miami; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; Seattle; Tappahannock; Portland; Portland; San Mateo; Des Moines; Boardman; Ashburn; Ashburn24
Unknown; Brisbane;;4
Ukraine Kharkiv; Dnipro; Dnipro; Kyiv4
Singapore Singapore; Singapore; Singapore; Singapore4
Germany Frankfurt am Main; Falkenstein2
Finland Helsinki1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs
12.2.2018 Methodological Support for Initial Phase Optimization of Projecting Design, Trajectory Parameters and Rocket Object Motion Control Programs

Keywords cloud

]]>
3.1.2023 Analysis of a modernized 9K51 Hrad Multiple Rocket Launcher System to determine the performance specifications of the 122-mm unguided rocket projectile in development https://journal.yuzhnoye.com/content_2023_1-en/annot_3_1_2023-en/ Fri, 12 May 2023 16:10:31 +0000 https://test8.yuzhnoye.com/?page_id=26987
Analysis of a modernized 9K51 Hrad Multiple Rocket Launcher System to determine the performance specifications of the 122-mm unguided rocket projectile in development Authors: Aksenenko O. Analysis of a modernized 9K51 Hrad Multiple Rocket Launcher System to determine the performance specifications of the 122-mm unguided rocket projectile in development Автори: Aksenenko O. Analysis of a modernized 9K51 Hrad Multiple Rocket Launcher System to determine the performance specifications of the 122-mm unguided rocket projectile in development Автори: Aksenenko O. Analysis of a modernized 9K51 Hrad Multiple Rocket Launcher System to determine the performance specifications of the 122-mm unguided rocket projectile in development Автори: Aksenenko O. Analysis of a modernized 9K51 Hrad Multiple Rocket Launcher System to determine the performance specifications of the 122-mm unguided rocket projectile in development Автори: Aksenenko O.
]]>

3. Analysis of a modernized 9K51 Hrad Multiple Rocket Launcher System to determine the performance specifications of the 122-mm unguided rocket projectile in development

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2023 (1); 31-40

DOI: https://doi.org/10.33136/stma2023.01.031

Language: Ukrainian

Annotation: The article dwells on the multiple launch rocket systems with high firepower, firing rate and manoeuvrability, which continue to be one of the basic means of destruction of the land forces in the conditions of the modern armed conflicts. Authors observed the importance of reconstruction and upgrading of multiple launch rocket systems of Grad 9К51, Hurricane 9К57 and Tornado 9К58 types and missiles they use by the enterprises of the domestic military-industrial complex. The article dwells on the main areas of upgrading of the multiple launch rocket system Grad 9K51 performed by NPO Splav and co-operating enterprises in 1997‒1998 for a foreign customer. The key factors that allowed improving the performance of the Grad system in the upgrading process are identified in this article. The main characteristics of the unguided missiles 9M217, 9M218, 9M521, 9M522, designed for the foreign customer, had been investigated. The performance characteristics of the Tornado-G multiple launch rocket system which went into service with the Ministry of Defense of the Russian Federation in 2014, as well as the family of the upgraded unguided missiles 9M538, 9M539, 9M641, are analyzed. The article identifies the main areas of work for further improvement of the performance characteristics of the 122-mm unguided missile, developed by Yuzhnoe Design Office for the multiple launch rocket system 9K51 Grad. This article can be useful for the specialists in development of new and upgrading outdated systems of rocket weapons.

Key words: multiple launch rocket system (MLRS), missile, 9K51 Grad, 9M217, 9M218, 9M521, 9M522, Tornado-G, 9M538, 9M539, 9M541

Bibliography:
1. Kislitsin A.M., Polegenko O.F. Rozvytok ta modernizatsia suchasnyh reaktivnyh system zalpovogo vognyu. Zbirnyk naukovyh prats. Kyiv. Vyp. №4(75), 2019. S. 155-167
2. Reaktivnye systemy zalpovogo ognya/ S.V. Gurov/ Pod obschey redaktsiey akademika RARAN N.A. Makarovtsa/ Tula-2006/ 425 str.
3. Kapustnik-B. Kompleks sredstv avtomatizirovannogo upravleniya ogniem (indeks 1В126). URL: http://roe.ru/catalog/sukhoputnye-vosyka/kompleksy-sredstv-avtomatizirovannogo-upravleniya-ognem-artillerii/kapustnik-b/
4. 122-mm reaktivnaya sistema zalpovogo ognya 9К51М «Tornado-G» BM 2Б17-1. URL:http://zonwar.ru/artileru/reakt_sistem.html/Tornado-G.html
5. Reaktivnaya sistema zalpovogo ognya «Tornado». URL: https://militaryarms.ru/voennaya-texnika/artilleriya/rszo-tornado/
6. Udar “Tornado”. Sekrety samoi moschnoi reaktivnoi sistemy zalpovogo ognya Rossii. URL: https://tass.ru/armiya-i-opk/5801642
7. 9К51M «Tornado-G», 122-mm reaktivnaya sistema zalpovogo ognya. URL: https://www.arms-expo.ru/armament/samples/1216/65431/
8. Rossiyskie RSZO: dalshe, tochnee, effectivnee. URL: https://studylib.ru/doc/693908/
9. Oskolochno-fugasniy snaryad 9M521. URL: http://rbase.new-factoria.ru/missile/wobb/grad/9m521.htm
10. Reaktivnaya sistema zalpovogo ognya «Grad». Modernizirovannaya boevaya mashina 2B17 RSZO «Grad» s ASUNO i APP OAO «Motovilihinskie zavody». Presentatsionnye materialy.
11. Reaktivniy snaryad M21ОF. Trebovaniya k priemno-sdatochnym ispytaniyam na bezopasnost i kuchnost. Komplekt RKD. Chertezh № 3-017200 «10»
12. Tablitsy strelby oskolochno-fugasnymi snaryadami M-21OF. Voenizdat MO SSSR, M. 1975.
13. Tornado-G. URL: https://ru.wikipedia.org/wiki/Tornado-G
14. 9M521.122-mm neupravlyaemiy oskolochno-fugasniy reaktivniy snaryad s golovnoi chastiu povyshennogo moguschestva. URL: http://roe.ru/catalog/sukhoputnye-vosyka/boepripasy/9m521/
15. 9M522. 122-mm neupravlyaemiy oskolochno-fugasniy reaktivniy snaryad s otdelyaemoy oskolochno-fugasnoy golovnoi chastiu (indeks 9М522). URL: http://roe.ru/catalog/sukhoputnye-vosyka/boepripasy/9m522/
16. 9M217. 122-mm neupravlyaemiy reaktivniy snaryad s samopritselivayuschimisya boevymi elementami (indeks 9М217). URL: http://roe.ru/catalog/sukhoputnye-vosyka/boepripasy/9m217/
17. 9M218. 122-mm neupravlyaemiy reaktivniy snaryad s kumulyativno-oskolochnymi boevymi elementami (indeks 9M218). URL: http://roe.ru/catalog/sukhoputnye-vosyka/boepripasy/9m218/
18. TRG-122 Guided Rocket – Roketsan. URL: www.roketsan.com.tr/en/product/trg-122-guided-rocket/
19. Oskolochno-fugasniy snaryad 9M522 s otdelyaemoy GCh. URL: http://rbase.new-factoria.ru/missile/wobb/grad/9m522.htm
20. Snaryad 9M217 s kassetnoy GCh. URL: http://rbase.new-factoria.ru/missile/wobb/grad/9m217.htm
21. Reaktivniy snaryad 9M218 s kassetnoy GCh. URL: http://rbase.new-factoria.ru/missile/wobb/grad/9m218.htm
22. PAO «Motovilihinskie zavody» vypolnilo goskontrakt po RSZO “Tornado-G”. URL: https://topwar.ru/164625-pao-motovilihinskie-zavody-vypolnilo-goskontrakt-po-rszo-tornado-g.html
23. Neupravlyaemiy reaktivniy snaryad 9M538. URL: http://rbase.new-factoria.ru/missile/wobb/8779/8779.shtml
24. Neupravlyaemiy reaktivniy snaryad 9M539. URL: http://rbase.new-factoria.ru/missile/wobb/8780/8780.shtml
25. Neupravlyaemiy reaktivniy snaryad 9M541. URL: http://rbase.new-factoria.ru/missile/wobb/8781/8781.shtml
26. 122-mm reaktivnye snaryady dlya RSZO “Tornado-G”. URL: https://bmpd.livejournal.com/3326341.html
Downloads: 5
Abstract views: 
1187
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Seattle; Ashburn2
Ukraine Kyiv; Kremenchuk2
Germany Falkenstein1
3.1.2023 Analysis of a modernized 9K51 Hrad Multiple Rocket Launcher System to determine the performance specifications of the 122-mm unguided rocket projectile in development
3.1.2023 Analysis of a modernized 9K51 Hrad Multiple Rocket Launcher System to determine the performance specifications of the 122-mm unguided rocket projectile in development
3.1.2023 Analysis of a modernized 9K51 Hrad Multiple Rocket Launcher System to determine the performance specifications of the 122-mm unguided rocket projectile in development

Keywords cloud

Your browser doesn't support the HTML5 CANVAS tag.
]]>