Результати пошуку “Морозов А. С.” – Збірник науково-технічних статей https://journal.yuzhnoye.com Космічна техніка. Ракетне озброєння Wed, 06 Nov 2024 12:28:05 +0000 uk hourly 1 https://journal.yuzhnoye.com/wp-content/uploads/2020/11/logo_1.svg Результати пошуку “Морозов А. С.” – Збірник науково-технічних статей https://journal.yuzhnoye.com 32 32 1.1.2023 До розроблення методології побудови систем протиповітряної та протиракетної оборони. Обґрунтування апарата дослідження https://journal.yuzhnoye.com/ua/content_2023_1-ua/annot_1_1_2023-ua/ https://test8.yuzhnoye.com/?page_id=26314
Крім того, значно підвищують ризик прийняття не найкращих рішень можливості сучасних технологій зі створення різних систем озброєнь, здатних вирішувати завдання одного класу. Обґрунтовано доцільність його застосування в задачі, що розглядається, у т. Катасонов Ю. Развитие математического моделирования боевых действий в армии США. Военная мысль. Военная мысль. Военная мысль. Морозов Н. А., Стокли Ф. История и настоящее. Военная мысль. Военная мысль. Морозов Н. Останков В. багатофункціональна система , математична модель , військове формування , бойовий потенціал , співвідношення сил , оборонна достатність . на сайт ДП «КБ «Південне»
]]>

1. До розроблення методології побудови систем протиповітряної та протиракетної оборони. Обґрунтування апарата дослідження

Організація:

ДП “КБ “Південне” ім. М. К. Янгеля”, Дніпро, Україна

Сторінка: Kosm. teh. Raket. vooruž. 2023 (1); 3-13

DOI: https://doi.org/10.33136/stma2023.01.003

Мова: Українська

Анотація: У рамках завдання розроблення методології побудови системи протиповітряної та протиракетної оборони обґрунтовано апарат дослідження. Складність проблеми, яку розглядають, зумовлена багатофакторністю об’єкта дослідження, його якісним різноманіттям і розгалуженістю структури, а також неповною визначеністю умов задачі. Крім того, значно підвищують ризик прийняття не найкращих рішень можливості сучасних технологій зі створення різних систем озброєнь, здатних вирішувати завдання одного класу. Виходячи з цього, а також з урахуванням різкого зростання вартості сучасних озброєнь і військової техніки поставлене завдання віднесено до класу оптимізаційних, і таких, що вирішуються в рамках теорії дослідження операцій, де проблему розглядають як математичну задачу, а базовим методом дослідження є математичне моделювання. У рамках проведеного аналізу розглянуто основні види математичних моделей, їхні сфери застосування, переваги та недоліки. Позначено класифікацію математичних моделей за масштабом відтворюваних операцій, призначенням, цільовою направленістю. Як критерій ефективності, що підпорядковує цілеспрямованість моделі, взято найбільш поширене в сучасних підходах до розв’язання задач класу, що розглядається, кількісно-якісне співвідношення сил сторін, що протистоять. Показано проблеми, що належать до нього. Зокрема ‒ пошук компромісу між простотою математичної моделі та ступенем її адекватності об’єкту дослідження. Розглянуто два основних підходи до принципів побудови моделі військової операції та її оцінення. Перший реалізується за допомогою моделювання бойових дій. Другий підхід ґрунтується на припущенні порівнянності різних типів озброєнь за їхнім внеском у кінцевий результат операції та можливості присвоєння кожному з них «вагового коефіцієнта» – бойового потенціалу. Подано сучасний рівень розв’язання задач, пов’язаних з цим методом. Обґрунтовано доцільність його застосування в задачі, що розглядається, у т. ч. для визначення співвідношення сил сторін, що протистоять. За результатами аналізу сформульовано базові положення концепції побудови шуканої математичної моделі й апарата її дослідження: поставлене завдання необхідно вирішувати аналітичними методами в рамках теорії дослідження операцій; найбільш прийнятним поданням рівня військової операції, що аналізується, є аналітична модель; синтез моделі повинен базуватися на понятті бойового потенціалу. При цьому слід урахувати, що відомий підхід до оцінювання співвідношення сил з використанням методу бойових потенціалів має ряд істотних обмежень, у т. ч. методологічного плану, і в рамках подальших досліджень потребує розвитку як з точки зору підвищення ступеня достовірності одиничної оцінки, так і з точки зору надання математичній моделі, що синтезується, якостей системності.

Ключові слова: багатофункціональна система, математична модель, військове формування, бойовий потенціал, співвідношення сил, оборонна достатність

Список використаної літератури:

1. Коршунов Ю. М. Математические основы кибернетики. М., 1972. 376 с.
2. Павловский Р. И., Карякин В. В. Об опыте применения математических моде-
лей. Военная мысль. 1982. № 3. С. 54–57.
3. Катасонов Ю. В. США: военное программирование. М., 1972. 228 с.
4. Анализ опыта министерства обороны США по совершенствованию системы планирования и управления разработками вооружения. ЦИВТИ, отчет № 11152 по НИР.
М., 1967.
5. Соколов А. Развитие математического моделирования боевых действий в армии США. Зарубежное военное обозрение. 1980. № 8. С. 27–34.
6. Чуев Ю. В. Исследование операций в военном деле. М., 1970. 256 с.
7. Евстигнеев В. Н. К вопросу методологии математического моделирования операции. Военная мысль. 1987. № 17. С. 33–41.
8. Фендриков Н. И., Яковлев В. И. Методы расчетов боевой эффективности вооружения. М., 1971. 224 с.
9. Неупокоев Ф. О подходе к оценке боевых возможностей и боевой эффективности войск. Военная мысль. 1973. № 11. С. 70–72.
10. Агеев Ю. Д., Гераскин А. П. К вопросу о повышении достоверности оценки соотношения сил противоборствующих сторон. Военная мысль. 1978. № 4. С. 54–58.
11. Алешкин А. В. Оценка и соизмерение сил воюющих сторон с учётом качества средств поражения. Военная мысль. 1975. № 10. С. 69–76
12. Пономарёв О. К. О методах количественной и качественной оценки сил сторон. Военная мысль. 1976. № 4. С. 41–46.
13. Лузянин В. П., Елизаров В. С. Подход к определению состава группировки сил и средств оборонной достаточности. Военная мысль. 1992. № 11. С. 25–29.
14. Спешилов Л. Я., Павловский Р. И., Кабыш А. И. К вопросу о количественно-качественной оценке соотношения сил раз-
нородных группировок войск. Военная мысль. 1981. № 5.
15. Стрельченко Б. И., Иванов В. А. Некоторые вопросы оценки соотношения сил и средств в операции. Военная мысль. 1987. № 10. С. 55–61.
16. Морозов Н. А. О методологии качественного анализа больших военных систем. Военная мысль. 2004. № 7. С. 19–22.
17. Терехов А. Г. О методике расчета соотношения сил в операциях. Военная мысль. 1987. № 9. С. 51–57.
18. Цыгичко В. А., Стокли Ф. Метод боевых потенциалов. История и настоящее. Военная мысль. 1997. № 4. С. 23–28.
19. Бонин А. С. Основные положения методических подходов к оценке боевых потенциалов и боевых возможностей авиационных формирований. Военная мысль. 2008. № 1. С. 43–47.
20. Бонин А. С., Горчица Г. И. О боевых потенциалах образцов ВВТ, формирований и соотношениях сил группировок сторон. Военная мысль. 2010. № 4. С. 61–67.
21. Серегин Г. Г., Стрелков С. Н., Бобров В. М. Об одном подходе к расчету значений боевых потенциалов перспективных средств вооружений. Военная мысль. 2005. № 10. С. 32–38. https://doi.org/10.1016/S1097-8690(05)70764-2
22. Морозов Н. А. Еще раз о боевых потенциалах. Военная мысль. 2010. № 9. С. 75–79.
23. Нарышкин В. Г. О показателях боевого потенциала воинских формирований. Военная мысль. 2009. № 1. С. 68–72.
24. Костин Н. А. Методологический подход к определению боевых потенциалов войсковых формирований. Военная мысль. 2017. № 10. С. 44–48
25. Останков В. И. Обоснование боевого состава группировок войск (сил). Военная мысль. 2003. № 1. С. 23–28.

Завантажень статті: 71
Переглядів анотації: 
1892
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Ашберн;; Біско; Колумбус; Колумбус; Ашберн; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Ель Монте; Ель Монте; Ель Монте; Ашберн; Ашберн; Ашберн; Ашберн; Маунтін-В'ю; Сан-Матео; Сан-Матео; Ашберн; Ашберн; Ашберн; Ашберн; Ашберн; Помпано-Біч; Приозерний; Приозерний; Сіетл45
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур6
Німеччина Фалькенштайн; Фалькенштайн; Франкфурт на Майні; Лімбург-ан-дер-Лан; Фалькенштайн5
Канада Торонто; Торонто; Торонто; Торонто4
Unknown;2
Франція Париж; Париж2
Україна Дніпро; Кременчук2
В'єтнам1
Бразилія Монтіс-Кларус1
Японія1
Китай1
Нідерланди Амстердам1
1.1.2023 До розроблення методології побудови систем протиповітряної та протиракетної оборони. Обґрунтування апарата дослідження
1.1.2023 До розроблення методології побудови систем протиповітряної та протиракетної оборони. Обґрунтування апарата дослідження
1.1.2023 До розроблення методології побудови систем протиповітряної та протиракетної оборони. Обґрунтування апарата дослідження

Хмара тегів

]]>
7.1.2024 ВИБІР ФУНКЦІОНАЛЬНИХ ЕЛЕМЕНТІВ СИСТЕМИ РОЗДІЛЕННЯ СТУПЕНІВ РКП «ЦИКЛОН-4М» https://journal.yuzhnoye.com/ua/content_2024_1-ua/annot_7_1_2024-ua/ Fri, 14 Jun 2024 11:36:31 +0000 https://journal.yuzhnoye.com/?page_id=34909
, Олесіюк А. Наведено основні вимоги, які необхідно враховувати під час проєктування систем розділення: надійне та безпечне розділення, мінімальні втрати енергетики ракети, забезпечення достатньої відстані між ступенями на момент запуску рушійної установки. пневматичні штовхачі , пружинні штовхачі , РДТП , сопла ГРС , РН «Зеніт» , В., Татаревский К. М., Морозов Н. В., Куда С. Antares – Spaceflight Insider: вебсайт. Falcon 9 – pexels: вебсайт. О., Олесіюк А. О., Олесіюк А. О., Олесіюк А. О., Олесіюк А. О., Олесіюк А. О., Олесіюк А. пневматичні штовхачі , пружинні штовхачі , РДТП , сопла ГРС , РН «Зеніт» , на сайт ДП «КБ «Південне»
]]>

7. Вибір функціональних елементів системи розділення ступенів РКП «Циклон-4М»

Автори: Логвиненко А. І., Макаренко А. О., Хомяк В. О., Олесіюк А. А.

Організація: ДП "КБ "Південне" ім. М. К. Янгеля", Дніпро, Україна

Сторінка: Kosm. teh. Raket. vooruž. 2024, (1); 61-71

DOI: https://doi.org/10.33136/stma2024.01.061

Мова: Українська

Анотація: Розділення відпрацьованих ступенів ракет-носіїв – одне з важливих завдань у ракетній техніці та потребує проведення всебічного аналізу різних типів систем, оцінки їхніх параметрів і конструктивних схем. Наведено основні вимоги, які необхідно враховувати під час проєктування систем розділення: надійне та безпечне розділення, мінімальні втрати енергетики ракети, забезпечення достатньої відстані між ступенями на момент запуску рушійної установки. Надано детальну класифікацію типів систем («холодне», «тепле», «гаряче», «мінометне» розділення) та описано технічну суть з перевагами та недоліками. Розглянуто деякі види «холодного» та «теплого» розділення відпрацьованих ступенів ракет-носіїв, таких як «Дніпро», «Зеніт», «Antares», «Falcon-9», з різним принципом дії – гальмування відпрацьованим ступенем та розштовхуванням двох ступенів. Наведено короткі характеристики систем на основі тяги газореактивних сопел, гальмування ракетними твердопаливними двигунами, розштовхуванням пружинними та пневматичними штовхачами. На прикладі розроблення систем розділення перспективної ракети космічного призначення«Циклон-4М» запропоновано порядок проєктування систем розділення: визначення потрібної швидкості відділення й енергетики засобів розділення, визначення кількості активних елементів, розрахунок конструктивних та енергетичних параметрів засобів відділення, аналіз отриманих результатів з наступним вибором системи розділення. Показано використання емпіричних залежностей, які основані на досвіді проведення великого обсягу експериментально-теоретичних робіт у ході проєктування, функціонального відпрацювання та льотної експлуатації подібних систем таких ракет-носіїв, як «Циклон», «Дніпро», «Зеніт». За результатами порівняльного аналізу вибрано пневмосистему розділення першого та другого ступенів ракети космічного призначення «Циклон-4М» на основі пневмоштовхачів як найбільш ефективну. Наведено її основні характеристики, склад, загальний вигляд і компонування. Викладені матеріали носять методичний характер і можуть бути використані під час розробляння систем розділення ступенів ракет-носіїв, головних обтічників, космічних апаратів і т.п.

Ключові слова: системи розділення ступенів, функціональні елементи відділення, «холодне розділення», «тепле розділення», пневматичні штовхачі, пружинні штовхачі, РДТП, сопла ГРС, РН «Зеніт», РН «Дніпро», РН «Falcon 9», РН «Циклон-4М».

Список використаної літератури:

1. Панкратов Ю. П., Новиков А. В., Татаревский К. Э., Азанов И. Б. Динамика переходных процессов. 2014.
2. Синюков А. М., Морозов Н. И. Конструкция управляемых баллистических ракет. 1969.
3. Кабакова Ж. В., Куда С. А., Логвиненко А. И., Хомяк В. А. Опыт разработки пневмосистемы для отделения головного аэродинамического обтекателя. Космическая техника. Ракетное вооружение. 2017. Вып. 2 (114).
4. Колесников К. С., Козлов В. В., Кокушкин В. В. Динамика разделения ступеней летательных аппаратов. 1977.
5. Antares – Spaceflight Insider: вебсайт. URL: https://www. Spaceflightinsider.com/missions/iss/ng-18-cygnus-cargo-ship-tolaunch-new-science-to-iss/Antares (дата звернення 30.10.2023).
6. Falcon 9 – pexels: вебсайт. URL: https://www. pexels.com/Falcon 9 (дата звернення 31.10.2023).
7. Колесников К. С., Кокушкин В. В., Борзых С. В., Панкова Н. В. Расчет и проектирование систем разделения ступеней ракет. 2006.
8. Cyclone-4M – вебсайт URL: https://www.yuzhnote.com (дата звернення 31.10.2023).
9. Логвиненко А. И. Создание газореактивных систем отделения и увода отработавших ступеней – новый шаг в РКТ. Космическая техника. Ракетное вооружение, КБЮ, НКАУ, вып. 1, 2001.
10. Логвиненко А. И., Порубаймех В. И., Дуплищева О. М. Современные методы испытаний систем и элементов конструкций летательных аппара

Завантажень статті: 136
Переглядів анотації: 
2459
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Ашберн; Даллас; Буфало; Буфало; Сан-Хосе; Чикаго; Чикаго; Лос Анджелес; Лос Анджелес; Вашингтон; Буфало; Буфало; Даллас; Дублін; Ашберн; Ашберн; Ашберн; Буфало; Ешберн; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Сан-Франциско; Лос Анджелес; Ель Монте; Ель Монте; Ель Монте; Таузенд-Оукс; Даллас; Сіетл; Сіетл; Х'юстон; Х'юстон; Х'юстон; Ашберн; Ашберн; Ашберн; Маунтін-В'ю; Маунтін-В'ю; Маунтін-В'ю; Маунтін-В'ю; Маунтін-В'ю; Портленд; Портленд; Сан-Матео; Сан-Матео; Сан-Матео; Ашберн; Ашберн; Ашберн; Ашберн; Ашберн; Помпано-Біч; Маунтін-В'ю; Приозерний; Приозерний; Приозерний; Лос Анджелес77
Китай; Сінін; Пекін;;; Хефей;; Шеньчжень; Сямень; Тяньцинь; Пекін; Пекін; Чженчжоу; Ханчжоу; Шеньчжень; Іу; Пекін;; Ухань;;; Пекін22
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур7
Німеччина Фалькенштайн; Фалькенштайн; Фалькенштайн; Дюсельдорф; Фалькенштайн; Лейпциг; Лейпциг7
Канада Торонто; Торонто; Торонто; Торонто; Монреаль5
Франція; Іврі-сюр-Сен; Париж; Париж4
Україна Бердянськ; Кременчук; Новомосковськ3
Індія Мумбаї; Чиплун2
Бразилія; Американа2
Республіка Корея; Сеул2
В'єтнам Хошимін1
Unknown1
Великобританія Лестер1
Нідерланди Амстердам1
Австрія Відень1
7.1.2024 ВИБІР ФУНКЦІОНАЛЬНИХ ЕЛЕМЕНТІВ СИСТЕМИ РОЗДІЛЕННЯ СТУПЕНІВ РКП «ЦИКЛОН-4М»
7.1.2024 ВИБІР ФУНКЦІОНАЛЬНИХ ЕЛЕМЕНТІВ СИСТЕМИ РОЗДІЛЕННЯ СТУПЕНІВ РКП «ЦИКЛОН-4М»
7.1.2024 ВИБІР ФУНКЦІОНАЛЬНИХ ЕЛЕМЕНТІВ СИСТЕМИ РОЗДІЛЕННЯ СТУПЕНІВ РКП «ЦИКЛОН-4М»

Хмара тегів

]]>
12.2.2018 Методичне забезпечення для оптимізації на початковому етапі проектування проектних параметрів, параметрів траекторії та програм керування рухом ракетного об’єкта https://journal.yuzhnoye.com/ua/content_2018_2-ua/annot_12_2_2018-ua/ Thu, 07 Sep 2023 11:38:27 +0000 https://journal.yuzhnoye.com/?page_id=30649
С., Морозов А. С., Морозов А. С., Морозов А. С., Морозов А. С., Морозов А. С., Морозов А.
]]>

12. Методичне забезпечення для оптимізації на початковому етапі проектування проектних параметрів, параметрів траекторії та програм керування рухом ракетного об'єкта

Організація:

ДП “КБ “Південне” ім. М. К. Янгеля”, Дніпро, Україна1; Інститут технічної механіки НАНУ та ДКАУ, Дніпро, Україна2

Сторінка: Kosm. teh. Raket. vooruž. 2018 (2); 101-116

DOI: https://doi.org/10.33136/stma2018.02.101

Мова: Російська

Анотація: Сформульовано основні науково-методичні положення щодо проектування одноступеневих керованих ракетних об’єктів з маршовими ракетними двигунами на твердому паливі, призначених для доставляння корисного навантаження в задану точку простору з необхідними значеннями кінематичних параметрів руху. Мета статті – розроблення методичного забезпечення для оптимізації на початковому етапі проектування основних характеристик керованого ракетного об’єкта, до складу якого входить формалізація комплексного завдання оптимізації проектних параметрів, параметрів траєкторії та програм керування рухом керованого ракетного об’єкта, який може здійснювати політ балістичною, аеробалістичною або комбінованою траєкторіями. Задачу сформульовано як задачу теорії оптимального керування з обмеженнями у вигляді рівностей, нерівностей і диференційних зв’язків. Запропоновано підхід до формування програм керування рухом у вигляді поліномів, який дав змогу звести задачу теорії оптимального керування до простішої задачі нелінійного математичного програмування. Під час розрахунків параметрів траєкторій керований ракетний об’єкт розглядали як матеріальну точку змінної маси, при цьому використовували систему рівнянь руху центру мас керованого ракетного об’єкта у проекціях на осі земної системи координат. Наведено структуру математичної моделі та послідовність розрахунку цільового функціонала, які застосовували для оптимізації проектних параметрів, програм керування й основних характеристик керованого ракетного об’єкта. Математична модель керованого ракетного об’єкта дає змогу з допустимою для проектних досліджень точністю визначати: габаритно-масові характеристики керованого ракетного об’єкта в цілому та підсистем і елементів, що входять до його складу; енергетичні, тягові та витратні характеристики маршового двигуна; аеродинамічні та балістичні характеристики керованого ракетного об’єкта. Апробовано розроблене методичне забезпечення на прикладах розв’язання проектних задач. Розглянуто програмні додатки для подання у зручній для користувача формі результатів досліджень.

Ключові слова: комплексна задача теорії оптимального керування, задача нелінійного математичного програмування, маршовий ракетний двигун на твердому паливі, обмеження на параметри руху й основні характеристики об’єкта

Список використаної літератури:
Завантажень статті: 113
Переглядів анотації: 
941
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США Бордман; Колумбус; Матаван; Балтімор; Плейно; Майамі; Дублін; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Монро; Ель Монте; Ель Монте; Ель Монте; Ашберн; Сіетл; Сіетл; Ашберн; Ашберн; Ашберн; Маунтін-В'ю; Ашберн; Ашберн; Маунтін-В'ю; Сіетл; Сіетл; Таппаханок; Портленд; Портленд; Сан-Матео; Сан-Матео; Сан-Матео; Ашберн; Ашберн; Ашберн; Ашберн; Де-Мойн; Бордман; Ашберн; Ашберн; Ашберн; Ашберн; Помпано-Біч; Приозерний; Приозерний; Сіетл68
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур9
Україна Кам'янське; Київ; Харків; Дніпро; Дніпро; Київ6
Канада Торонто; Торонто; Торонто; Торонто; Монреаль; Монреаль6
Unknown;; Брісбен;;5
Німеччина Фалькенштайн; Фалькенштайн; Франкфурт на Майні; Нюрнберг; Фалькенштайн5
Китай; Пекін;3
Франція Париж; Париж; Париж3
В'єтнамB?n Tre; Може Тхо2
Нідерланди Амстердам; Амстердам2
Фінляндія Гельсінкі1
Бразилія Белу-Орізонті1
Японія1
Румунія Волонтарі1
12.2.2018 Методичне забезпечення для оптимізації на початковому етапі проектування проектних параметрів, параметрів траекторії та програм керування рухом ракетного об’єкта
12.2.2018 Методичне забезпечення для оптимізації на початковому етапі проектування проектних параметрів, параметрів траекторії та програм керування рухом ракетного об’єкта
12.2.2018 Методичне забезпечення для оптимізації на початковому етапі проектування проектних параметрів, параметрів траекторії та програм керування рухом ракетного об’єкта

Хмара тегів

]]>
7.1.2023 Особливості використання гуми як конструкційного матеріалу під час створення вузлів стикування систем термостатування https://journal.yuzhnoye.com/ua/content_2023_1-ua/annot_7_1_2023-ua/ Fri, 12 May 2023 16:10:58 +0000 https://test8.yuzhnoye.com/?page_id=26910
На відміну від металу, в якому можливе виявлення двох видів деформації (пружної та пластичної), у гуми можливе виявлення трьох видів деформації (пружної, високоеластичної та пластичної). У вузлах стикування під час проектування враховували два види деформації (пружну та високоеластичну). В двух частях. Морозова. Метод определения твердости по Шору А (с изменениями № 1, 2, 3, 4). О выборе материалов для создания рукавов стыковки систем термостатирования современных РКН. Зміст 2023 (1) Завантажень статті: 81 Переглядів анотації: 975 Динаміка завантажень статті Динаміка переглядів анотації Географія завантаженнь статті Країна Місто Кількість завантажень США ;; на сайт ДП «КБ «Південне»
]]>

7. Особливості використання гуми як конструкційного матеріалу під час створення вузлів стикування систем термостатування

Організація:

ДП “КБ “Південне” ім. М. К. Янгеля”, Дніпро, Україна1; ДП “УНДКТІ “ДІНТЕМ”, Дніпро, Україна2

Сторінка: Kosm. teh. Raket. vooruž. 2023 (1); 63-69

DOI: https://doi.org/10.33136/stma2023.01.063

Мова: Українська

Анотація: У ракетних комплексах космічного призначення однією із систем, відповідальних за підготовку та супроводження успішного пуску, є наземна система термостатування для забезпечення сухих відсіків ракети термостатувальним повітрям низького тиску. Приєднання зазначеної системи до ракети здійснюють за допомогою вузлів стикування, від нормальної роботи яких залежить надійність роботи всього наземного технологічного обладнання системи, ракети-носія та комплексу в цілому. Наведено основні вимоги до вузлів стикування та недоліки існуючих конструкцій та описано конструкцію вузла стикування з новою концепцією, відповідно до якої трубопровід наземної системи термостатування з’єднується з горловиною ракети за допомогою гумового гофрованого рукава триєдиної конструкції, який притискує до горловини ракети спеціальний механізм фіксації-розфіксації, виготовлений з металу. Це технічне рішення надає можливість забезпечити надійну герметизацію, зручність в експлуатації, легке багаторазове приєднання до борту ракети, в тому числі під різними кутами, та автоматичне відокремлення в момент пуску ракети або вручну в разі скасування пуску. Завдяки використанню для виготовлення рукава гуми як високоеластичного конструкційного матеріалу вдалося мінімізувати зусилля під час відокремлення вузла стикування від борту ракети. Гума у високоеластичному стані здатна до поглинання та розсіювання механічної енергії в широкому діапазоні температур, що унеможливлює передачу коливань від роботи двигуна на наземну систему термостатування. Наведено основні властивості гуми як конструкційного матеріалу та її особливості, які потрібно враховувати під час проектування аналогічних пристроїв. На відміну від металу, в якому можливе виявлення двох видів деформації (пружної та пластичної), у гуми можливе виявлення трьох видів деформації (пружної, високоеластичної та пластичної). У вузлах стикування під час проектування враховували два види деформації (пружну та високоеластичну). Експериментальні випробування цього вузла стикування показали позитивні результати за всіма вимогами технічного завдання.

Ключові слова: горловина ракети, гумовий гофрований рукав, механізм фіксації-розфіксації, високоеластична деформація, герметичність

Список використаної літератури:

1. Бигун С. А., Хорольский М. С. и др. Типы и конструктивные особенности узлов стыковки систем термостатирования головных блоков и отсеков ракет-носителей космических аппаратов. Космическая техника. Ракетное вооружение: сб. науч.-техн. ст. ГП «КБ «Южное». Днепропетровск. 2013. Вып. 1. С. 65-68.
2. Бигун С. А., Хорольский М. С. Проблемные вопросы создания узлов стыковки систем термостатирования ракет космического назначения. Космическая техника. Ракетное вооружение. Space technology Missile armaments: сб. науч.-техн. ст. ГП «КБ «Южное». Днепропетровск, 2013. Вып. 2. С. 132-138.
3. Пат. Франції №2658479 (А2), 1991. МПК кл. B64G 1/40; B64G 1/64, B64G 5/00.
4. Пат. Франції №2685903 (А1), 1993, МПК кл. B64G 5/00; F41F3/055; F02K9/44.
5. Пат. Російської Федерації №2473003-Cl. 2011 p., MПK7F16L 37/20.
6. Юрцев Л. Н., Бухин Б. Л. Резина как конструкционный материал. Большой справочник резинщика. В двух частях. Ч. 1. Каучуки и ингредиенты. Под ред. С. В. Резниченко, Ю. Л. Морозова. М., 2012. 744 с.
7. ГОСТ 263-75. Резина. Метод определения твердости по Шору А (с изменениями № 1, 2, 3, 4). М., 1989. 10 с.
8. Кошелев Ф. Ф., Корнев А. Е., Буканов А. М. Общая технология резины. Изд. 4-е, перераб. и доп. М., 1978. 528 с.
9. Скоков А. И., Каплун С. В., Богуцкая Е. А., Хорольский М. С., Бигун С. А. Технологические аспекты создания рукавов стыковки систем термостатирования ракет-носителей. Космическая техника. Ракетное вооружение: сб. науч.-техн. ст. ГП «КБ «Южное». Днепропетровск. 2015. Вып. 1. С. 42-45.
10. Бигун С. А., Евчик В. С., Хорольский М. С. О выборе материалов для создания рукавов стыковки систем термостатирования современных РКН. Космическая техника. Ракетное вооружение. Space technology Missile armaments: сб. науч.-техн. ст. ГП «КБ «Южное». Днепр, 2018. Вып. 1. С. 72-84.
11. Пат. України № 120445, 2019 р., B64G 5/00, B64G 1/40, F16L 37/08, F41F 3/055, F16L 33/00.
12. Пат. України №120469, 2019р., B64G 5/00, B64G 1/40, F25B 29/00, F16L 33/00, F16L 37/12, F16L 25/00.
13. Хорольський М. С., Бігун С. О. Щодо концепції створення вузлів стикування систем термостатування ракет космічного призначення. Системне проектування й аналіз характеристик аерокосмічної техніки: зб. наук. пр. 2019. Т. XXVII. С. 162-168.
14. Бигун С. А., Хорольский М. С. и др. Экспериментальные исследования результатов отработки узлов стыковки системы термостатирования РКН «Циклон-4». Космическая техника. Ракетное вооружение: сб. науч.-техн. ст. / ГП «КБ «Южное». Днепропетровск, 2016. Вып. 2. С. 43-51.

Завантажень статті: 81
Переглядів анотації: 
975
Динаміка завантажень статті
Динаміка переглядів анотації
Географія завантаженнь статті
КраїнаМістоКількість завантажень
США;; Колумбус; Ашберн; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Фінікс; Ель Монте; Ель Монте; Сіетл; Сіетл; Ашберн; Ашберн; Ашберн; Х'юстон; Х'юстон; Х'юстон; Х'юстон; Х'юстон; Норт-Чарлстон; Ашберн; Ашберн; Ашберн; Ашберн; Сан-Матео; Сан-Матео; Сан-Матео; Ашберн; Ашберн; Ашберн; Ашберн; Помпано-Біч; Маунтін-В'ю; Маунтін-В'ю; Приозерний; Приозерний; Приозерний57
Сінгапур Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур; Сінгапур7
Німеччина Фалькенштайн; Фалькенштайн; Лімбург-ан-дер-Лан; Фалькенштайн4
Канада Торонто; Торонто; Торонто; Торонто4
Unknown; Гонконг; Гонконг3
Китай Пекін; Пекін2
Бразилія1
Франція Париж1
ПАР Йоганнесбург1
Нідерланди Амстердам1
7.1.2023 Особливості використання гуми як конструкційного матеріалу під час створення вузлів стикування систем термостатування
7.1.2023 Особливості використання гуми як конструкційного матеріалу під час створення вузлів стикування систем термостатування
7.1.2023 Особливості використання гуми як конструкційного матеріалу під час створення вузлів стикування систем термостатування

Хмара тегів

]]>