Search Results for “Petrenko I. P.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com Space technology. Missile armaments Tue, 02 Apr 2024 12:01:40 +0000 en-GB hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Search Results for “Petrenko I. P.” – Collected book of scientific-technical articles https://journal.yuzhnoye.com 32 32 8.1.2018 The Solid–Propellant Motors with Regulated Thrust https://journal.yuzhnoye.com/content_2018_1-en/annot_8_1_2018-en/ Tue, 05 Sep 2023 06:26:08 +0000 https://journal.yuzhnoye.com/?page_id=30458
Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine Page: Kosm. Key words: Bibliography: 1. Petrenko V. Control of Solid-Propellant Propulsion Systems. Available at: https://doi.org/10.33136/stma2018.01.046 . Missile armaments Том: 2018 Випуск: 2018 (1) Рік: 2018 Сторінки: 46—52.doi: https://doi.org/10.33136/stma2018.01.046 . Missile armaments Том: 2018 Випуск: 2018 (1) Рік: 2018 Сторінки: 46—52.doi: https://doi.org/10.33136/stma2018.01.046 . Missile armaments Том: 2018 Випуск: 2018 (1) Рік: 2018 Сторінки: 46—52.doi: https://doi.org/10.33136/stma2018.01.046 . Missile armaments Том: 2018 Випуск: 2018 (1) Рік: 2018 Сторінки: 46—52.doi: https://doi.org/10.33136/stma2018.01.046 .
]]>

8. The Solid–Propellant Motors with Regulated Thrust

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (1); 46-52

DOI: https://doi.org/10.33136/stma2018.01.046

Language: Russian

Annotation: The paper considers the results of scientific research and experimental works performed by Yuzhnoye SDO on solid–propellant motors with controlled thrust. The possibility in principle is shown of creating such motors and stabilizing their characteristics in different operation modes due to the throat area regulation system and selection of relevant control algorithm.

Key words:

Bibliography:
1. Petrenko V. I., Sokoovsky M. I. et al. Control of Solid-Propellant Propulsion Systems. М., 2003. 463 p.
2. Presnyakov V. F. Solid Rocket Motor Dynamics. М., 1984. 248 p.
3. Sorokin R. E. Solid Rocket Motor Gas Thermodynamics. М., 1967. 368 p.
Downloads: 36
Abstract views: 
879
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Matawan;; Plano; Miami; Columbus; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Tappahannock; San Mateo; Des Moines; Boardman; Boardman; Ashburn; Seattle19
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Unknown; Hong Kong2
Germany; Falkenstein2
Ukraine Kyiv; Dnipro2
Vietnam Qui Nhon1
Finland Helsinki1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
8.1.2018 The Solid–Propellant Motors with Regulated Thrust
8.1.2018 The Solid–Propellant Motors with Regulated Thrust
8.1.2018 The Solid–Propellant Motors with Regulated Thrust
]]>
7.1.2018 Prospective Gas Purification Device for LRE Test Bench https://journal.yuzhnoye.com/content_2018_1-en/annot_7_1_2018-en/ Tue, 05 Sep 2023 06:22:22 +0000 https://journal.yuzhnoye.com/?page_id=30456
, Petrenko I. F., Petrenko I. F., Petrenko I. F., Petrenko I. F., Petrenko I. F., Petrenko I. F., Petrenko I.
]]>

7. Prospective Gas Purification Device for LRE Test Bench

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (1); 39-45

DOI: https://doi.org/10.33136/stma2018.01.039

Language: Russian

Annotation: The paper considers the project of prospective integrated gas purification device for large-sized LRE test stand. The prognostic mathematical models are presented for evaluation of ecological indices of the integrated gas purification equipment.

Key words:

Bibliography:
1. Sokolov E. Y., Zinger N. M. Jet Devices. 3rd edition, revised. М., 1989. 352 p.
2. Abramovich G. N. Applied Gas Dynamics. In 2 parts. Part 1: Study guide for technical universities. 3rd edition, revised and enlarged. М., 1991. 600 p.
3. MODELING OF CHEMICAL AND PHASE EQUILIBRIUMS AT HIGH TEMPERATURES (ACTPA.4 рс). Version1:16. Description of Use. М., 1996. 51 p.
4. Gusev N. G., Belyayev V. A. Radioactive Emissions in Biosphere. М., 1991. 255 p.
5. Noise Control in Industry: Guide / Under the general editorship of E. Y. Yudin. М., 1985. 400 p.
6. Calculation and Measurement of Characteristics of Noise Created in Far Acoustic Field by Jet Aircraft / Under the editorship of L. I. Sorokin. М., 1968. 100 p.
7. GOST 31295.2-2005. Noise. Sound Attenuation at Propagation on Terrain. P. 2. General Calculation Method. 35 p.
Downloads: 37
Abstract views: 
600
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Matawan; Baltimore;;; Plano; Columbus; Detroit; Phoenix; Monroe; Ashburn; Seattle; Seattle; Ashburn; Tappahannock; Portland; San Mateo; San Mateo; San Mateo; Ashburn; Des Moines; Boardman; Boardman23
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Germany Frankfurt am Main; Falkenstein2
Finland Helsinki1
Unknown1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
7.1.2018 Prospective Gas Purification Device for LRE Test Bench
7.1.2018 Prospective Gas Purification Device for LRE Test Bench
7.1.2018 Prospective Gas Purification Device for LRE Test Bench
]]>
1.1.2018 Modernization and Automation of Temperature Calculation of Measurement Errors of Climatic Chambers for Accelerated Environmental Tests https://journal.yuzhnoye.com/content_2018_1-en/annot_1_1_2018-en/ Mon, 04 Sep 2023 12:33:40 +0000 https://journal.yuzhnoye.com/?page_id=30158
, Petrenko Y. Organization: Yangel Yuzhnoye State Design Office, Dnipro, Ukraine Page: Kosm. P., Petrenko Y. Available at: https://doi.org/10.33136/stma2018.01.003 . https://doi.org/10.33136/stma2018.01.003 . P., Petrenko Y. September.2018, doi: https://doi.org/10.33136/stma2018.01.003 . P., Petrenko Y. Missile armaments Том: 2018 Випуск: 2018 (1) Рік: 2018 Сторінки: 3—5.doi: https://doi.org/10.33136/stma2018.01.003 . P., Petrenko Y. Missile armaments Том: 2018 Випуск: 2018 (1) Рік: 2018 Сторінки: 3—5.doi: https://doi.org/10.33136/stma2018.01.003 . P., Petrenko Y. Missile armaments Том: 2018 Випуск: 2018 (1) Рік: 2018 Сторінки: 3—5.doi: https://doi.org/10.33136/stma2018.01.003 . P., Petrenko Y. Missile armaments Том: 2018 Випуск: 2018 (1) Рік: 2018 Сторінки: 3—5.doi: https://doi.org/10.33136/stma2018.01.003 .
]]>

1. Modernization and Automation of Temperature Calculation of Measurement Errors of Climatic Chambers for Accelerated Environmental Tests

Organization:

Yangel Yuzhnoye State Design Office, Dnipro, Ukraine

Page: Kosm. teh. Raket. vooruž. 2018 (1); 3-5

DOI: https://doi.org/10.33136/stma2018.01.003

Language: Russian

Annotation: The description of the program and its work on the part of the user is given as well as a description of the software automation solution from the programmer’s side. The introduction of an automated program has significantly accelerated the process of attestation of climatic chambers.

Key words:

Bibliography:
Downloads: 33
Abstract views: 
894
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Boardman; Ashburn; Baltimore; Boydton; Plano; Columbus; Detroit; Monroe; Ashburn; Seattle; Seattle; Ashburn; Seattle; San Mateo; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn20
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore6
Philippines Cainta1
Unknown1
Türkiye Istanbul1
Germany Falkenstein1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
1.1.2018 Modernization and Automation of Temperature Calculation of Measurement Errors of Climatic Chambers for Accelerated Environmental Tests
1.1.2018 Modernization and Automation of Temperature Calculation of Measurement Errors of Climatic Chambers for Accelerated Environmental Tests
1.1.2018 Modernization and Automation of Temperature Calculation of Measurement Errors of Climatic Chambers for Accelerated Environmental Tests
]]>
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime https://journal.yuzhnoye.com/content_2019_1-en/annot_5_1_2019-en/ Thu, 25 May 2023 12:09:25 +0000 https://journal.yuzhnoye.com/?page_id=27710
Key words: classification of loads and failures; shock wave , acoustic and thermal loads; low-cycle fatigue; hierarchical approach in classification; projection-iterative schemes of numerical procedur Bibliography: 1. / Pid. Lvyv: Kinpatri LTD, 2018. Petrenko. Pilipenko, V.S. posibn. TEchnologicheskie obiekty nazemnoy infrastructury raketno-kosmicheskoy techniki: monografia/ Pod red. M.: Poligrafiks RPK, 2005. Analiz avariynykh razrusheniy / Per. classification of loads and failures; shock wave , acoustic and thermal loads; low-cycle fatigue; hierarchical approach in classification; projection-iterative schemes of numerical procedur .
]]>

5. Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime

Organization:

The Institute of Technical Mechanics, Dnipro, Ukraine1; Yangel Yuzhnoye State Design Office, Dnipro, Ukraine2; Oles Honchar Dnipro National University, Dnipro, Ukraine3

Page: Kosm. teh. Raket. vooruž. 2019, (1); 28-37

DOI: https://doi.org/10.33136/stma2019.01.028

Language: Russian

Annotation: This article contains results of methodology and standards development for life prediction of launch site structures to launch various types’ launch vehicles into near-earth orbit. Launch sites have been built in various countries of the world (European Union, India, China, Korea, Russia, USA, Ukraine, France, Japan, etc.). In different countries they have their own characteristics, depending on the type and performance of the launch vehicles, infrastructure features (geography of the site, nomenclature of the space objects, development level of rocket and space technology), problems that are solved during launches, etc. Solution of various issues, arising in the process of development of the standards for justification of launch site life is associated with the requirement to consider complex problems of strength and life of nonuniform structural elements of launch sites and structures of rocket and space technology. Launch sites are the combination of technologically and functionally interconnected mobile and fixed hardware, controls and facilities, designed to support and carry out all types of operations with integrated launch vehicles. Launch pad, consisting of the support frame, flue duct lining and embedded elements for frame mounting, is one of the principal components of the launcher and to a large extent defines the life of the launch site. Main achievements of Ukrainian scientists in the field of strength and life are specified, taking into account the specifics of various branches of technology. It is noted that the physical nonlinearity of the material and statistical approaches determine the strength analysis of useful life. Main methodological steps of launch site structures life prediction are defined. Service limit of launch site is suggested to be the critical time or the number of cycles (launches) over this period, after which the specified limiting states are achieved in the dangerous areas of the load-bearing elements: critical cracks, destruction, formation of unacceptable plastic deformations, buckling failure, corrosion propagation, etc. Classification of loads acting on the launch sites is given. The useful life of launch site is associated with estimation of the number of launches. Concept of low and multiple-cycle fatigue is used. Developing strength standards and useful life calculation basis, it is advisable to use modern methods of engineering diagnostics, in particular, holographic interferometry and acoustic emission, and to develop the high-speed circuits of numerical procedures for on-line calculations when testing the designed systems.

Key words: classification of loads and failures; shock wave, acoustic and thermal loads; low-cycle fatigue; hierarchical approach in classification; projection-iterative schemes of numerical procedur

Bibliography:

1. Vidy startovykh kompleksov: GP KB «Yuzhnoye»: Rezhim dostupa. http://www.yuzhnoe.com/presscenter/media/ photo/techique/launch-vehique.
2. Modelyuvannya ta optimizatsia v nermomechanitsi electroprovidnykh neodnoridnykh til: u 5 t. / Pid. zag. red. akad. NANU R. M. Kushnira. Lvyv: Spolom, 2006–2011. T. 1: Termomechanika bagatokomponentnykh til nyzkoi electroprovodnosti. 2006. 300 p. T. 2: Mechanotermodiffusia v chastkovo prozorykh tilakh. – 2007. 184 p. T. 3: Termopruzhnist’ termochutlyvykh til. 2009. 412 p. T. 4: Termomechanica namagnychuvannykh electroprovodnykh nermochutlyvykh til. 2010. 256 p. T. 5. Optimizatsia ta identifikatsia v termomechanitsi neodnoridnykh til. 2011. 256 p.
3. Prochnost’ materialov I konstruktsiy / Pod obsch. red. acad. NANU V. T. Troschenko. K.: Academperiodika, 2005.1088 p.
4. Bigus G. A. Technicheskaya diagnostica opasnykh proizvodstvennykh obiektov/ G. A. Bigus, Yu. F. Daniev. М.: Nauka, 2010. 415 p.
5. Bigus G. A., Daniev Yu. F., Bystrova N. A., Galkin D. I. Osnovy diagnostiki technicheskykh ustroistv I sooruzheniy. M.: Izdatelstvo MVTU, 2018. 445 p.
6. Birger I. A., Shorr B. F., IosilevichG. B. Raschet na prochnost’ detaley machin: spravochnik. M.: Mashinostroenie, 1993. 640 p.
7. Hudramovich V. S. Ustoichivost’ uprugoplasticheskykh obolochek. K.: Nauk. dumka, 1987. 216 p.
8. Hudramovich V. S. Teoria polzuchesti i ee prilozhenia k raschetu elementov konstruktsiy. K.: Nauk. dumka, 2005. 224 p.
9. Hudramovich V. S., Klimenko D. V., Gart E. L. Vliyanie vyrezov na prochnost’ cylindricheskykh otsekov raketonositeley pri neuprugom deformirovanii materiala/ Kosmichna nauka i technologia. 2017. T. 23, № 6. P. 12–20.
10. Hudramovich V. S., Pereverzev Ye. S. Nesuschaya sposobnost’ sposobnost’ i dolgovechnost’ elementov konstruktsiy. K.: Nauk. dumka, 1981. 284 p.
11. Hudramovich V. S., SIrenko V. N., Klimenko D. V., Daniev Yu. F. Stvorennya metodologii nornativnykh osnov rozrakhunku resursu konstruktsii startovykh sporud ksomichnykh raket-nosiiv / Teoria ta practika ratsionalnogo proektuvannya, vygotovlennya i ekspluatatsii machinobudivnykh konstruktsiy: materialy 6-oy Mizhnar. nauk.-techn. conf. (Lvyv, 2018). Lvyv: Kinpatri LTD, 2018. P. 5–7.
12. Hudramovich V. S., Skalskiy V. R., Selivanov Yu. M. Golografichne ta akustico-emissine diagnostuvannya neodnoridnykh konstruktsiy i materialiv: monografia/Za red. akad. NANU Z. T. Nazarchuka. Lvyv: Prostir-M, 2017. 492 p.
13. Daniev Y. F. Kosmicheskie letatelnye apparaty. Vvedenie v kosmicheskuyu techniku/ Pod obsch. red. A. N. Petrenko. Dnepropetrovsk: ArtPress, 2007. 456 p.
14. O klassifikatsii startovogo oborudovania raketno-kosmicheskykh kompleksov pri obosnovanii norm prochnosti/ A. V. Degtyarev, O. V. Pilipenko, V.S. Hudramovich, V. N. Sirenko, Yu. F. Daniev, D. V. Klimenko, V. P. Poshivalov// Kosmichna nauka i technologia. 2016. T. 22, №1. P. 3–13. https://doi.org/10.15407/knit2016.01.003
15. Karmishin A. V. Osnovy otrabotky raketno -kosmicheskykh konstruktsiy: monografia. M.: Mashinostroenie, 2007. 480 p.
16. Mossakovskiy V. I. Kontaktnyue vzaimodeistvia elementov obolochechnykh konstruktsiy/ Kosmicheskaya technika. Raketnoye vooruzhenie. Space Technology. Missile Armaments. 2019. Vyp. 1 (117) 37. K.: Nauk. dumka, 1988. 288 p.
17. Pereverzev Ye. S. Sluchainye signaly v zadachakh otsenki sostoyaniya technicheskikh system. K.: Nauk. dumka, 1992. 252 p.
18. Prochnost’, resurs, zhivuchest’ i bezopasnost’ mashin/ Otv. red. N. A. Makhutov. M.: Librokom, 2008. 576 p.
19. Technichna diagnostika materialov I konstruktsiy: Dovidn. posibn. u 8 t. / Za red. acad. NANU Z. N. Nazarchuka. T. 1. Ekspluatatsina degradatsia konstruktsiynykh materialiv. Lvyv: Prostir-M, 2016. 360 p.
20. TEchnologicheskie obiekty nazemnoy infrastructury raketno-kosmicheskoy techniki: monografia/ Pod red. I. V. Barmina. M.: Poligrafiks RPK, 2005. Kn. 1. 412 p.; 2006. Kn. 2. 376 p.
21. Нudrаmоvich V. S. Соntact mechanics of shell structures under local loading/ International Аррlied Месhanics. 2009. Vol. 45, № 7. Р. 708– 729. https://doi.org/10.1007/s10778-009-0224-5
22. Нudrаmоvich V. Еlесtroplastic deformation of nonhomogeneous plates / I. Eng. Math. 2013. Vol. 70, Iss. 1. Р. 181–197. https://doi.org/10.1007/s10665-010-9409-5
23. Нudrаmоvich V. S. Mutual influence of openings on strength of shell-type structures under plastic deformation / Strenght of Materials. 2013. Vol. 45, Iss. 1. Р. 1–9. https://doi.org/10.1007/s11223-013-9426-5
24. Mac-Ivily A. J. Analiz avariynykh razrusheniy / Per. s angl. M.: Technosfera, 2010. 416 p.
25. Наrt Е. L. Ргоjесtion-itеrаtive modification оf the method of local variations for problems with a quadratic functional / Journal of Аррlied Мahtematics and Meсhanics. 2016. Vol. 80, Iss. 2. Р. 156–163. https://doi.org/10.1016/j.jappmathmech.2016.06.005
26. Mesarovich M. Teoria ierarkhicheskykh mnogourovnevykh system/ M. Mesarovich, D. Makho, I. Tohakara / Per. s angl. M.: Mir, 1973. 344 p.

Downloads: 45
Abstract views: 
793
Dynamics of article downloads
Dynamics of abstract views
Downloads geography
CountryCityDownloads
USA Springfield; Matawan; North Bergen; Plano; Miami; Miami; Miami; Dublin; Columbus; Phoenix; Phoenix; Phoenix; Monroe; Ashburn; Seattle; Ashburn; Seattle; Tappahannock; Portland; San Mateo; San Mateo; Des Moines; Boardman; Boardman; Ashburn25
Singapore Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore; Singapore9
Germany Frankfurt am Main; Frankfurt am Main; Falkenstein3
Unknown Hong Kong;2
Finland Helsinki1
India1
Canada Monreale1
Romania Voluntari1
Netherlands Amsterdam1
Ukraine Dnipro1
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime
5.1.2019 Methodology of Normative Principles of Justification of Launch Vehicle Launching Facility Structures Lifetime

Keywords cloud

]]>